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The long-term change of the whole spectra of precipitation intensity in China is examined using observed daily data recorded at
477 surface stations for the period from 1961 to 2008. The results show a spatially coherent decrease of trace precipitation despite
different reduction magnitudes among the regions. For measurable precipitation, significant regional and seasonal characteristics
are observed. In autumn, the whole measurable precipitation decreased over Eastern China (east of 98°E). In summer and winter,
a significant increase of heavy precipitation and decrease of light precipitation are detected south of Eastern China. In Western
China, measurable precipitation is found to have increased in all four seasons. Composite analysis reveals a quasi-linear relation-
ship between increasing surface temperature and precipitation on a global scale. The responses of precipitation at different intensi-
ties to the increased temperature are distinct, with a significant spectra-shifting from light to heavy precipitation. Compared with
precipitation over the ocean, the amplification of heavy precipitation over land is relatively less, most likely constrained by the
limited water supply. The response of regional precipitation to global warming shows greater uncertainties compared with those
on the global scale, perhaps due to interference by more complex topography and land cover, as well as human activities, among

other factors.
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In practice, precipitation changes at different intensities are
of substantial interest to human society because their im-
pacts are distinct. Consecutive and steady light and moder-
ate precipitation can effectively soak into the soil and alle-
viate drought, while heavy precipitation in a short period,
such as torrential rain, may cause flooding and soil erosion
[1]. The formation mechanisms of these precipitation types
are also different. Heavy precipitation usually forms in fast-
growing convective clouds, which are intimately connected
with robust moisture rising caused by dynamic convergence,
orographic uplifting or surface heating [2—4]. In contrast,
low-intensity precipitation is more associated with cloud
microphysical processes, which are affected by aerosols,
moisture content and so on [5-8].
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The ever-increasing global mean surface temperature has
been widely recognized as an important factor in increased
extremely heavy precipitation [1,9]. On a regional scale,
many studies have also attributed the frequently occurring
flood disasters to global warming [4,10,11]. However, there
is still no consensus in terms of quantitative estimates re-
garding the contribution by increased temperature. A theo-
retically well-determined value is the change in water-
holding capacity of the atmosphere of 7%/K, governed by
the Clausius-Clapeyron equation [1]. This equation indi-
cates an increase of precipitable water (column-integrated
water) in relation to the constant relative humidity on the
global scale [12]. This value is at odds with the model-pre-
dicted increase of 2%/K in precipitation intensity proposed
in a study using an ensemble of 17 latest-generation climate
models [13]. Locally, Lenderink and Meijgaard [14], using
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hourly precipitation observations from De Bilt in the Neth-
erlands, found that precipitation extremes increased with
rising temperatures twice as fast as expected theoretically
from the Clausious-Clapeyron equation when the daily
mean temperature exceeds 12°C. This result can be ex-
plained by Trenberth et al. [1], who indicated that additional
latent heat released from precipitation invigorated the pre-
cipitation system and further enhanced the convergence of
moisture.

As shown above, there have been many studies on ex-
treme precipitation, especially for very heavy precipitation
events [1,10,15,16]. Meanwhile, studies on light precipita-
tion over China also have made substantial achievements
and have found a significant decrease of light precipitation
in the last several decades [17,18]. Some studies have at-
tributed the decrease of light precipitation to increased
temperature [17,19], while others have argued that the in-
creased aerosol pollution has led to the reduction of light
precipitation through cloud microphysical processes [8].
However, more detailed analyses need to be made regarding
changes and their possible explanations in the whole precip-
itation spectra, ranging from light to extremely heavy, on
different spatial scales.

In this study, we first examine the changes of the whole
precipitation spectra in China based on observed daily pre-
cipitation during the period from 1961 to 2008. In the sec-
ond part, we investigate the variation features of precipita-
tion amounts of 10 categories at both regional and global
scales in a warming scenario and compare their connections
with increasing global mean surface temperature using a
recently developed analysis method by Liu et al. [20],
which has been shown to be able to detect quantitatively the
relationship between increasing temperature and the varia-
tion of precipitation.

1 Data and methods
1.1 Data

Daily precipitation data at 753 surface stations from 1961 to
2009 are provided by the National Meteorological Infor-
mation Centre of the China Meteorological Administration
(NMIC/CMA) and have been strictly quality controlled. For
the period from 1961 to 2009, some stations have missing
data records. Considering that consistency and complete-
ness of the data are very important for the trend calculation,
we excluded 276 stations with missing records during the
study period, leaving 477 stations for the present study.
Figure 1 shows the locations of these stations. In view of the
regional differences of precipitation, we divided the 477
stations into eight subregions, first according to the longi-
tude and latitude (Table 1), which to some degree are con-
sistent with climate regimes: Northeast (NE), North China
(NC), the middle and lower reaches of the Yangtze River
(YZ), Southeast (SE), the upper reaches of the Yellow River
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Figure 1 Station distribution in China and eight subregions. Subregions:
A, northeast (NE); B, north China (NC); C, lower reaches of the Yangtze
River (YZ); D, southeast (SE); E, upper reaches of the Yellow River (YW);
F, southwest (SW); G, northwest (NW); H, east of Tibet (TB). The solid
lines divide the map into three major areas: Area I (NE, NC and YW sub-
regions), Area II (YZ, SE, and SW subregions), and Area III (NW and TB
subregions).

Table 1 Eight subregions divided by longitude and latitude

Region Longitude (°E)  Latitude (°N)
Northeast =110 >42
North China >110 [34,42]
MYlgg; Za;ldR il\(?:;er reach of the >110 [28.34]
Southeast =110 <28
Upper reach of the Yellow River [98,110] >34
Southwest [98,110] <34
Northwest <98 <36
East of Tibet <98 <36

(YW), Southwest (SW), Northwest (NW) and east of Tibet
(TB). Precipitation is measured at the stations twice daily at
0000 and 1200 UTC (0800 and 2000 Beijing Time). The
Chinese standard precipitation gauge (CSPG) has been the
standard instrument for measuring both solid and liquid
precipitation in China’s climatological and hydrological
stations networks since the 1950s [18]. A precipitation
event of <0.1 mm is beyond the resolution of the CSPG and
is recorded as a trace amount of precipitation [21]. In this
study, we considered all precipitation events, including
measurable precipitation (>0.1 mm) and trace precipitation
events.

In addition, blended space-based and ground-based glob-
al rainfall datasets from the Global Precipitation Climatol-
ogy Project (GPCP) during the period from 1979 to 2007
were employed to study the change of precipitation spectra
on a global scale and to investigate the relationship between
precipitation change and global warming. The spatial reso-
lution of the GPCP is 2.5°%2.5°, and the temporal resolution
is total precipitation in five consecutive days (pentad) [22].
Global temperatures are provided by the National Oceanic
and Atmospheric Administration/National Climatic Data
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Center (NOAA/NCDC), produced from blended land and
ocean datasets [23]. This dataset provides temperature
anomalies from 1880 to the present, with respect to the pe-
riod from 1901 to 2000 (i.e. the 20th century average).
Here, we only apply the data during the study period.

1.2 Methods

A linear fitting method is used to estimate the trend of time
series for each precipitation category. It should be noted that
this definition does not necessarily imply a “real trend” in
the sense of a long-term climate change time scale. More
accurately, the trend only presents a monotonic shift during
the period studied. In analyzing the implications of global
warming in precipitation spectra, we follow a relatively new
technique that uses the differences of the precipitation
amount of each category and global temperatures between
every two years instead of pure series analysis. According
to the difference of temperature, matches of each precipita-
tion bin in the same two years are sorted. Our analysis is
only based on the series of precipitation matches. In this
way, quantitative contributions of global temperatures to
precipitation can be extracted despite various factors that
may affect precipitation characteristics. This method was
first introduced by Liu et al. [20].

To compare the similarities and differences of the impli-
cations between different spatial scales, we categorized 10
bins of precipitation intensity according to the equal contri-
bution to the total accumulated precipitation amount over a
specific area (e.g. Fujibe et al. [10]). The categories vary
depending on the region and chosen period. Table 2 lists the
boundaries of each bin over 60°S—60°N and 20°—40°N as
well as combined land-and-ocean areas within 20°—40°N. It
can be observed that the upper limits over ocean areas are
larger than those over land for low-intensity bins (Bin 1-
Bin 5); however, they are smaller for medium and heavy
precipitation bins (Bin 6-Bin 9). The same characteristic is
found when comparing the intensity range over 20°-40°N
with that over 60°S—-60°N, which implies that light precipi-
tation over land contributes more than that over ocean. On
the other hand, heavy precipitation is less strong over land
than over ocean, so a wider range of precipitation is needed
to make the same contribution (in terms of amount), which
is consistent with less water vapor supply over land.
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2 Results and analysis
2.1 Precipitation spectral change in China

Impacted by a typical monsoon climate, the precipitation in
China shows significant regional and seasonal characteris-
tics. From southeast to northwest, the precipitation amount
generally exhibits a decreasing tendency on the whole.
Seasonally, precipitation exhibits a peak in summer due to
the summer monsoon (Figure 2). Furthermore, the ranges of
precipitation intensity are also distinct over different sub-
regions in the four seasons. Figure 2 compares the distribu-
tion of precipitation spectra over the southeast and north-
west of China, averaged during the period from 1961 to
2008. Obviously, the range of precipitation spectra is much
wider in the southeast of China than that over the northwest,
with the intensity extending from 0.1 to 200 mm and even
more. By contrast, the precipitation over West China con-
sists mainly of light and moderate intensities ranging from
0.1 to 30 mm; more intense precipitation is rather rare.

Considering the different ranges of precipitation intensity,
we define the precipitation intensity maximum boundary ac-
cording to the precipitation spectral distribution (Figure 2)
over the region seasonally to ensure the analysis of the trend
is effective. Examination shows that changes of precipita-
tion spectra can be grouped into three major areas: (I) north
of Eastern China, consisting of the NE, NC and YW sub-
regions; (II) south of Eastern China, consisting of the YZ,
SE, and SW subregions; (III) West China, including the
NW and TB subregions. The three major regions are shown
in Figure 1 with bold solid lines.

According to the Chinese national meteorological stand-
ards, the measurable daily rain rates are classified into five
grades of intensity: small (0.1-10 mm/d), medium (10-25
mm/d), large (25-50 mm/d), heavy (50-100 mm/d), and
very heavy (>100 mm/d) rains. Considering the regional
discrepancies of precipitation, the defined maximum
boundary varies over different subregions in the four sea-
sons in our study. Specific boundaries for the eight sub-
regions (three major areas) are shown in Table 3. Given that
small precipitation accounts for most of the total precipita-
tion, it is further categorized into 10 grades in 1 mm incre-
ments. We calculated the frequency of trace precipitation
and the amount of each grade of measurable precipitation
and examined the long-term trend from 1961 to 2008 over

Table 2 Boundaries of 10 categories over 60°S—60°N, 20°—40°N, together with the ocean and land areas in the mid latitude over the Northern Hemisphere

(mm/d)

Bin 1 Bin2 Bin 3 Bin 4 Bin 5 Bin 6 Bin 7 Bin 8 Bin 9 Bin 10
60°S—60°N <1.68 278 3.82 4.94 6.23 7.78 9.79 12.6 17.6 >17.6
20°—40°N (ocean) <1.53 2.73 3.89 5.11 6.42 7.92 9.78 124 17.1 >17.1
20°-40°N <1.46 2.65 3.82 5.04 6.38 7.92 9.86 12.6 17.4 >17.4
20°-40°N (land) <1.30 243 3.59 4.85 6.27 7.95 10.1 13.1 18.3 >18.3
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Figure 2 Distribution of precipitation intensity spectra over Northwest
China (a) and the Southeast China (b) for different seasons.

Table 3 Maximum boundaries of precipitation intensity over eight dif-
ferent regions in four seasons (mm/d)

Areal Area II Area III
Spring =50 =100 >25
Summer =100 =100 =50
Autumn =50 =100 >25
Winter =10 =50 =10

the eight subregions.

(1) Trace precipitation. Trace precipitation (also called
drizzle) cannot be detected by a rain gauge but can be per-
ceived by the human body. Trace precipitation reflects the
dry/wet condition of atmosphere to some degree [24] and
plays an important role in the replenishment of soil. Figure
3 demonstrates the long-term trend of trace precipitation
frequency over the eight subregions in different seasons
during the period from 1961 to 2008. The trend analysis of
trace precipitation frequency from 1961 to 2008 shows a
consistent and uniform decreasing trend over China in all
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Figure 3 Trend of trace precipitation frequency over eight subregions in
China for four seasons.
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four seasons. In fact, several studies have drawn the same
conclusion [17,19,24,25]. Liu et al. [18] further indicated
that trace precipitation events decreased abruptly starting in
1982 when the temperature started rising rapidly in China.
In this study, we find that, quantitatively, the trace precipi-
tation over NC, NE, YW and TB has decreased by approx-
imately 10%/10 a, which is twice the rate of decrease in
South China (-5%/10 a, where the negative sign indicates
reduction), including YZ, SE and SW. Seasonally, the trace
precipitation frequency decreased most strongly in winter, a
trend perhaps connected with the different increasing rates
of local temperatures.

(i) Measurable precipitation. Figure 4 presents the
trend of precipitation spectra over Area I (consisting of sub-
regions NE, NC and YW) in four different seasons from
1961 to 2008. It can be observed that the precipitation spec-
tral trend exhibits significant seasonal and regional charac-
teristics. In spring, almost all of the precipitation spectra
show an increasing trend over NE, especially for the small
intensity category. Over the NC and YW subregions, large
and heavy precipitation has increased, while small and
moderate precipitation shows a decreasing trend. In summer
and autumn, all types of precipitation exhibit a uniform de-
creasing trend except for the moderate precipitation (8-25
mm/d) and very heavy precipitation categories over the YW
subregion in summer. Wang and Yan [26] analyzed the
trends of seasonal precipitation over China from 1951 to
2007 and found a changing pattern of extreme precipitation
consistent with the present study. They also noted that the
roles of large-scale and regional mechanisms are quite dif-
ferent for different seasons. A significant decrease of pre-
cipitation in summer related to the weakening of the sum-
mer monsoon can explain the persistent drought in North
China during recent years. As a typical region dominated by
the well-known East Asian monsoon, a prominent inter-
decadal shift in the East China rainfall pattern occurred in
late 1970 with more precipitation in the Yangtze River Val-
ley and less in North China, which has been attributed to the
weakening of the Asian summer monsoon [27]. Li et al.
[28] also investigated the extreme precipitation and ascribed
the greater precipitation extremes in the northern part of
eastern China to variations of the East Asian summer mon-
soon and corresponding atmospheric circulations. In winter,
the daily precipitation amount that exceeds 10 mm is un-
common over this subregion. However, our trend analysis
shows a consistent and considerable increase of widespread
precipitation in winter, which is obviously different from
that in summer and autumn.

Figure 5 shows the trend of precipitation spectra over
Area II (including YZ, SE and SW) from 1961 to 2008.
This area has a typical monsoon climate. During warm
months (May—October), strong moisture transported from
the ocean is the main precipitation source over this area. As
shown in Figure 5, a significant feature over this area is the
uniform reduction of the whole precipitation spectra in
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Figure 4 Trend of precipitation for different intensity categories over north of eastern China (Area I, including northeast, north China and upper reaches of
the Yellow River) during 1961-2008. (a) Spring; (b) summer; (c) autumn; (d) winter. An asterisk (*) indicates that the trend is statistically significant at the
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Figure 5 Same as in Figure 4, except for south of eastern China (Area II), including the lower reaches of the Yangtze River, southeast China, and south-

west China.

autumn, which is consistent with that over Area I. The de-
creasing magnitude of the small precipitation is greater than
that of the heavy precipitation. In spring, the daily precipita-
tion less than 7 mm shows a uniform decreasing trend over
the three subregions, with the maximum reduction in YZ.
For other categories, the precipitation in spring shows dis-

tinct characteristics over the three subregions, although the
trend is not significant. In summer, the significant increase
in heavy precipitation and decrease in small, especially light
precipitation over SE and SW can be found. The increasing
magnitude of large, heavy and very heavy precipitation is
the largest in YZ, exceeding 5%/10 a. Furthermore, the
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increasing magnitude is also connected with the precipita-
tion intensity. Heavier precipitation tends to have a greater
increase, the so-called “the richer gets richer” effect. It
should be noted that there is also some difference even
within a precipitation intensity less than 10 mm/d in sum-
mer. An increasing trend is detected for precipitation be-
tween 4 and 7 mm/d over YZ and SE. Similar results were
reported by Liu et al. [18]. They mainly attributed the de-
cline in precipitation to the decrease of light precipitation
events with intensities of 0.1-0.3 mm/d. In winter, the
whole precipitation spectra show a significant increasing
trend. Only in SE, with precipitation less than 2 mm/day
and more than 9 mm/d, has the precipitation declined during
1961-2008.

In West China (Area III), the total precipitation is rather
limited, resulting in an arid and semiarid climate. Recent
studies have found an increasing trend of total precipitation
in this area [29]. Figure 6 shows the trend of precipitation
spectra in area III, including the northwest (NW) and Ti-
betan region (TB). One can see that nearly all intensities of
precipitation have increased in all four seasons, which con-
firms the wet tendency in West China reported in the litera-
ture [29-32]. Li et al. [31] argued that the direct cause of the
shift from a warm-dry to warm-wet climate is the adjust-
ment of atmospheric circulation, which strengthens the wa-
ter-vapor transport to the north from the Indian Ocean and
the western Pacific Ocean.

2.2 Global precipitation spectral change

To compare precipitation features at different spatial scales,
we also examine the change of precipitation spectra on the
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global scale using the GPCP pentad data during the period
from 1979 to 2007. Figure 7(a) shows the trend estimates
for the whole precipitation spectra using the linear regres-
sion method. Solid bars denote that the trends are significant
(exceeding the 95% confidence level) on the basis of the
t-test. It can be clearly observed that extremely light precip-
itation with daily precipitation less than 2 mm/d and heavy
precipitation of more than 13 mm/d show increasing trends.
Furthermore, the amplification is positively related to the
precipitation intensity. Heavy precipitation tends to have
a larger increase. By contrast, small precipitation between
2-13 mm/d has declined. Overall, the magnitude of precipi-
tation increase is greater than that of the precipitation
decrease, implying an increase of mean precipitation inten-
sity.

Global warming has been widely recognized to be a fa-
vorable factor for precipitation resulting from increased
water vapor in the atmosphere [1,3]. Based on the Clausius-
Clapeyron equation, the saturation water-vapor pressure
rises with temperature at approximately 7%/K [1], which
implies an increase of precipitable water at the same rate
regarding the marginal change in relative humidity predict-
ed in global climate models [33]. Figure 7(b) compares the
precipitation amount for each category in the two coldest
years (1984 and 1985) and two warmest years (1998 and
2005) averaged over 60°S—60°N. The pattern of differences
between warm and cold years is consistent with the trend of
precipitation spectra from 1979 to 2007, with extremely
light and heavy precipitation in warmer years being greater
than that in colder years. Considering that the global mean
surface temperature has increased significantly by 0.14°C/
decade during this period, this uniform pattern verifies the
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Figure 7 (a) Trend of precipitation spectra during 1979-2007; (b) precip-
itation spectra comparisons between two warmer years (1998 and 2005)
and two colder years (1984 and 1985) over 60°S—60°N.

substantial implication of global warming on precipitation
characteristics.

2.3 Responses of global precipitation spectra to global
warming

To quantify the response of precipitation intensity to global
temperature increase, we adopt the new approach intro-
duced by Liu et al. [20]. They analyzed the relationship
between extreme precipitation and global temperature using
the differences of precipitation between every two years
instead of raw time series of precipitation, as in most studies.
In such a way, contributions of global temperatures to
changes in precipitation can be extracted effectively. Their
study showed that the difference in extreme precipitation
tended to be quasi-linearly proportional to the difference in
global temperature. Taking advantage of their new finding,
we calculate the quasi-constant changing rate for each bin,
which is expressed as the change of precipitation amount
divided by the maximum change in global temperature of
0.48°C during the studied period.

Figure 8 presents the percentage change of precipitation
amount in response to a one-degree increase of global tem-
perature for each bin over 60°S—60°N. The rate of amplifi-
cation of extreme precipitation to atmospheric warming is
marked in the figure. It can be observed that most of the
precipitation ranging from light to medium (1.68-12.6
mm/d) has decreased uniformly, with a maximum decline of
27.1%/°C, in Bin 5 (4.94-6.23 mm/d). By contrast, a sub-
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Figure 8 Quasi-constant changing rate of 10 bins of precipitation inten-
sity for each degree increase in global temperature over 60°S—60°N. The
vertical error bar denotes one standard deviation.

stantial increase accompanied with global warming is ob-
served for extremely heavy precipitation with daily precipi-
tation greater than 6.23 mm/d (Bin 9 and Bin 10) as well as
very light precipitation of less than 1.68 mm (Bin 1). The
magnitude of precipitation increase for the heaviest precipi-
tation, with daily precipitation more than 17.6 mm/d (Bin
10), is estimated to be 98.2%/°C (8.6%/°C), and value in the
bracket is one standard deviation.

We further calculate the quasi-constant changing rate
over 20°—40°N with increasing global mean surface tem-
perature and compare the similarity and difference over land
and ocean areas. As shown in Figure 9, the changing pat-
terns of the whole precipitation spectra with increased tem-
perature over land are similar to those over the ocean de-
spite the different variations in magnitude. Quantitatively,
both the reductions of light and medium precipitation and
amplification of heavy precipitation over land are smaller
than those over the ocean, which may be related to the lim-
ited water-vapor supply over land. Unlike the ocean, there is
no abundant moist source over land. Limited water supply
will suppress the increase of extremely heavy precipitation
to some degree. Another obvious difference is the change of
very little precipitation (Bin 1). For this category, precipita-

200

@ Land (20°-40°N)
o Blended (20°-40°N)

150 m Ocean (20°-40°N)

APIAT (%4°C)
o o
(=] o

o

#““Wﬂﬂmﬁﬂ

1 2 3 4 5 6 7 8 9 10
Intensity categories

=100

Figure 9 Same as in Figure 8, except for the land, ocean and blended
areas over 20°—40°N.
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tion has increased over the ocean as global temperature rises.
However, this type of precipitation over land shows an op-
posite declining tendency (—7.9%/°C), which may be con-
nected with different precipitation characteristics over land
and ocean. The precipitation over ocean can be rather in-
tense during a robust convection process. Plentiful water
vapor within hours may be graded into slight precipitation
through an average over consecutive 5 days. Over land, the
decrease of light precipitation may be connected with hu-
man activities, ranging from increased anthropogenic aero-
sols from air pollution to changed land-surface coverage. In
the past, many studies attributed the decreased light precip-
itation to increased aerosols [6,8]. These studies argued that
increased aerosols can significantly increase the cloud
droplet number concentration and reduce droplet sizes,
leading to a significant decline in raindrop concentration.
Delayed precipitation is beneficial for water-vapor accumu-
lation in the atmosphere, and it rains until the air becomes
saturated. This process actually decreases the light precipi-
tation and ultimately turns it into heavy precipitation.

2.4 Responses of regional precipitation spectra to
global warming

Following the same method, we also calculate the quasi-
constant changing rate of the 10 bins of precipitation over
the eight subregions in China from 1961 to 2009. The re-
sults are shown in Figure 10. Despite the large uncertainty,
a uniform variation pattern can be observed in which light
precipitation demonstrates a negative tendency, while heavy
precipitation demonstrates a positive trend as global tem-
perature rises. Furthermore, the smaller the precipitation
intensity, the more the precipitation decreases, and vice
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versa. This pattern implies a shift from light to heavy pre-
cipitation under a warming scenario.

A comparison with results obtained from the GPCP pen-
tad data shows that the whole pattern of precipitation
change in China is consistent with the latter segment, from
Bin 5 to Bin 10, of the global spectra. In view of the differ-
ent temporal resolutions, we suspect that the average calcu-
lation process of the GPCP pentad data has produced an
artificial result for so-called light precipitation (from ap-
proximately Bin 1 to Bin 4). Further study of precipitation
with high temporal resolution is needed to test our hypothe-
sis. Considering this possible factor, the precipitation
changes of different intensities over global and regional
scales are qualitatively consistent, with a shift of the precip-
itation spectra from light to heavy precipitation. The main
discrepancy rests on the extent of uncertainty. Over land
area, there may be other parameters affecting the change of
precipitation besides the temperature.

In fact, regional precipitation is more complicated. As
mentioned earlier, non-homogeneous land surface coverage
and topography can change energy, momentum and water
fluxes locally as well as the water vapor transport among
regions. In addition, increased aerosols from human activi-
ties may change precipitation characteristics through cloud
microphysical processes more locally and regionally. As a
result, it is more difficult to extract the relative contributions
of different factors.

3 Conclusions and discussions

In this study, we examined the trend of the whole precipita-
tion intensity spectra in China during the period from 1961
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Figure 10 Same as in Figure 8, except for eight subregions in China.
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to 2008 using daily observational data from 477 surface
stations provided by the NMIC/CMA. In addition, the pre-
cipitation records of 10 intensity bins on the global scale
were studied using the GPCP pentad precipitation data from
1979 to 2007. Coupled analysis with global temperature
was carried out following a relatively new technique intro-
duced by Liu et al. [20]. The following conclusions are
drawn through the above analysis:

(1) The observational data revealed a spatially coherent
decreasing trend of trace precipitation over China from
1961 to 2008. In contrast, the pattern of detectable light
precipitation (<1.0 mm) shows a negative trend over east
China but a positive trend over West China, which implies
that the causes of trace and detectable light precipitation
may be somewhat different. Because trace precipitation is
extremely fine and generally smaller than 0.5 mm in diam-
eter, it is easily evaporated before reaching the ground.
Compared with relatively larger droplets of light precipita-
tion, trace precipitation is more sensitive to increased tem-
perature. Rising temperature can substantially restrain the
frequency of trace precipitation.

(2) For detectable precipitation, the trend showed typical
regional and seasonal characteristics. Precipitation has de-
clined consistently in the summer and autumn seasons over
the northern part of East China, while a uniform increase in
this area has been observed for the entire precipitation spec-
tra in winter. Over the southern part of East China, a signif-
icant positive trend in heavy precipitation and a negative
trend in light and medium precipitation were both observed
in summer and winter. Meanwhile, a coherent decline for
the entire precipitation spectra in spring and autumn was
detected. In the western China, the precipitation shows a
consistent increase despite the decreased trace precipitation
events.

(3) Composite analysis demonstrates an intimately posi-
tive correlation between precipitation intensity and global
temperature. Accompanied by ever-increasing temperature,
a substantial decline in medium precipitation and an in-
crease in extremely heavy and light precipitation were ob-
served over 60°S—60°N globally, but 20°—40°N over the
ocean only.

(4) Comparisons of the response of precipitation spectra
to global warming between land and ocean areas over
20°—40°N show significant discrepancies for the change of
light precipitation (Bin 1) apart from different magnitudes
for other categories. The estimated quasi-constant changing
rate for the bottom 10% bin over the ocean is a 5.8%/K in-
crease, while that over land has an opposite trend, a de-
crease by 7.9%/K. This difference may be partly due to
more aerosol particles over land that tend to suppress light
precipitation [8]. With respect to the smaller magnitudes of
other categories over land than those over the ocean, we
hypothesize that this is associated with limited available
water vapor over land, which is affected by local evapo-
transpiration, especially the transportation from the ocean
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by atmospheric circulation. As for the precipitation spectra
change responding to global warming in China and its eight
subregions, similar patterns are detected except for rela-
tively larger uncertainties. This result confirms our hypoth-
esis that there may be other factors affecting the precipita-
tion spectra distribution on a regional scale.

The present study focused on the trend of the entire pre-
cipitation spectra and compared the implications of rising
temperature on precipitation over different spatial scales
with the goal of finding other possible causes that affect the
precipitation spectra over land on a local scale. Our results
have shown that rising temperature can strengthen precipi-
tation intensity with a shift from light to heavy precipitation.
Further research is needed to investigate the potential im-
pacts of aerosols on precipitation spectra, among other
things.
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