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Change of universe functors
in equivariant stable homotopy theory

by

L. Gaunce L e w i s, J r. (Syracuse, N.Y.)

Abstract. One striking difference between nonequivariant and equivariant stable ho-
motopy is that, in the equivariant context, one must specify those representations with
respect to which spectra are to be stable. One may specify stability with respect only to
trivial representations (thereby obtaining what is often called the naive equivariant sta-
ble category), with respect to all representations (thereby obtaining the full equivariant
stable category), or with respect to any intermediate collection of representations closed
under direct sums. The chosen family of representations is usually described by speci-
fying an indexing universe. Change of universe functors transform spectra stable with
respect to one set of representations into spectra stable with respect to a second set of
representations. This is done either by restriction (that is, by forgetting the stability with
respect to some representations) or by induction (that is, by altering the spectra so that
they become stable with respect to a larger class of representations). The impact of these
transformations on the equivariant homotopy groups of spectra should be viewed as an
equivariant generalization of the passage between unstable and stable homotopy groups in
the nonequivariant context. Three results concerning this impact are given. One describes
when change of universe functors are isomorphisms of categories. The second completely
describes the impact of an arbitrary induction functor on the first nonvanishing homotopy
groups of a bounded-below spectrum. The third gives a spectral sequence which describes
the behavior of an arbitrary induction functor on all the homotopy groups of an arbitrary
spectrum.

Introduction. This paper continues the study begun in [13] and [12] of
the equivariant Hurewicz and suspension maps. In [12], it was shown that
direct equivariant generalizations of the Freudenthal suspension theorem
necessarily suffer from at least one of two defects—either their hypotheses
are unduly restrictive, or they describe the effect of suspension only on
the bottom nonvanishing homotopy groups rather than on the homotopy
groups in a range of dimensions. One of the purposes of the present paper
is to introduce a spectral sequence, promised in [12], which ameliorates this
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situation by providing a way of studying the effect of suspension in precisely
that range of dimensions where one might expect to be able to understand
it based on the nonequivariant Freudenthal suspension theorem.

This spectral sequence is most easily constructed by studying a por-
tion of equivariant homotopy theory that lies between the unstable and
stable realms and has no exact nonequivariant analog. To understand the
nature of this in-between realm, recall that, modulo a couple of technical
points, the nonequivariant stable category may be regarded as the category
obtained from the homotopy category hT of based spaces by making the
suspension functor invertible. When we move from the homotopy category
of based spaces to the homotopy category hGT of based G-spaces, where
G is a compact Lie group, then there is no longer a single suspension func-
tor, but rather there is a “suspension by W” functor ΣW associated with
each finite-dimensional representation W of G. Thus, rather than expect-
ing just a single G-stable category, one ought to expect a family of what
might be called semi-stable categories. Associated with any collection U of
(isomorphism classes of) finite-dimensional G-representations, there should
be a category, which might be called the G-U-semi-stable category , that is
obtained from hGT by inverting the suspension functors ΣW associated
with the representations W in U . Among this family of categories there
is an obvious maximal one in which suspension by every finite-dimensional
G-representation W is invertible. This maximal category is the real G-stable
category. The other categories form the in-between realm in which we work
to construct our spectral sequence.

Due to the way in which G-semi-stable categories are constructed [18],
they are actually indexed on certain infinite-dimensional G-representations,
called G-universes, rather than on the collections U of G-representations
suggested above. A countably infinite-dimensional inner product space U
on which G acts by isometries is a G-universe if it contains both the trivial
representation and infinitely many copies of each of its finite-dimensional
subrepresentations. The semi-stable category associated with a G-universe
U is denoted by h̃GSU ; in [18], it is referred to as the G-stable category in-
dexed on U . The objects of h̃GSU are referred to as G-spectra indexed on U .
For each finite-dimensional G-representation W , there are adjoint functors
ΣW and ΩW on h̃GSU which are, in an appropriate sense, the extensions
to h̃GSU of the suspension and loop functors ΣW and ΩW on hGT . The
functor ΣW is invertible on h̃GSU if W is contained in U . Thus, h̃GSU may
be thought of as the semi-stable category associated with the collection U
of those finite-dimensional G-representations which are subrepresentations
of U . If W is not a subrepresentation of U , then ΣW need not be an in-
vertible functor on h̃GSU . One of the two primary purposes of this article
is to describe the behavior of ΣW for such W . Our results on the func-
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tors ΣW : h̃GSU → h̃GSU should be thought of as generalizations of the
Freudenthal suspension theorem since they describe the effect of suspension
by a representation W with respect to which the objects of h̃GSU have not
been stabilized. The spectral sequence described earlier which describes the
behavior of the space-level suspension functor ΣW is derived from a spectral
sequence which describes the behavior of the suspension functor ΣW on an
appropriately chosen semi-stable category h̃GSU .

Associated with each linear G-isometry ι : U → U ′, there is a pair
ι∗ : h̃GSU → h̃GSU ′, ι∗ : h̃GSU ′ → h̃GSU of adjoint functors which are
called change of universe functors [18]. The right adjoint ι∗ “forgets” that
the objects of h̃GSU ′ are stable with respect to those G-representations W
that are contained in U ′ but not in U . The left adjoint ι∗ stabilizes the
objects of h̃GSU with respect to precisely the same representations W . The
second primary purpose of this paper is to describe the effects of ι∗. The
functor ι∗ can be thought of, in a sense that we make precise in Section 5,
as a kind of colimit of the suspension functors ΣW for those W which are
contained in U ′ but not in U . Thus, our results describing the behavior of
ι∗ should be thought of as equivariant generalizations of the Freudenthal
suspension theorem.

In a sense, each suspension functor ΣW : h̃GSU → h̃GSU and each
change of universe functor ι∗ : h̃GSU → h̃GSU ′ is one small piece of the
long road between the category of G-spaces and the G-stable category. From
this point of view, the results presented here should be of interest for the
insights they provide on the gap between the unstable and stable realms
in equivariant homotopy theory. A second, more subtle, reason for interest
in these results is that they ought to provide some insight into the un-
solved problem of constructing useful geometric models for the equivariant
loop spaces ΩWΣWX and infinite loop space Ω∞Σ∞X associated with a
G-space X in the context where G is a compact Lie, but not finite, group.
Our results may be thought of as providing an almost entirely algebraic
description of the homotopy groups of the spaces ΩWΣWX and Ω∞Σ∞X
in terms of the homotopy groups of the G-space X. These descriptions are
essentially independent of whether or not G is finite. When G is finite, useful
geometric models of the spaces ΩWΣWX and Ω∞Σ∞X already exist [3, 8].
Our hope is that, by studying the relation between our algebraic results and
the known geometric models in the finite case, we may gain enough insight
about the connections between the algebra and the geometry to work from
our algebraic results in the nonfinite case to the necessary structure of a
geometric model for that case.

The first section of this paper begins with a review of some of the ba-
sic terminology of equivariant stable homotopy theory and concludes with
the statements of our main results. The second section discusses the implica-
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tions of a suspension spectral sequence introduced in the first section for the
space-level equivariant suspension theorem. Most of our results follow from
certain properties of equivariant Eilenberg–MacLane spectra. These spectra,
and a special type of equivariant CW spectra needed for their construction,
are discussed in Section 3. This section also contains the proofs of those of
our results which follow trivially from the properties of Eilenberg–MacLane
spectra. Our spectral sequences are derived from Postnikov decompositions
of equivariant spectra; these are described in Section 4. Section 5 contains a
description, which has proved to be computationally useful, of the func-
tors ι∗ in terms of suspension functors. Section 6 contains the proof of
the one result from Section 1 which does not follow from the properties
of Eilenberg–MacLane spectra. Much of our notation, and many basic facts
about equivariant stable homotopy theory, are assumed from the first two
chapters of [18].

I am indebted to Peter May for questioning me about the implications of
the results in [13] and a preliminary version of [12] for equivariant Eilenberg–
MacLane spaces and spectra. It was in pursuing answers to his questions that
I discovered most of the results in this paper. I am also indebted to Stefan
Waner for providing me a copy of his unpublished work on G-CW (V ) com-
plexes [27]. My discussion of G-CW (α) spectra in Section 3 draws heavily
on Waner’s earlier work.

1. Properties of suspension and change of universe functors in
equivariant stable categories. After reviewing some basic concepts and
some notation from equivariant homotopy theory, we here summarize our
main results on suspension functors ΣW : h̃GSU → h̃GSU and change of
universe functors ι∗ : h̃GSU → h̃GSU ′. Each of our three main results
contains two parts—one applicable to the functors ΣW and the other a par-
allel observation about the functors ι∗. The first main result describes when
the functors ΣW and ι∗ are invertible. The second describes the behavior
of both types of functors on the lowest-dimensional nonvanishing homotopy
groups of bounded-below spectra. The third provides a spectral sequence for
each type of functor which completely describes the effect of that functor
on equivariant homotopy groups. This section concludes with some obser-
vations about the behavior of our spectral sequences in some very simple
special cases.

Throughout this paper, groups are assumed to be compact Lie groups,
and subgroups are understood to be closed. The notation K ≤ G indicates
that K is a subgroup of G. All topological spaces are assumed to be com-
pactly generated, weak Hausdorff spaces [16, 23, 29]. All G-spaces are left
G-spaces. Whenever possible, the prefix G is omitted from our notations, so



Change of universe functors 121

that by spaces, subspaces, spectra, maps, etc., we mean G-spaces, sub-G-
spaces, G-spectra, G-maps, etc. If K is a subgroup of G and Y is a G-space,
then Y K is the K-fixed subspace of Y . A based G-space is a G-space Y to-
gether with a specified basepoint, which is required to be in Y G. If X is an
unbased G-space, then X+ denotes the disjoint union of X and a G-trivial
basepoint.

All G-representations are assumed to have a G-invariant inner product.
If W is a G-representation, then DW , SW , and SW denote its unit disk, its
unit sphere, and its one-point compactification, respectively. The basepoint
of SW is the point at infinity. The dimension of W over the real numbers
is denoted by |W |. The trivial G-representation of dimension n, where n is
a nonnegative integer, is denoted by n. In particular, the zero-dimensional
trivial representation is denoted by 0. If V and W are two G-representations,
then V +W denotes their direct sum.

Recall that any G-universe U is assumed to contain a trivial representa-
tion. This ensures that suspension by the trivial representation is invertible
in h̃GSU and therefore that h̃GSU shares some of the most basic properties
of the nonequivariant stable category. In particular, if Y and Z are in h̃GSU ,
then the set [Y,Z]UG of morphisms from Y to Z in h̃GSU is an abelian group.
Moreover, cofibre sequences in h̃GSU are, up to signs, also fibre sequences
(see Section III.2 of [18]) and therefore give rise to long exact sequences in
both homology and cohomology. Let h̃GT be the category obtained from
hGT by inverting weak equivalences. Then, for any G-universe U , there is
a pair of functors Σ∞ : h̃GT → h̃GSU and Ω∞ : h̃GSU → h̃GT , with Σ∞

left adjoint to Ω∞, which assign to each G-space its suspension spectrum
and to each G-spectrum indexed on U its associated infinite loop space. We
denote these functors by Σ∞U and Ω∞U when it is necessary to specify the
universe U .

We have already noted that, if U is a G-universe and W is a finite-
dimensional G-representation contained in U , then the functor ΣW is in-
vertible on h̃GSU . However, this functor may be invertible even when W
is not contained in U . Our first main result describes the precise conditions
under which the functors ΣW and ι∗ are invertible. This description is in
terms of a preorder, and its associated equivalence relation, on the category
of G-representations.

Definition 1.1. Let V and W be G-representations. Then V is con-
tained in W up to G-orbits if, for each pair of subgroups K ≤ H in G, the
orbit H/K H-imbeds in W whenever it H-imbeds in V . The representations
V and W are G-orbit equivalent if, for each pair of subgroups K ≤ H in G,
the orbit H/K H-imbeds in V if and only if it H-imbeds in W—that is,
each of V and W is contained in the other up to G-orbits.
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Theorem 1.2. (a) Let U be a G-universe and W be a finite-dimensional
G-representation. Then the functor ΣW is an equivalence of categories on
h̃GSU if and only if W is contained in U up to G-orbits.

(b) Let ι : U → U ′ be a linear G-isometry between G-universes. Then
the functor ι∗ : h̃GSU → h̃GSU ′ is an equivalence of categories if and only
if U and U ′ are G-orbit equivalent.

R e m a r k s 1.3. (a) Note that the “if” portion of part (a) of the the-
orem follows from part (b). Let U ′ be the direct sum of the G-universe U
and countably infinitely many copies of the finite-dimensional G-representa-
tion W , and let ι : U → U ′ be the obvious inclusion of U into U ′. If W is
contained in U up to G-orbits, then U and U ′ are G-orbit equivalent and
ι∗ is an equivalence of categories. The natural isomorphism ι∗ΣW ∼= ΣW ι∗
(see Proposition II.1.4 of [18]) then implies that ΣW must be invertible on
h̃GSU because it is invertible on h̃GSU ′. The remainder of this theorem is
proved in Section 6.

(b) Whenever ΣW and ι∗ are equivalences of categories, their right ad-
joints ΩW and ι∗ are, by a standard formal argument, their inverse equiva-
lences. However, to emphasize the invertibility of ΣW , we denote the inverse
equivalence to ΣW by Σ−W rather than ΩW .

(c) Even if the universes U and U ′ are G-orbit equivalent, there need not
be an equivariant linear isometry from U to U ′ (or from U ′ to U). However,
if the two are G-orbit equivalent, then both are G-orbit equivalent to U⊕U ′
and both imbed, via equivariant linear isometries, into U ⊕ U ′. It follows
that the G-stable categories h̃GSU and h̃GSU ′ are equivalent, since both
are equivalent to h̃GS(U ⊕ U ′).

(d) The obvious nontrivial example of universes that are G-orbit equiv-
alent occurs when G is Z/p, for some odd prime p greater than 3. Let W
and W ′ be two nontrivial irreducible G-representations that are not equiv-
alent. Let U be the direct sum of infinitely many copies of both W and the
trivial representation, and U ′ be the direct sum of infinitely many copies of
both W ′ and the trivial representation. Clearly, U and U ′ are nonisomorphic
G-universes which are G-orbit equivalent. Further examples of nonisomor-
phic G-orbit equivalent G-universes may be constructed using the results of
[26] on G-representations that have the same dimension function.

In the cases whereΣW and ι∗ are not equivalences of categories, we would
like measure how far they are from equivalences. We do this by studying the
effects of these two functors on equivariant stable homotopy groups. If we
were working with a complete G-universe, then our equivariant homotopy
groups would be graded on the full real representation ring RO(G) of G.
However, since we are working with incomplete universes, we must grade
our homotopy groups on an additive submonoid of RO(G).
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Definition 1.4. (a) Recall that the real representation ring RO(G) of G
is the Grothendieck group of isomorphism classes of finite-dimensional real
G-representations. The elements of RO(G) are equivalence classes of formal
differences V −W of finite-dimensional G-representations V and W . If U is a
G-universe, then RO+(G,U) is the additive submonoid of RO(G) consisting
of those elements which can be represented by a formal difference of the
form V −W such that V and W are finite-dimensional G-representations
and W is contained in U up to G-orbits. If U is a trivial G-universe, then
RO+(G,U) is the submonoid of RO(G) generated by the formal differences
V −n, for n ∈ Z. If U is a complete G-universe, then RO+(G,U) is RO(G).
Observe that, for any universe U , RO+(G,U) contains the submonoid Z of
trivial virtual representations.

(b) If α is an element of RO+(G,U) represented by the formal difference
V − W , where W is contained up to G-orbits in U , then the sphere Sα

(or SαU if we need to specify the universe) of dimension α in h̃GSU is
defined to be the spectrum Σ−WΣ∞SV . This sphere is uniquely defined up
to isomorphism in h̃GSU . If there is a linear isometry ι : U → U ′ between
the universes U and U ′, then RO+(G,U) is a submonoid of RO+(G,U ′).
Thus, if α is in RO+(G,U), then we have spheres SαU and SαU ′ in h̃GSU
and h̃GSU ′, respectively. There are natural isomorphisms ι∗Σ∞U ∼= Σ∞U ′ and
ι∗ΣV ∼= ΣV ι∗ (see Proposition II.1.4 of [18]), which together provide an
isomorphism ι∗SαU ∼= SαU ′ .

(c) If Z is a G-spectrum indexed on the universe U , K ≤ G, and
α ∈ RO+(G,U), then the αth stable homotopy group πK,Uα Z of Z with
respect to K is the abelian group [SαU , Z]UK . This group is isomorphic to
[SαU ∧ G/K+, Z]UG by Theorem II.4.7 and Lemma II.4.8 of [18]. If W is a
G-representation, then the suspension functor ΣW induces a natural homo-
morphism

σKW : πK,Uα Z → πK,Uα+WΣ
WZ.

Similarly, if ι : U → U ′ is a linear isometry, the functor ι∗ and the isomor-
phism ι∗SαU ∼= SαU ′ induce a natural homomorphism

σKι : πK,Uα Z → πK,U
′

α ι∗Z.

Roughly speaking, our measure of the extent to which the functors ΣW

and ι∗ fail to be equivalences of categories is the extent to which the ho-
momorphisms σKW and σKι defined above fail to be isomorphisms. The main
thrust of the work in [12] on the space-level equivariant suspension map is
that, in order to describe the behavior of this map, it is necessary to in-
troduce a generalization of the notion of a Mackey functor which captures
the full algebraic structure carried by the equivariant homotopy groups of
a G-space. The same approach provides the insight needed to understand
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the behavior of the maps σKW and σKι . Thus, we now introduce the notion
of a U -α-Mackey functor and show that the collection of homotopy groups
πK,Uα Z, for K ≤ G, forms such an object.

Definition 1.5. (a) If α ∈ RO+(G,U), then the U -α-Burnside cate-
gory BU

G(α) has, as its objects, the orbits G/K, for K ≤ G. The collection
of morphisms in BU

G(α) from the orbit G/K to the orbit G/J is the abelian
group [SαU ∧ G/K+, S

α
U ∧ G/J+]UG. Composition of morphisms is defined

as in h̃GSU . Since composition is linear in either variable, BU
G(α) is an

Ab-category.
(b) If α ∈ RO+(G,U), then a U -α-Mackey functor is a contravariant

additive functor from BU
G(α) to the category Ab of abelian groups. The cat-

egory of U -α-Mackey functors, and natural transformations between these
functors, is denoted by MU

G(α).
(c) If W is a finite-dimensional G-representation, then there is a functor

sW : BU
G(α)→ BU

G(α+W )

which is the identity on objects and which is given on morphisms by the
suspension map

[SαU ∧G/K+, S
α
U ∧G/J+]UG → [ΣWSαU ∧G/K+, Σ

WSαU ∧G/J+]UG
∼= [Sα+W

U ∧G/K+, S
α+W
U ∧G/J+]UG.

Precomposition with sW produces a functor s∗W :MU
G(α + W ) →MU

G(α).
It has a left adjoint sW∗ : MU

G(α) → MU
G(α + W ), which is given by left

Kan extension along sW . If W is contained in U up to G-orbits, then, by
Theorem 1.2, the functors sW , s∗W , and sW∗ are isomorphisms of categories.

(d) If ι : U → U ′ is a linear isometry, then there is a functor

sι : BU
G(α)→ BU ′

G (α)

which is the identity on objects and which is given on morphisms by the
composite

[SαU ∧G/K+, S
α
U ∧G/J+]UG

ι∗−→ [ι∗(SαU ∧G/K+), ι∗(SαU ∧G/J+)]U
′

G

∼= [SαU ′ ∧G/K+, S
α
U ′ ∧G/J+]U

′
G .

Precomposition with sι produces a functor s∗ι : MU ′
G (α) → MU

G(α). The
functor s∗ι has a left adjoint sι∗ : MU

G(α) → MU ′
G (α), which is given by

left Kan extension along sι. If U and U ′ are G-orbit equivalent, then the
functors sι, s∗ι and sι∗ are isomorphisms of categories.

R e m a r k 1.6. If α = 0, then U -α-Mackey functors are just U -Mackey
functors in the sense of [13]. In particular, if U is a complete G-universe and
α = 0, then U -α-Mackey functors are just ordinary Mackey functors in the
sense used in representation theory [5, 11, 25]. If U is the trivial universe
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and α = 0, then U -α-Mackey functors are just Bredon–Illman coefficient
systems [1, 10, 28].

Examples 1.7. (a) If Z is a G-spectrum indexed on the G-universe U
and α is an element of RO+(G,U), then the collection of homotopy groups
πK,Uα Z, where K runs over the subgroups of G, forms a U -α-Mackey functor
πG,Uα Z. The value of πG,Uα Z at the orbit G/K is πK,Uα Z = [SαU ∧G/K+, Z]UG.
The effect of a morphism f : SαU ∧G/J+ → SαU ∧G/K+ in BU

G(α) is simply
that of precomposition by f .

(b) If Z, U , and α are as in part (a) and W is a finite-dimensional
G-representation, then the maps σKW : πK,Uα Z → πK,Uα+WΣ

WZ fit together to
form a natural map σW : πG,Uα Z → s∗Wπ

G,U
α+WΣ

WZ describing the effect of
suspension by W . Let σ̃W : sW∗ π

G,U
α Z → πG,Uα+WΣ

WZ be the adjoint of σW
under the (sW∗ , s

∗
W )-adjunction.

(c) Let ι : U → U ′ be a linear isometry between G-universes and let Z
be a G-spectrum indexed on U . Then the maps σKι : πK,Uα Z → πK,U

′
α ι∗Z

fit together to form a natural map σι : πG,Uα Z → s∗ιπ
G,U ′
α ι∗Z describing the

effect of the change of universe functor ι∗. Let σ̃ι : sι∗π
G,U
α Z → πG,U

′
α ι∗Z be

the adjoint of σι under the (sι∗, s
∗
ι )-adjunction.

The results in [12] on the space-level suspension map suggest that, when
the functors ΣW and ι∗ are not equivalences of categories, one should not ex-
pect the maps σW : πG,Uα Z → s∗Wπ

G,U
α+WΣ

WZ and σι : πG,Uα Z → s∗ιπ
G,U ′
α ι∗Z

to be well-behaved because the functors πG,Uα+WΣ
WZ and πG,U

′
α ι∗Z carry a

much richer structure than πG,Uα Z. Instead, one should expect the adjoint
maps σ̃W and σ̃ι to be nicely behaved. Our second main result asserts that
these adjoint maps are, in fact, isomorphisms on the bottom nonvanishing
homotopy groups of Z when Z is a bounded-below spectrum.

Definition 1.8. A G-spectrum Z indexed on U is said to be α-connected
if πG,Uα+nZ = 0 for every integer n ≤ 0. The full subcategory of h̃GSU whose
objects are the (α− 1)-connected spectra is denoted by h̃GS(U,α).

Theorem 1.9. Let U be a G-universe, α be an element of RO+(G,U),
and Z be an (α − 1)-connected G-spectrum indexed on U . Then, for any
finite-dimensional G-representation W and any linear isometry ι : U → U ′,
the maps

σ̃W : sW∗ π
G,U
α Z → πG,Uα+WΣ

WZ and σ̃ι : sι∗π
G,U
α Z → πG,U

′
α ι∗Z

are isomorphisms.

R e m a r k 1.10. The assertion, in Theorem 1.9, that the map σ̃ι is an
isomorphism when Z is an (α− 1)-connected spectrum generalizes Proposi-
tion 6.1 in [13], which applies only to the case α = 0.
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Theorem 1.9 suffers from the same defect as that suffered by the space-
level equivariant suspension theorem presented in [12]; that is, it describes
the behavior of the functors ΣW and ι∗ only on the lowest-dimensional
nonvanishing homotopy groups. Moreover, the requirement in this theorem
that Z be bounded below is quite restrictive. Our third main result gives
two spectral sequences that provide a description of the maps σ̃W and σ̃ι
and the homotopy functors πG,Uα+WΣ

WZ and πG,U
′

α ι∗Z that is applicable to
an arbitrary G-spectrum Z indexed on an arbitrary G-universe U . These
spectral sequences are derived from a Postnikov tower decomposition of
the spectrum Z. To describe their E2-terms, we must introduce the sort of
equivariant Eilenberg–MacLane spectra that are used to form this Postnikov
tower.

Definition 1.11. If M is a U -α-Mackey functor, then a U -α-Eilenberg–
MacLane spectrum KG

U (M,α) is a G-spectrum indexed on U with the
G-homotopy type of a G-CW spectrum such that πG,Uα KG

U (M,α) = M and
πG,Uα+nK

G
U (M,α) = 0 for every nonzero integer n. Note that a U -α-Eilenberg–

MacLane spectrum is (α− 1)-connected by definition.

R e m a r k 1.12. If U is a complete G-universe, α = 0, and M is a U -α-
Mackey functor, then the spectrum KG

U (M,α) represents RO(G)-graded
equivariant ordinary cohomology with M coefficients as defined in [17]. If
U is not complete, but α = 0, then KG

U (M,α) represents the cohomology
theory that should be thought of as the appropriate analog for the universe U
of RO(G)-graded equivariant ordinary cohomology. This cohomology theory
is graded on RO+(G,U) and satisfies the obvious dimension axiom.

The following result, which is proved in Section 3, assures us that U -α-
Eilenberg–MacLane spectra exist and behave as they ought to.

Theorem 1.13. For each U -α-Mackey functor M , there is a U -α-
Eilenberg–MacLane spectrum KG

U (M,α) in GSU ; this spectrum is unique
up to G-homotopy equivalence. Moreover , the assignment of KG

U (M,α) to
M gives a functor from MU

G(α) to h̃GS(U,α) which is right adjoint to the
functor πG,Uα : h̃GS(U,α)→MU

G(α). The counit εUα : πG,Uα KG
U (M,α)→M

of this adjunction is an isomorphism identifying πG,Uα KG
U (M,α) with M .

Essentially, our two spectral sequences reduce the problem of under-
standing the behavior of the functors ΣW and ι∗ on arbitrary spectra
in h̃GSU to the problem of understanding their behavior on Eilenberg–
MacLane spectra.

Theorem 1.14. Let Z be a G-spectrum indexed on the G-universe U .
Then
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(a) For each finite-dimensional G-representation W , there is a right half-
plane spectral sequence whose E2-term is given by

E2
p,q = πG,Uα+W+p+q(Σ

WKG
U (πG,Uα+qZ,α+ q)).

This spectral sequence is natural in Z and converges in total degree n to
πG,Uα+W+nΣ

WZ. Moreover , for any integer q, E2
0,q
∼= sW∗ π

G,U
α+qZ. Under this

isomorphism, the edge homomorphism

E2
0,q → E∞0,q ⊂ πG,Uα+W+qΣ

WZ

is identified with the map σ̃W : sW∗ π
G,U
α+qZ → πG,Uα+W+qΣ

WZ of Exam-
ple 1.7(b).

(b) If ι : U → U ′ is a linear isometry , then there is a right half-plane
spectral sequence whose E2-term is given by

E2
p,q = πG,U

′
α+p+q(ι∗K

G
U (πG,Uα+qZ,α+ q)).

This spectral sequence is natural in Z and converges in total degree n to
πG,U

′
α+n ι∗Z. Moreover , for any integer q, E2

0,q
∼= sι∗π

G,U
α+qZ. Under this iso-

morphism, the edge homomorphism

E2
0,q → E∞0,q ⊂ πG,U

′
α+q ι∗Z

is identified with the map σ̃ι : sι∗π
G,U
α+qZ → πG,U

′
α+q ι∗Z of Example 1.7(c).

R e m a r k s 1.15. (a) The spectral sequence of part (a) of the theo-
rem converges to πG,Uα+W+nΣ

WZ in the usual sense that there is a filtra-
tion {FpπG,Uα+W+nΣ

WZ} of πG,Uα+W+nΣ
WZ with the three properties that

Fpπ
G,U
α+W+nΣ

WZ = 0, for p < 0, that πG,Uα+W+nΣ
WZ =

⋃
p Fpπ

G,U
α+W+nΣ

WZ,
and that

E∞p,q ∼= Fpπ
G,U
α+p+qΣ

WZ/Fp−1π
G,U
α+p+qΣ

WZ.

The spectral sequence of part (b) converges in the analogous sense.
(b) The spectral sequences of the theorem are spectral sequences of

U -(α +W )-Mackey functors and U ′-α-Mackey functors, respectively. How-
ever, by taking the values of these generalized Mackey functors at an orbit
G/K, we obtain spectral sequences of abelian groups which converge to
the abelian groups πK,Uα+W+p+qΣ

WZ and πK,U
′

α+p+qι∗Z. The advantage of the
generalized Mackey functor versions of these spectral sequences is that, in
this form, one can use restriction and transfer maps as an aid to computing
differentials. Without using these Mackey functor structure maps, we are
not likely to be able to do many serious calculations with these spectral
sequences.

(c) If Z is (α− 1)-connected, then these two spectral sequences become
first quadrant spectral sequences. In this case, for each of the spectral se-
quences, the only nonvanishing E2-entry in total degree 0 is E2

0,0. This entry



128 L. G. Lewis, Jr.

survives unchanged to E∞. Thus, for q = 0, the edge homomorphisms of
the two spectral sequences are isomorphisms. These are precisely the isomor-
phisms described in Theorem 1.9. Thus, Theorem 1.14 is a generalization of
Theorem 1.9.

(d) Both of the spectral sequences in the theorem above are homology
versions of the cohomology spectral sequences of type (B.3) discussed by
Greenlees and May in Appendix B of [6].

Having cluttered algebraic topology with yet two more spectral se-
quences, it seems only proper to address the question of the computabil-
ity of their E2-terms. For the spectral sequence of part (b), a reasonably
positive answer to this question can be given in some important special
cases. When α = 0 and U is the trivial universe, the splitting theorem of
[15] provides an alternative description of πG,U

′
α+n ι∗Z for any G-spectrum Z

indexed on U . This description need not be terribly enlightening when Z is
an arbitrary G-spectrum. However, applied to Eilenberg–MacLane spectra,
this splitting gives a complete description of our E2-term. If G is a finite
group, this description is in terms of ordinary group homology.

Proposition 1.16. Let G be a finite group, ι : U → U ′ be the inclusion of
a trivial G-universe U into an arbitrary G-universe U ′, Z be a G-spectrum
indexed on U , and α ∈ RO+(G,U) be 0. Then, for any subgroup H of G,
the value of the U ′-α-Mackey functor E2-term of the spectral sequence of
Theorem 1.14(b) at G/H is given by

E2
p,q(G/H) =

⊕

(K)H

Hp(WHK;πKq Z),

where the sum runs over the H-conjugacy classes (K)H of those subgroups
K of H such that H/K H-imbeds in U ′. Here, WHK is the Weyl group of
the subgroup K, which acts on πKq Z ∼= πq(ZK) via the usual action of WHK

on the fixed-point subspectrum ZK of Z.

R e m a r k s 1.17. (a) The splitting from [15] which forms the basis for
this proposition comes from a natural filtration of Z derived from the poset
of subgroups of H (see [15]). So long as G is finite, this filtration can be used
to study the E2-terms of both of the spectral sequences of Theorem 1.14 for
any α, U , W , and ι : U → U ′.

(b) The splitting in [15] is a generalization of one of the splittings in-
troduced in [9]. There are other splittings in [9] related to the space-level
suspension functor ΣW . This suggests that there might be a splitting of the
homotopy groups of a spectrum of the form ΣWZ which could be used to
compute the E2-term of the spectral sequence of part (a) of the theorem in
some special cases.
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(c) The homotopy functors which appear in the E2-term of the spectral
sequence of part (a) of the theorem are all parts of the RO+(G,U)-graded
equivariant ordinary cohomology of a point. If W is very low-dimensional,
then it may be possible to use the geometry of W to compute these func-
tors. See the appendix of [14] for some examples of the ways in which the
geometry of representations can be used to compute the RO+(G,U)-graded
equivariant ordinary cohomology of a point.

If the sequence

0→M ′ →M →M ′′ → 0

is a short exact sequence of U -α-Mackey functors, then the sequence

KG
U (M ′, α)→ KG

U (M,α)→ KG
U (M ′′, α)

is a fibre sequence in h̃GSU . The functors ΣW and ι∗ preserve fibre se-
quences. Thus, the above short exact sequence of U -α-Mackey functors gives
rise to two long exact sequences of the form

. . .→ πG,U
′

α+1 ι∗K
G
U (M,α)→ πG,U

′
α+1 ι∗K

G
U (M ′′, α)

→ sι∗M
′ → sι∗M → sι∗M

′′ → 0

and

. . .→ πG,Uα+W+1Σ
WKG

U (M,α)→ πG,Uα+W+1Σ
WKG

U (M ′′, α)

→ sW∗ M
′ → sW∗ M → sW∗ M

′′ → 0.

It is therefore tempting to assume that the functors πG,U
′

α+n ι∗K
G
U (?, α) and

πG,Uα+W+nΣ
WKG

U (?, α), for n ≥ 1, are the derived functors of sι∗ and sW∗ ,
respectively. This conjecture, if it were true, would give a very attractive
algebraic description of the E2-terms of the spectral sequences of Theo-
rem 1.14. In [12], it was suggested that this conjecture was true. How-
ever, if this conjecture were true, then the functors πG,U

′
α+n ι∗K

G
U (?, α) and

πG,Uα+W+nΣ
WKG

U (?, α), for n ≥ 1, would have to vanish on projective U -α-
Mackey functors. Since the categoryMU

G(α) is a functor category, its projec-
tives are direct summands of direct sums of the representable U -α-Mackey
functors πG,Uα (SαU ∧ G/K+), for K ≤ G. Thus, the question of whether or
not πG,U

′
α+n ι∗K

G
U (?, α) and πG,Uα+W+nΣ

WKG
U (?, α) are derived functors reduces

to the question of whether or not they vanish on the representable functors
πG,Uα (SαU ∧G/K+). In fact, as the following example indicates, they need not
vanish on representable functors and are therefore not the derived functors.

Example 1.18. Let G = Z/p, where p is a prime, ι : U → U ′ be the
inclusion of a trivial G-universe U into a complete G-universe U ′, α = 0,
and M be the representable U -0-Mackey functor πG,U0 (S0

U ). Since U is a
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trivial G-universe, a U -0-Mackey functor is just a Bredon coefficient sys-
tem. The representable coefficient system πG,U0 (S0

U ) is easily seen to be the
constant coefficient system at Z. By the splitting theorem of [15], if n > 0,
then the value of the U ′-0-Mackey functor πG,U

′
n ι∗KG

U (M, 0) at G/G is just
Hn(Z/p;Z), which need not be zero. Thus, the functor πG,U

′
n ι∗KG

U (?, 0)
does not vanish on the projective U -0-Mackey functor M = πG,U0 (S0

U ), for
n > 0, and the functors πG,U

′
α+n ι∗K

G
U (?, α) are not the derived functors of

sι∗ in this case. Using this same G, U , α and a sufficiently large nontrivial
G-representation W , one easily obtains an example in which the functors
πG,Uα+W+nΣ

WKG
U (?, α) are not the derived functors of sW∗ . The assertion in

[12] that the E2-term of the spectral sequence mentioned there was given
by the derived functors was a mis-statement caused by a miscalculation.

Two other questions that arise naturally when a new spectral sequence
is introduced are whether the sequence must always collapse and whether
nontrivial extensions arise in recovering the target of the spectral sequence
from the E∞-term. We conclude this section with a sample calculation using
the spectral sequence of part (b) of Theorem 1.14 which shows that this
spectral sequence need not collapse and that nontrivial extensions may occur
in recovering the target. This example also illustrates the way in which the
Mackey functor structure of the spectral sequences can be used to facilitate
computations. An analogous example using the same G, α, U , and Z, and
a sufficiently large G-representation W shows that the spectral sequence of
part (a) of the theorem need not collapse and may give rise to nontrivial
extensions in recovering its target. Our example is a stable version of the
examples used in [13] and [12] to illustrate the misbehavior of the equivariant
Hurewicz and suspension maps.

Throughout the remainder of this section, G is the cyclic group Z/m,
for some odd prime m, ι : U → U ′ is the inclusion of a trivial G-universe
U into a complete G-universe U ′, α = 0, and V is a nontrivial irreducible
complex G-representation. Take Z to be the G-spectrum Σ∞U SV+ indexed
on U ; then ι∗Z is Σ∞U ′SV+. Theorem 1.14(b) provides a spectral sequence
converging to the homotopy functors πG,U

′
n Σ∞U ′SV+ whose E2-term is deter-

mined by the functors πG,Un Σ∞U SV+. We want to investigate the behavior
of this spectral sequence in total degree n ≤ 2. We begin this investiga-
tion by computing both the E2-term of the spectral sequence (in terms
of the nonequivariant stable stems) and the target functor πG,U

′
n Σ∞U ′SV+

for n ≤ 2. Note that U -0-Mackey functors and U ′-0-Mackey functors are
just Bredon coefficient systems and Mackey functors, respectively, for the
group G. A few observations about these types of functors, drawn mostly
from the first section and the appendix of [14], provide some essential back-
ground for our calculations. To describe a Bredon coefficient system M for
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the group G, one must specify the abelian groups M(G/G) and M(G/e)
which are the values of M at the orbits G/G and G/e, the restriction map
r : M(G/G) → M(G/e), and the action of G on M(G/e). The only con-
straint on this data is that the image of r must lie in the subgroup M(G/e)G

of G-invariant elements of M(G/e). To describe a Mackey functor N for the
group G, one must specify the values N(G/G) and N(G/e) of N , the restric-
tion map r : N(G/G)→ N(G/e), the transfer map t : N(G/e)→ N(G/G),
and the action of G on N(G/e). The constraints on this data are that the
image of r must lie in N(G/e)G, the transfer map t must factor through
the projection N(G/e) → N(G/e)/G, and the composite r ◦ t must equal
the trace map of the action of G on N(G/e). Note that, if the action
of G on N(G/e) is trivial, then the composite r ◦ t is just multiplication
by m. There are three commonly occurring Mackey functors, L(A), R(A),
and A//0, and one commonly occurring coefficient system 0//A associated
with each abelian group A. The values of L(A) and R(A) at both G/G
and G/e are just A. The transfer map in L(A) and the restriction map
in R(A) are both the identity map. The restriction map in L(A) and the
transfer map in R(A) are both multiplication by m. The group A is the
value of A//0 at G/G and of 0//A at G/e. The trivial group is the value
of A//0 at G/e and of 0//A at G/G. The restriction maps in A//0 and
0//A and the transfer map in A//0 are all zero. In all four functors, G
acts trivially on the value at G/e. Both the E2-term of the spectral se-
quence in our example and its target πG,U

′
n Σ∞U ′SV+ can be described in

terms of these four special types of Mackey functors and coefficient sys-
tems.

Lemma 1.19. (a) For any integer q,

πG,Uq Σ∞U SV+
∼= 0//(πqS0 ⊕ πq−1S

0),

where the groups πqS0 and πq−1S
0 are the nonequivariant stable stems.

(b) For any integer q,

E2
0,q = L(πqS0 ⊕ πq−1S

0),

where again the groups πqS0 and πq−1S
0 are the nonequivariant stable stems.

(c) For any integers p and q with p > 0,

E2
p,q = Hp(G;πqS0 ⊕ πq−1S

0)//0.

P r o o f. Part (a) follows from the freeness of the action of G on SV ,
the triviality of the universe U , and the nonequivariant splitting Σ∞U SV+

∼=
S0
U ∨ S1

U . The triviality of the action of G on the value of πG,Uq Σ∞U SV+ at
G/e follows from the fact that G acts homotopically trivially on SV+. Part
(b) follows from part (a) and either the description of the functor sι∗ in [13]
or Proposition 1.16. Part (c) also follows from part (a) and Proposition 1.16.
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Lemma 1.20. For G, U ′, and V as defined above,

πG,U
′

0 Σ∞U ′SV+ = L(Z),

πG,U
′

1 Σ∞U ′SV+ = L(Z/2)⊕R(Z) ∼= R(Z/2)⊕R(Z) ∼= R(Z/2⊕ Z),

πG,U
′

2 Σ∞U ′SV+ = L(Z/2)⊕R(Z/2) ∼= L(Z/2)⊕ L(Z/2)
∼= L(Z/2⊕ Z/2).

P r o o f. We make use of the techniques developed in the appendix to [14].
As in the proof of Lemma A.1 of [14], for each integer q, the standard cofibre
sequence

G+ → SV+ → ΣG+

yields a short exact sequence of Mackey functors

0→ L(πqS0)→ πG,U
′

q Σ∞U ′SV+ → R(πq−1S
0)→ 0,

where πqS0 and πq−1S
0 are the nonequivariant stable stems. The first iso-

morphism of the lemma follows immediately from this exact sequence and
the vanishing of π−1S

0. To obtain the second and third isomorphisms, we
must show that our short exact sequence of Mackey functors splits for q = 1
and 2. If q = 1, then when evaluated at either G/G or G/e, the short
exact sequence must split since the two values of R(Z) are both Z. Value-
wise splittings like this do not usually imply that the sequence splits as
a short exact sequence of Mackey functors. However, it is fairly easy to
use the restriction and transfer maps of πG,U

′
1 Σ∞U ′SV+ to argue that the

Mackey functor short exact sequence does in fact split for q = 1. Thus,
πG,U

′
1 Σ∞U ′SV+

∼= L(Z/2) ⊕ R(Z). Since multiplication by m is an isomor-
phism on Z/2, L(Z/2) and R(Z/2) are isomorphic. The remaining iso-
morphisms identifying πG,U

′
1 Σ∞U ′SV+ are derived from this isomorphism.

The value of πG,U
′

2 Σ∞U ′SV+ at G/e is the nonequivariant stable homotopy
group π2SV+, which is Z/2 ⊕ Z/2. The composite r ◦ t in πG,U

′
2 Σ∞U ′SV+

is multiplication by the odd prime m and is therefore an isomorphism.
From this and the short exact sequence, it follows immediately that the
value of πG,U

′
2 Σ∞U ′SV+ at G/G must also be Z/2 ⊕ Z/2. Once the value of

πG,U
′

2 Σ∞U ′SV+ at G/G is known, arguments with the restriction and trans-
fer maps of πG,U

′
2 Σ∞U ′SV+, like those used for πG,U

′
1 Σ∞U ′SV+, make it clear

that the Mackey functor short exact sequence also splits when q = 2. Thus,
πG,U

′
2 Σ∞U ′SV+

∼= L(Z/2) ⊕ R(Z/2). The remaining isomorphisms identify-
ing πG,U

′
2 Σ∞U ′SV+ follow from the isomorphism between L(Z/2) and R(Z/2)

described above.

We can now address our questions about collapsing and nontrivial ex-
tensions. For the question about nontrivial extensions, note that, in our
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example, E2 must equal E∞ in total degree 1 for dimensional reasons. The
short exact sequence description

0→ E∞0,1 → πG,U
′

1 Σ∞U ′SV+ → E∞1,0 → 0

of πG,U
′

1 Σ∞U ′SV+ coming from the two nonvanishing E∞-terms in total de-
gree 1 therefore has the form

0→ L(Z⊕ Z/2)→ R(Z⊕ Z/2)→ (Z/m)//0→ 0.

There is a unique map of Mackey functors from L(Z⊕ Z/2) to R(Z⊕ Z/2)
which is, as the map above must be, the identity when evaluated at G/e.
Simple arguments with the restriction and transfer maps then indicate that,
evaluated at G/G, the short exact sequence of Mackey functors above must
be the nonsplit short exact sequence

0→ Z⊕ Z/2 m⊕1−−→ Z⊕ Z/2→ Z/m→ 0

of abelian groups. Thus, nontrivial extension problems can occur in recover-
ing our target homotopy groups from the E∞-term of our spectral sequence.

For the question about nontrivial differentials, note that, in this example,
the only nonvanishing E2-terms in total degree 2 are E2

0,2 = L(Z/2⊕ Z/2)
and E2

1,1 = (Z/m)//0. Since there is no m-torsion in

πG,U
′

2 Σ∞U ′SV+
∼= L(Z/2⊕ Z/2),

the copy of Z/m in E2
1,1 cannot survive to E∞. It follows for dimensional

reasons that
d2 : E2

3,0 → E2
1,1

must be an isomorphism. Thus, there can be nontrivial differentials in our
spectral sequences.

2. The suspension spectral sequence and the space-level sus-
pension map. In this section, we relate the spectral sequence of Theo-
rem 1.14(a) to the discussion of the space-level equivariant suspension map
in [12]. The unstable equivariant suspension theorem (Theorem 2.5) in [12]
is an unstable analog of Theorem 1.9. Let V and W be G-representations
with |V G| ≥ 1, and let Y be a based G-space. Theorem 2.5 of [12] asserts
that, if Y is (V − 1)-connected (that is, if |V K | − 1 is less than or equal to
the connectivity c(Y K) of Y K for every subgroup K of G), then there is an
isomorphism

σ̃ : s∗πGV Y → πGV+WΣ
WY

relating the (V +W )th unstable homotopy functor πGV+WΣ
WY of ΣWY to

the V th unstable homotopy functor πGV Y of Y . The functor s∗ in this isomor-
phism is an unstable analog of the functor sW∗ of Theorem 1.9. If |V G| = 1,
then one cannot expect to be able to derive πGV+WΣ

WY from πGV Y unless Y
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is (V −1)-connected. However, if |V G| ≥ 2, then the nonequivariant suspen-
sion theorem would suggest that it might be possible to obtain πGV+WΣ

WY
from πGV Y whenever |V K | ≤ 2c(Y K), for all K ≤ G. In fact, the value of
πGV Y alone is not sufficient for the computation of πGV+WΣ

WY . Neverthe-
less, Theorem 2.5 of [12] does extend to a result which provides an unstable
suspension spectral sequence describing the effect of suspension by W in
precisely the range of dimensions one would expect based on the nonequiv-
ariant suspension theorem. The relation between Theorem 2.5 of [12] and
this extension is the same as the relation between Theorem 1.9 and its exten-
sion, Theorem 1.14. The portion of the E2-term of the unstable suspension
spectral sequence that is relevant for the computation of πGV+WΣ

WY is
determined by the unstable homotopy functors πGVΣ

−qY for q ≤ 0 (the
unusual sign convention on q is picked to conform with the grading in the
spectral sequence).

Our unstable suspension spectral sequence is derived from a special case
of the stable suspension spectral sequence of Theorem 1.14(a) by identi-
fying some of the stable homotopy functors appearing in the stable spec-
tral sequence with analogous unstable homotopy functors. In particular,
the unstable homotopy functors πGVΣ

−qY are identified with the stable ho-
motopy functors πG,UV+qΣ

∞
U Y computed in the trivial G-universe U = R∞.

This identification implies that, associated with the unstable homotopy
functors πGVΣ

−qY , there are equivariant Eilenberg–MacLane spectra
KG
U (πGVΣ

−qY, V +q) indexed on U . The homotopy functors πGVΣ
−qY deter-

mine the E2-term of our unstable suspension spectral sequence in the sense
that this E2-term is made up of certain equivariant stable homotopy groups
of the spectra KG

U (πGVΣ
−qY, V + q). Here, the discussion immediately pre-

ceding Example 1.18 should be recalled. It would have been nice to have a
description of the E2-term of the unstable suspension spectral sequence in
terms of the functor s∗ mentioned above and its derived functors. Example
1.18 indicates that such a description is not possible. The equivariant stable
homotopy groups of the spectra KG

U (πGVΣ
−qY, V + q) should be thought of

as an approximation to these derived functors.
In order to describe our unstable suspension spectral sequence precisely

and to derive it from Theorem 1.14(a), we must review some of the ba-
sic ideas from [12] and [13], including the definitions of the unstable ho-
motopy functors πGV Y and πGV+WΣ

WY . Assume hereafter that V is a
G-representation with |V G| ≥ 2. Recall, from [13], that the category BG(V )
has, as its objects, the orbits G/K of G. The set of morphisms in BG(V )
from the orbit G/J to the orbit G/K is [ΣVG/J+, Σ

VG/K+]G. A V -Mackey
functor is a contravariant additive functor from BG(V ) to the category Ab
of abelian groups. The category of all V -Mackey functors is denoted by
MG(V ). If W is any other finite-dimensional representation, then suspen-
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sion by W gives a functor

sW : BG(V )→ BG(V +W ),

which is the identity on objects. Precomposition with sW gives a functor
s∗W :MG(V +W )→MG(V ). This functor has a left adjoint

sW∗ :MG(V )→MG(V +W ),

which is given by left Kan extension along sW . By Lemma 3.4 of [13], the
functor sn associated with the trivial representation n is an isomorphism
of categories. The functors s∗n and sn∗ are therefore inverse isomorphisms of
categories. We use these isomorphisms to identify V - and (V + n)-Mackey
functors, for any trivial representation n.

R e m a r k 2.1. Here, and in [13], we take the objects of the category
BG(V ) to be the orbits G/H of the group G. In [12], representations V with
|V G| = 1 are considered and, for that reason, the category BG(V ) is assumed
there to have a somewhat larger collection of objects. The category denoted
here by BG(V ) is denoted in [12] by B0

G(V ). If |V G| ≥ 2, then, as explained
in Section 5 of [12], the inclusion of B0

G(V ) into the larger category induces
an isomorphism between the associated categories of functors into Ab. Thus,
the difference between the definition of BG(V ) given here and the definition
given in [12] is immaterial under our assumption that |V G| ≥ 2.

If Y is a based G-space, then the assignment of the abelian group
[ΣVG/K+, Y ]G to the orbit G/K gives a V -Mackey functor πGV Y , which
is called the V th homotopy functor of Y . The suspension maps

[ΣVG/K+, Y ]G
ΣW−−→ [ΣV+WG/K+, Σ

WY ]G

for the various subgroups K of G fit together to form a map

σW : πGV Y → s∗Wπ
G
V+WΣ

WY

of V -Mackey functors. Denote by

σ̃W : sW∗ π
G
V Y → πGV+WΣ

WY

the adjoint of σW . This map σ̃W is the unstable analog of the map σ̃W :
sW∗ π

G,U
α Z → πG,Uα+WΣ

WZ of Theorem 1.9. The unstable equivariant suspen-
sion theorem (Theorem 2.5) of [12] asserts that σ̃W : sW∗ π

G
V Y → πGV+WΣ

WY
is an isomorphism if Y is appropriately connected.

The following is our extension of Theorem 2.5 of [12] to an unstable
analog of Theorem 1.14.

Theorem 2.2. Let V and W be finite-dimensional G-representations
with |V G| ≥ 2, and let Y be a based G-space such that |V K | ≤ 2c(Y K),
for every K ≤ G. Then there is a right half-plane spectral sequence which
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converges in total degree n to πGV+WΣ
W−nY for every integer n ≤ 0. In the

fourth quadrant , the E2-term of this spectral sequence is given by

E2
p,q =

{
πG,UV+W+p+q(Σ

WKG
U (πGVΣ

−qY, V + q)) for −|V | < q ≤ 0,
0 for q ≤ −|V |.

Moreover , for q ≤ 0, E2
0,q
∼= sW∗ π

G
VΣ
−qY and , under this isomorphism, the

edge homomorphism

E2
0,q → E∞0,q ⊂ πGV+WΣ

W−qY

is identified with the map

σ̃W : sW∗ π
G
VΣ
−qY → πGV+WΣ

W−qY.

R e m a r k 2.3. In this theorem, only the fourth quadrant portion of the
E2-term of the unstable suspension spectral sequence is identified. Since the
purpose of the theorem is to compute the homotopy functor πGV+WΣ

WY ,
to which the spectral sequence converges in total degree zero, the remainder
of the E2-term is irrelevant.

To prove Theorem 2.2, and even to ensure that the equivariant Eilenberg–
MacLane spectra KG

U (πGVΣ
−qY, V +q) appearing in the statement of the the-

orem are well defined, we must establish isomorphisms between certain un-
stable homotopy functors and analogous stable homotopy functors computed
in the trivial G-universe U = R∞. Define the functor s∞ : BG(V )→ BU

G(V )
to be the identity on objects and to be given on morphisms by the composite

[ΣVG/J+, Σ
VG/K+]G

Σ∞U−−→ [Σ∞U Σ
VG/J+, Σ

∞
U Σ

VG/K+]G
∼= [SVU ∧G/J+, S

V
U ∧G/K+]G.

Precomposition by s∞ gives a functor s∗∞ :MU
G(V )→MG(V ). The functor

s∗∞ has a left adjoint s∞∗ :MG(V )→MU
G(V ), given by left Kan extension

along s∞. The stabilization maps

[ΣVG/K+, Y ]G
Σ∞U−−→ [Σ∞U Σ

VG/K+, Σ
∞
U Y ]G ∼= [SVU ∧G/K+, Σ

∞
U Y ]G

for the various subgroups K of G fit together to form a map

σ∞ : πGV Y → s∗∞π
G,U
V Σ∞U Y

of V -Mackey functors. The next result, which follows easily from the clas-
sical equivariant suspension theorem [4, 7, 24, 27], establishes the required
isomorphisms between the stable and unstable homotopy functors.

Lemma 2.4. Let U be the trivial G-universe and let V be a G-represen-
tation with |V G| ≥ 2. Then

(a) The functor s∞ : BG(V )→ BU
G(V ) is an isomorphism of categories.

Thus, the functors s∗∞ : MU
G(V ) → MG(V ) and s∞∗ : MG(V ) → MU

G(V )
are inverse equivalences of categories.
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(b) Let Y be a based G-space. If |V K | ≤ 2c(Y K) for every K ≤ G, then
the map σ∞ : πGV Y → s∗∞π

G,U
V Σ∞U Y is an isomorphism.

Part (a) of this lemma and Theorem 1.2 imply that the categories BG(V )
and BU

G(V + q) are isomorphic for every integer q. Thus, any V -Mackey
functor M may be regarded as a U -(V + q)-Mackey functor and so has
an associated Eilenberg–MacLane spectrum KG

U (M,V + q) indexed on the
trivial universe U . In particular, for every q ≤ 0 and everyG-space Y , there is
an Eilenberg–MacLane spectrum KG

U (πGVΣ
−qY, V + q) indexed on U . Thus,

the description of the E2-term of our unstable spectral sequence given in
Theorem 2.2 is meaningful. The remainder of this section is devoted to the
proof of that theorem.

P r o o f o f T h e o r e m 2.2. The stable suspension spectral sequence
of Theorem 1.14(a), with U = R∞, α = V , and Z = Σ∞U Y , converges to
πG,UV+W+p+qΣ

WΣ∞U Y . Its E2-term is given by

E2
p,q = πG,UV+W+p+q(Σ

WKG
U (πG,UV+qΣ

∞
U Y, V + q)).

For any integer q, its edge homomorphism

E2
0,q → E∞0,q ⊂ πG,UV+W+qΣ

WΣ∞U Y

may be identified with the map

σ̃W : sW∗ π
G,U
V+qΣ

∞
U Y → πG,UV+W+qΣ

WΣ∞U Y.

Lemma 2.4(b) indicates that the maps

σ∞ : πGV+WΣ
W−p−qY → s∗∞π

G,U
V+WΣ

∞ΣW−p−qY
∼= s∗∞π

G,U
V+W+p+qΣ

∞ΣWY

and

σ∞ : πGVΣ
−qY → s∗∞π

G,U
V Σ∞Σ−qY ∼= s∗∞π

G,U
V+qΣ

∞
U Y

are isomorphisms if q, p + q ≤ 0. The functors s∗∞ appearing in these two
isomorphisms are just the equivalences of categories that we use to iden-
tify V - and (V + W )-Mackey functors with U -V - and U -(V + W )-Mackey
functors, respectively. Thus, the two isomorphisms σ∞ allow us to identify
this special case of the stable suspension spectral sequence as a spectral se-
quence whose fourth quadrant E2-term and convergence are precisely those
promised by the theorem. Further, for q ≤ 0, the isomorphisms σ∞ allow us
to identify the maps σ̃W : sW∗ π

G,U
V+qΣ

∞
U Y → πG,UV+W+qΣ

WΣ∞U Y , which are
the edge homomorphisms of the stable suspension spectral sequence, with
the maps

σ̃W : sW∗ π
G
VΣ
−qY → πGV+WΣ

W−qY.
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3. G-CW (α) spectra and U-α-Eilenberg–MacLane spectra.
Throughout this section, U is to be a G-universe and α is to be an element
of RO+(G,U). Here, the notion of a based G-CW (V )-complex introduced
in [12] is generalized to obtain the notion of a G-CW (α) spectrum indexed
on U . This notion is used to construct U -α-Eilenberg–MacLane spectra and
to show that they have the properties ascribed to them in Section 1. At the
conclusion of this section, the properties of these spectra are used to prove
Theorem 1.9.

Like G-CW (V )-complexes, G-CW (α) spectra are examples of the gen-
eralized CW complexes introduced by May in [20, 21]. The collection J of
generalized spheres used to form G-CW (α) spectra is the set

{Sα+n
U ∧G/K+}n≥−1, K≤G.

One could, of course, form a type of generalized G-CW spectrum using gen-
eralized spheres of the form Sα+n

U ∧ G/K+ where n was allowed to be an
arbitrary integer. However, our primary interest in G-CW (α) spectra is that
they provide models of spectra that are at least as connected as the spec-
trum SαU . In order to obtain spectra with this sort of connectivity, we insist
that n ≥ −1. Almost all of the results in this section, and their proofs, are
direct transcriptions of results about based G-CW (V )-complexes and G-V -
Eilenberg–MacLane spaces found in Sections 3 and 4 of [12]. Thus, here, we
merely record the translations of the most important items from those two
sections of [12] and mention the few instances in which the arguments given
there must be adjusted in order to obtain the analogous results for spectra.

A G-CW (α) spectrum indexed on U is, of course, just a spectrum Y
indexed on U together with a filtration {Y k}k≥−1 of Y by closed subspectra
such that Y = colimk Y

k, Y −1 = ∗, and, for k ≥ −1, Y k+1 is the cofibre of
a map λk :

∨
j∈Jk S

α+k
U ∧(G/Kj)+ → Y k. Cells, skeleta, subcomplexes, rela-

tive G-CW (α) spectra, degree, cellular maps, etc., are defined just as in [12].
It is easy to see that a G-CW (α) spectrum has the G-homotopy type of a
G-CW spectrum. Similarly, Lemma 3.4 of [12], which deals with CW struc-
tures on wedges and cylinders, obviously generalizes to G-CW (α) spectra.

The connectivity of G-spectra, and of maps between G-spectra, is, of
course, usually measured with the homotopy functors πG,Un , for n ∈ Z. It is
expressed, like the connectivity of G-spaces and maps, in terms of dimension
functions [12, 13]. However, in the context of spectra, −∞ and negative
integers less than −1 are meaningful values for dimension functions. If the
element β in RO(G) is represented by the formal difference V −W , then
the associated dimension function |β∗| takes the value |βK | = |V K | − |WK |
on a subgroup K of G. In the context of G-CW (α) spectra, it is sometimes
more natural to measure the connectivity of spectra, and of maps between
spectra, in terms of the homotopy functors πG,Uα+n. In particular, there is a
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spectrum-level generalization of the notion of a V -equivalence of order n
introduced in [12].

Definition 3.1. Let e : Y → Z be a map between G-spectra indexed
on U , and let n ≥ 0. The map e is an α-equivalence of order n if the map

e∗ : πG,Uα+kY → πG,Uα+kZ

is a monomorphism for −1 ≤ k ≤ n− 1 and an epimorphism for 0 ≤ k ≤ n.
The map e is a weak α-equivalence if the map e∗ is an α-equivalence of order
n for all n ≥ 0.

With the notions of an α-equivalence of order n and a weak α-equivalence
replacing the corresponding V -notions and with the dimension function |α∗|
replacing the dimension function |V ∗|, the results in [12], like Lemmas 3.3
and 3.7 and Theorem 3.8 (HELP), concerning the connectivity of G-CW (V )
spaces, and of maps between spaces, generalize to results about the connec-
tivity of G-CW (α) spectra and of maps between spectra. Proposition 2.4(i)
of [13] provides the one technical result about the connectivity of spectra
that is needed to prove all of these results. The HELP property of G-CW (α)
spectra formally implies a cellular approximation theorem for maps between
G-CW (α) spectra. It also implies the following Whitehead theorem for
G-CW (α) spectra.

Theorem 3.2. Let n ≥ 0, X be a G-CW (α) spectrum, and e : Y → Z
be an α-equivalence of order n between two G-spectra indexed on U . Then
e∗ : [X,Y ]G → [X,Z]G is an isomorphism if the degree of X is less than
n and an epimorphism if the degree of X is n. Moreover , if e is a weak
α-equivalence, then e∗ is an isomorphism for every G-CW (α) spectrum X.
Thus, if Y and Z are G-CW (α) spectra and e is a weak α-equivalence, then
e is a G-homotopy equivalence.

Lemma 3.5 of [12], which describes the behavior of V -Mackey functors
of the form πGV (

∨
j∈J Σ

V (G/Kj)+), generalizes easily to a result describing
the behavior of U -α-Mackey functors of the form πG,Uα (

∨
j∈J S

α
U∧(G/Kj)+).

The proof of Lemma 3.5(a) of [12] requires the observation that a map of
a compact space into an infinite wedge of spaces factors through a finite
subwedge. The proof of Proposition 4.2 in the Appendix of [18] provides the
appropriate spectrum-level analog of this assertion.

For our purposes, the most significant property of G-CW (α) spectra
is that they provide good models for spectra that are (α − 1)-connected,
just as based G-CW (V )-complexes provide good models for G-spaces that
are (|V ∗| − 1)-connected. Recall, from Definition 1.8, that h̃GS(U,α) is
the full subcategory of the U -stable category h̃GSU whose objects are the
(α− 1)-connected spectra. The proof of the following approximation result
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is essentially identical to the proof of Proposition 3.11 in [12].

Proposition 3.3. The inclusion functor ι : h̃GS(U,α) → h̃GSU has a
right adjoint

Γα : h̃GSU → h̃GS(U,α).
For any G-spectrum Y indexed on U , ΓαY is a G-CW (α) spectrum, and
the counit εα : ιΓαY → Y of the adjunction is a weak α-equivalence. Thus,
if Y is in h̃GS(U,α), then εα is an isomorphism in h̃GSU .

R e m a r k 3.4. Let W be a finite-dimensional G-representation. The
functor ΣW obviously converts G-CW (α) spectra into G-CW (α+W ) spec-
tra. This fact, and the observation that any (α − 1)-connected spectrum is
weakly equivalent to a G-CW (α) spectrum, imply that the functor ΣW con-
verts (α−1)-connected spectra into (α+W−1)-connected spectra. Similarly,
if ι : U → U ′ is a linear isometry between the G-universes U and U ′, then
the functor ι∗ takes G-CW (α) spectra indexed on U to G-CW (α) spectra
indexed on U ′. It therefore also takes (α − 1)-connected spectra indexed
on U to (α− 1)-connected spectra indexed on U ′.

We often work with the sequence of approximations εα+q : Γα+qY → Y ,
for q ∈ Z. In this context, Γα+qY may be regarded as the (α + q − 1)-
connected cover of Y in the sense that it looks identical to Y in the eyes of
the functors πG,Uα+n, for n ≥ q, but vanishes in the eyes of the functors πG,Uα+n,
for n < q. Thus, for q ∈ Z, we denote the spectrum Γα+qY by Yα[q,∞) and
the map εα+q by εαq : Yα[q,∞)→ Y .

The connectivity properties of G-CW (α) spectra make them an ideal
tool for constructing U -α-Eilenberg–MacLane spectra. The following gen-
eralization of Proposition 4.1 and Lemma 4.2 of [12] is proved in the same
fashion as those results and supplies all that is needed to complete the proof
of Theorem 1.13.

Proposition 3.5. Let M be a U -α-Mackey functor. Then there is a
G-CW (α) spectrum KG

U (M,α) such that πG,Uα KG
U (M,α) = M and , for ev-

ery nonzero integer k, πG,Uα+kK
G
U (M,α) = 0. Moreover , if Y is an (α − 1)-

connected spectrum, then the map

π : [Y,KG
U (M,α)]→MU

G(α)(πG,Uα Y, πG,Uα KG
U (M,α)),

induced by the functor πG,Uα , is an isomorphism.

The proof of the space-level equivariant suspension theorem in [12] makes
use of three basic components. These are the adjunction relating Eilenberg–
MacLane spaces and homotopy groups given in Theorem 1.5 of [12], the
V -Mackey functor formulation of the (ΣW , ΩW )-adjunction given in Lemma
1.6(a) of [12], and the natural isomorphism θ of Lemma 1.6(b) of [12] describ-
ing the effect of the loop functor ΩW on Eilenberg–MacLane spaces. The
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proof of Theorem 1.9, which is a spectrum-level variant of the space-level
suspension theorem of [12], uses three similar components. Theorem 1.13
provides the adjunction relating Eilenberg–MacLane spectra and stable ho-
motopy groups. The following two lemmas, whose proofs are identical to
those of the corresponding results in [12], provide the other two components.

Lemma 3.6. (a) Let W be a finite-dimensional G-representation. For
every G-spectrum Z indexed on U , there is an isomorphism

φW : πG,Uα ΩWZ → s∗Wπ
G,U
α+WZ

of U -α-Mackey functors. This isomorphism is natural in Z.
(b) Let ι : U → U ′ be a linear G-isometry from U into another

G-universe U ′. For every G-spectrum Z ′ indexed on U ′, there is an iso-
morphism

φι : πG,Uα ι∗Z ′ → s∗ιπ
G,U ′
α Z ′

of U -α-Mackey functors. This isomorphism is natural in Z ′.

Lemma 3.7. (a) For each finite-dimensional G-representation W and
each U -(α+W )-Mackey functor N , there is a G-homotopy equivalence

θW : ΩWKG
U (N,α+W )→ KG

U (s∗WN,α)

making the diagram

πG,Uα ΩWKG
U (N,α+W ) s∗Wπ

G,U
α+WK

G
U (N,α+W )

πG,Uα KG
U (s∗WN,α) s∗WN

(θW )∗
²²

φW //

s∗W ε
U
α+W

²²
εUα //

commute. This homotopy equivalence is natural in N .
(b) If ι : U → U ′ is a linear G-isometry from U into another G-universe

U ′ and N is a U ′-α-Mackey functor, then there is a G-homotopy equivalence

θι : ι∗KG
U ′(N,α)→ KG

U (s∗ιN,α)

making the diagram

πG,Uα ι∗KG
U ′(N,α) s∗ιπ

G,U ′
α KG

U ′(N,α)

πG,Uα KG
U (s∗ιN,α) s∗ιN

(θι)∗
²²

φι //

s∗ι ε
U′
α

²²
εUα //

commute. This homotopy equivalence is natural in N .
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The first isomorphism of Theorem 1.9 follows, by an argument like that
given for Theorem 2.5 of [12], from Theorem 1.13, Lemma 3.6(a), Lemma
3.7(a), and the observation that the left adjoints of the functors KG

U (s∗W ?, α)
and ΩWKG

U (?, α+W ) are sW∗ π
G,U
α and πG,Uα+WΣ

W , respectively. The second
isomorphism of Theorem 1.9 follows in the same way from the second parts
of the two lemmas and the observation that the left adjoints of the functors
KG
U (s∗ι ?, α) and ι∗KG

U ′(?, α) are sι∗π
G,U
α and πG,U

′
α ι∗, respectively.

4. α-Postnikov towers and the proof of Theorem 1.14. Through-
out this section, U is to be a G-universe and α is to be an element of
RO+(G,U). Here we construct, for each G-spectrum Z indexed on U , a
generalized Postnikov tower {Zα(−∞, q]}q∈Z in which the homotopy groups
πG,Uα+qZ, q ∈ Z, are added sequentially in the same way that the homo-
topy groups πG,Uq Z are added sequentially in an ordinary Postnikov tower.
We then show that the two spectral sequences of Theorem 1.14 can be ob-
tained from the filtrations {ΣWZα(−∞, q]} of ΣWZ and {ι∗Zα(−∞, q]}
of ι∗Z.

The α-Postnikov tower of aG-spectrum Z is constructed from the (α+q)-
connected covers Zα[q + 1,∞) of Z in the same way that the ordinary
Postnikov tower of a nonequivariant spectrum X is constructed from its
q-connected covers X[q + 1,∞) (see, for example, [2, 19]).

Construction 4.1. (a) Let Z be a G-spectrum indexed on U . For each
integer q, let Zα(−∞, q] be the cofibre of the map εαq+1 : Zα[q + 1,∞)→ Z

defined in Section 3. Clearly, for n ≤ q, the functor πG,Uα+n converts the pro-
jection map πq : Z → Zα(−∞, q] into an isomorphism. However, for n > q,
πG,Uα+nZα(−∞, q] = 0. It is therefore reasonable to think of Zα(−∞, q] as
the qth stage in a generalized Postnikov tower for Z which is intended to
add the homotopy functors πG,Uα+qZ sequentially to Z. To complete the con-
struction of this tower, we must produce a suitable map iq from Zα(−∞, q]
to Zα(−∞, q − 1] for each integer q. Since the map εαq : Zα[q,∞) → Z
is a weak (α + q)-equivalence and Zα[q + 1,∞) is (α + q)-connected, the
map

(εαq )∗ : [Zα[q + 1,∞), Zα[q,∞)]→ [Zα[q + 1,∞), Z]

is an isomorphism by Theorem 3.2. It follows that there is a map

γq+1 : Zα[q + 1,∞)→ Zα[q,∞)

such that εαq+1 ' εαq ◦ γq+1. The weak universal property of cofibres implies
the existence of a map

iq : Zα(−∞, q]→ Zα(−∞, q − 1]
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making the diagram

Zα[q + 1,∞) Z Zα(−∞, q]

Zα[q,∞) Z Zα(−∞, q − 1]

γq+1

²²

εαq+1 //

=

²²

πq //

iq

²²

εαq

//
πq−1

//

of cofibre sequences commute in h̃GSU . In fact, since the homotopy set
[ΣZα[q+1,∞), Zα(−∞, q−1]]G vanishes, there is a unique map iq in h̃GSU
making the right square commute. From the diagram, it follows that the map

(iq)∗ : πG,Uα+nZα(−∞, q]→ πG,Uα+nZα(−∞, q − 1]

is an isomorphism for n < q. Moreover, the fibre of the map iq has the weak
homotopy type of the Eilenberg–MacLane spectrum KG

U (πG,Uα+qZ,α+ q). We
refer to the Z-indexed collection of spectra {Zα(−∞, q]}, together with the
collections {πq : Z → Zα(−∞, q]} and {iq : Zα(−∞, q] → Zα(−∞, q − 1]}
of maps, as the α-Postnikov tower of Z.

(b) In order to show that the spectral sequences of Theorem 1.14 are nat-
ural in Z, we must show that our Postnikov tower construction is natural. Let
f : Y → Z be a map of G-spectra indexed on U . Theorem 3.2 indicates that,
for each integer q, there is a map fα[q+ 1,∞) : Yα[q+ 1,∞)→ Zα[q+ 1,∞)
making the left square of the diagram

Yα[q + 1,∞) Y Yα(−∞, q]

Zα[q + 1,∞) Z Zα(−∞, q]

fα[q+1,∞)
²²

εαq+1 //

f

²²

πq //

fα(−∞,q]
²²

εαq+1

//
πq

//

of cofibre sequences commute in h̃GSU . The weak universality of cofibres
implies the existence of a map fα(−∞, q] making the right square commute
in h̃GSU . In fact, by an argument like that used for the map iq, there is only
one map fα(−∞, q] in h̃GSU which makes the right square of the diagram
above commute in h̃GSU . To prove that the collection of maps

{fα(−∞, q] : Yα(−∞, q]→ Zα(−∞, q]}
forms a map from the α-Postnikov tower of Y to the α-Postnikov tower
of Z, we must show that, for each integer q, the pair of maps iq ◦ fα(−∞, q]
and fα(−∞, q − 1] ◦ iq from Yα(−∞, q] to Zα(−∞, q − 1] are equal. It is
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easy to see that these two maps become equal when composed with the
map πq : Y → Yα(−∞, q]. This fact and the vanishing of the homotopy
set [ΣYα[q + 1,∞), Zα(−∞, q − 1]]G imply that the initial pair of maps are
equal. Our α-Postnikov tower construction is therefore functorial in h̃GSU .

Since the sequence of maps {iq : Zα(−∞, q] → Zα(−∞, q − 1]} is
Z-graded, it has both a telescope TelZα(−∞, q] and a microscope
MicZα(−∞, q]. The following result indicates that these two constructions
behave as they ought to.

Lemma 4.2. (a) Let π : Z → MicZα(−∞, q] be the map induced by the
maps πq : Z → Zα(−∞, q]. Then π is a weak equivalence.

(b) The spectrum TelZα(−∞, q] has the weak homotopy type of the one-
point spectrum ∗.

P r o o f. The map π : Z → MicZα(−∞, q] is easily seen to be a weak
(α + q)-equivalence for every integer q. It is therefore a weak equivalence.
For each integer n, πG,Uα+n TelZα(−∞, q] = 0 since πG,Uα+nZα(−∞, q] vanishes
for q < n. It follows that the projection TelZα(−∞, q] → ∗ is a weak
equivalence.

In order to complete the proof of Theorem 1.14, it suffices to study the
effect of applying the functors ΣW and ι∗ to the α-Postnikov tower of the
G-spectrum Z.

P r o o f o f T h e o r e m 1.14. We prove part (b); the proof of part (a)
is essentially the same. Let ι : U → U ′ be a linear isometry between the
G-universes U and U ′, and let Z be a G-spectrum indexed on U . For each
integer q, let Z̃q be the fibre of the map iq : Zα(−∞, q] → Zα(−∞, q − 1]
so that Z̃q is isomorphic to KG

U (πG,Uα+qZ,α + q) in h̃GSU . Since the functor
ι∗ : GSU → GSU ′ preserves fibre sequences, the sequence

ι∗Z̃q → ι∗Zα(−∞, q]→ ι∗Zα(−∞, q − 1]

is a fibre sequence in h̃GSU ′. Taking

D2
p,q = πG,U

′
α+p+q+1ι∗Zα(−∞, q]

and

E2
p,q = πG,U

′
α+p+qι∗Z̃q,

we obtain an exact couple with maps i : D2 → D2 of bidegree (1,−1),
j : D2 → E2 of bidegree (−1, 1), and k : E2 → D2 of bidegree (−1, 0).
These bidegrees are not the usual bidegrees for a homology exact couple.
Nevertheless, since the bidegree of the composite d = j ◦k is (−2, 1), this ex-
act couple yields a homology spectral sequence whose E2-term has precisely
the form asserted in Theorem 1.14(b). The functoriality of our α-Postnikov
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tower construction implies that this exact couple, and therefore its associ-
ated spectral sequence, is functorial in Z.

In order to show that this spectral sequence converges in total degree
n to πG,U

′
α+n ι∗Z, we have to produce an appropriately behaved filtration

{FpπG,U
′

α+n ι∗Z} of πG,U
′

α+n ι∗Z and show that

E∞p,q ∼= Fpπ
G,U ′
α+p+qι∗Z/Fp−1π

G,U ′
α+p+qι∗Z.

Define the filtration {FpπG,U
′

α+n ι∗Z} by

Fpπ
G,U ′
α+n ι∗Z = ker((ι∗πn−p−1)∗ : πG,U

′
α+n ι∗Z → πG,U

′
α+n ι∗Zα(−∞, n− p− 1]).

To see that this filtration is bounded below, observe that the fibre Fπn−p−1

of the map
πn−p−1 : Z → Zα(−∞, n− p− 1]

is (α+n−p−1)-connected. The fibre Fι∗πn−p−1 must also be (α+n−p−1)-
connected since it is isomorphic in h̃GSU ′ to ι∗Fπn−p−1. It follows that
Fpπ

G,U ′
α+n ι∗Z = 0 if p < 0.

To see that πG,U
′

α+n ι∗Z =
⋃
p Fpπ

G,U ′
α+n ι∗Z, observe that

colim
p

πG,U
′

α+n ι∗Zα(−∞, n− p− 1] ∼= πG,U
′

α+n Tel ι∗Zα(−∞, n− p− 1],

where the colimit and the telescope are taken over the maps

ι∗in−p−1 : ι∗Zα(−∞, n− p− 1]→ ι∗Zα(−∞, n− p− 2].

The functor ι∗ preserves telescopes, so Tel ι∗Zα(−∞, n−p−1] ∼= ∗ in h̃GSU ′.
Thus, colimπG,U

′
α+n ι∗Zα(−∞, n − p − 1] = 0. It follows by the exactness of

sequential colimits that πG,U
′

α+n ι∗Z =
⋃
p Fpπ

G,U ′
α+n ι∗Z.

To see that our filtration is properly related to the E∞-term of our
spectral sequence, recall from [22] that E∞p,q ∼= Z∞p,q/B

∞
p,q, where

Z∞p,q =
∞⋂
r=2

k−1(im ir−1 : D2
p−r,q+r−1 → D2

p−1,q)

and

B∞p,q =
∞⋃
r=2

j(ker ir−1 : D2
p+1,q−1 → D2

p+r,q−r).

The map

(ι∗πq+r−1)∗ : πG,U
′

α+p+qι∗Z → πG,U
′

α+p+qι∗Zα(−∞, q + r − 1] = D2
p−r,q+r−1

is surjective if r ≥ p since the cofibre of πq+r−1 : Z → Zα(−∞, q + r − 1],
and therefore also of ι∗πq+r−1, is (α+ q + r)-connected. Thus,

Z∞p,q = k−1(im(ι∗πq)∗ : πG,U
′

α+p+qι∗Z → πG,U
′

α+p+qι∗Zα(−∞, q] = D2
p−1,q).
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Moreover,

D2
p+1,q−1 =

∞⋃
r=2

(ker ir−1 : D2
p+1,q−1 → D2

p+r,q−r)

by an argument like that used to show that our filtration {FpπG,U
′

α+n ι∗Z}
converges to πG,U

′
α+n ι∗Z. It follows that

B∞p,q = j(D2
p+1,q−1) = ker(k : E2

p,q → D2
p−1,q).

The map k : E2
p,q → D2

p−1,q therefore induces an isomorphism

E∞p,q ∼= (im k : E2
p,q → D2

p−1,q) ∩ (im(ι∗πq)∗ : πG,U
′

α+p+qι∗Z → D2
p−1,q).

Since

im(k : E2
p,q → D2

p−1,q) = ker(i : D2
p−1,q → D2

p,q−1)

= ker((ι∗iq)∗ : πG,U
′

α+p+qι∗Zα(−∞, q]→ πG,U
′

α+p+qι∗Zα(−∞, q − 1]),

the map

(ι∗πq)∗ : πG,U
′

α+p+qι∗Z → πG,U
′

α+p+qι∗Zα(−∞, q] = D2
p−1,q

induces the desired isomorphism

Fpπ
G,U ′
α+p+qι∗Z/Fp−1π

G,U ′
α+p+qι∗Z ∼= E∞p,q.

All that is still lacking in the proof of Theorem 1.14(b) is a verification of
the assertion in the theorem about the edge homomorphisms in our spectral
sequence. Let Fq be the fibre of the map πq : Z → Zα(−∞, q]. Observe
that Fq is (α+ q)-connected. The weak universality of fibres provides a map
δ : Fq−1 → Z̃q making the diagram

Fq−1 Z Zα(−∞, q − 1]

Z̃q Zα(−∞, q] Zα(−∞, q − 1]

δ

²²

k′q−1 //

πq

²²

πq−1 //

=

²²

kq
//

iq
//

of fibre sequences commute. Observe that the functor πG,Uα+q converts the
four maps in the left square of this diagram into isomorphisms. We use these
isomorphisms to identify the homotopy functors πG,Uα+qFq−1 and πG,Uα+qZ̃q with

πG,Uα+qZ. Applying the functor πG,U
′

α+q ι∗ to this diagram and identifying the
appropriate entries in terms of our exact couple, we obtain the commutative
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diagram

πG,U
′

α+q ι∗Fq−1 πG,U
′

α+q ι∗Z D2
0,q−1

E2
0,q D2

−1,q D2
0,q−1

(ι∗δ)∗

²²

(ι∗k′q−1)∗ //

(ι∗πq)∗

²²

(ι∗πq−1)∗ //

=

²²

k
//

i
//

It follows from the connectivity of Fq that the vertical arrows (ι∗δ)∗ and
(ι∗πq)∗ in this diagram are isomorphisms. Our earlier discussion of the con-
vergence of our spectral sequence allows us to identify E∞0,q with the image
of the map k : E2

0,q → D2
−1,q in this diagram. Under this identification, the

composite

E2
0,q → E∞0,2 ∼= F0π

G,U ′
α+q ι∗Z ⊂ πG,U

′
α+q ι∗Z

may be identified with the composite (ι∗k′q−1)∗ ◦ ((ι∗δ)∗)−1. By Theorem
1.9, the maps

σ̃ι : sι∗π
G,U
α+qZ̃q → πG,U

′
α+q ι∗Z̃q = E2

0,q and

σ̃ι : sι∗π
G,U
α+qFq−1 → πG,U

′
α+q ι∗Fq−1

are isomorphisms. The commutative diagram

sι∗π
G,U
α+qZ̃q sι∗π

G,U
α+qFq−1 sι∗π

G,U
α+qZ

E2
0,q πG,U

′
α+q ι∗Fq−1 πG,U

′
α+q ι∗Z

σ̃ι

²²

sι∗δ∗oo

σ̃ι

²²

sι∗k
′
q−1 //

σ̃ι

²²

(ι∗δ)∗
oo

(ι∗k′q−1)∗
//

in which the maps in the top row and the left square are isomorphisms,
completes the identification of the edge homomorphism

E2
0,q → E∞0,2 ∼= F0π

G,U ′
α+q ι∗Z ⊂ πG,U

′
α+q ι∗Z

with the map σ̃ι : sι∗π
G,U
α+qZ → πG,U

′
α+q ι∗Z.

5. An alternative approach to the functor ι∗. In this section, we
introduce an alternative method for studying the change of universe functor
ι∗ associated with a linear G-isometry ι : U → U ′ between G-universes U
and U ′. This approach is based on an analysis of the composite functor ι∗ι∗.
This analysis justifies, and makes computationally useful, the intuition that
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the change of universe functor ι∗ is some sort of colimit of suspension func-
tors. In particular, if Z is a G-spectrum indexed on U and α ∈ RO+(G,U),
then the results of this section indicate that the equivariant stable homotopy
group πG,U

′
α ι∗Z of the spectrum ι∗Z can be computed as the colimit of a

diagram of homotopy groups πG,Uα+WΣ
WZ indexed on an appropriate collec-

tion of finite-dimensional G-representations W that are contained in U ′ but
not in U . This colimit description of πG,U

′
α ι∗Z can even be extended to a de-

scription of the entire spectral sequence of Theorem 1.14(b) as a colimit of a
diagram of spectral sequences of the form given by Theorem 1.14(a). These
colimit descriptions can be used in several ways. If the representation W is
fairly simple, then the homotopy group πG,Uα+WΣ

WZ can sometimes be com-
puted fairly easily. This computation can then be used to obtain information
about πG,U

′
α ι∗Z. Example 1.18 and the description given in Proposition 1.16

of the E2-term of the spectral sequence of Theorem 1.14(b) were first discov-
ered by doing sample calculations using this approach. On the other hand,
the G-stable category associated with the universe U ′ may be a significantly
nicer category than the one associated with U . When this is the case, it
may be fairly easy to compute the homotopy group πG,U

′
α ι∗Z. Information

about this group can then be used to draw conclusions about the groups
πG,Uα+WΣ

WZ for sufficiently large representations W . The proof, in the next
section, that the “only if” part of Theorem 1.2(a) follows from the “only
if” part of Theorem 1.2(b) illustrates this method of deriving information
about πG,Uα+WΣ

WZ from information about πG,U
′

α ι∗Z. Perhaps the best way
to view the analysis of ι∗ offered in this section is that it is a simple-minded,
brute-force approach to ι∗ that has proven to be a useful complement to the
more sophisticated approaches offered in Section 1.

Throughout this section, U is a G-universe and U ′′ is what might be
called a reduced G-universe—that is, U ′′ is a countably infinite-dimensional
G-inner product space which contains no trivial representations, but which
contains each of its finite-dimensional subrepresentations infinitely often.
Let U ′ = U ⊕ U ′′, and let ι : U → U ′ be the inclusion of U into U ′ as
a direct summand. It is easy to find an example of a linear G-isometry
ζ : U → U ′′′ between G-universes U and U ′′′ which does not have the simple
structure that ι does, essentially because infinite-dimensional subspaces of
infinite-dimensional inner product spaces need not have properly behaved
orthogonal complements. Nevertheless, if U and U ′′′ are two G-universes
between which there exists a linear G-isometry ζ : U → U ′′′, then there is
also a linear G-isometry ξ : U → U ′′′ which maps U onto a subuniverse
of U ′′′ which is a direct summand and which has a reduced universe as its
orthogonal complement. The functors

ζ∗ : h̃GSU → h̃GSU ′′′ and ξ∗ : h̃GSU → h̃GSU ′′′
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are naturally isomorphic by Theorem II.1.7 of [18]. Thus, for computational
purposes, analyzing the restricted type of isometries ι discussed here is suf-
ficient.

Recall from Section I.2 of [18] that an indexing sequence for the uni-
verse U is an increasing sequence {Am}m≥0 of finite-dimensional subspaces
of U such that A0 = 0 and U =

⋃
mAm. Define an indexing sequence for

a reduced universe analogously. For the remainder of this section, we se-
lect fixed indexing sequences {Am}m≥0 for U and {Cn}n≥0 for U ′′. Note
that the collection {Am ⊕Cm}m≥0 forms an indexing sequence for the uni-
verse U ′. Moreover, the larger collection {Am⊕Cn}m,n≥0 forms an indexing
set for U ′ in the sense of Section I.2 of [18]. Hereafter, we denote the or-
thogonal complements of Am in Am+1 and Cn in Cn+1 by Bm and Dn,
respectively.

If Z is a G-spectrum indexed on U , then the sequence of spectra
ΩCnΣCnZ, n ≥ 0, is linked together by the sequence of maps

ΩCnΣCnZ
ΩCnηn−−−→ ΩCnΩDnΣDnΣCnZ ∼= ΩCn+1ΣCn+1Z,

where ηn is the unit of the (ΣDn , ΩDn)-adjunction, and the isomorphism is
derived from the identification of Cn ⊕ Dn with Cn+1. Thus, we can form
the telescope TelnΩCnΣCnZ, which might be thought of as a homotopy-
theoretic, spectrum-level generalization of the free infinite loop space con-
struction Ω∞Σ∞. Our alternative characterization of the functor ι∗, or more
precisely of ι∗ι∗, is in terms of this telescope; it is proved at the end of this
section.

Theorem 5.1. There is an isomorphism

τ : ι∗ι∗Z → Tel
n
ΩCnΣCnZ

in h̃GSU which is natural in Z. Moreover , under this isomorphism, the
unit η : Z → ι∗ι∗Z of the (ι∗, ι∗)-adjunction is identified with the canonical
inclusion of Z = ΩC0ΣC0Z into the telescope.

The (ι∗, ι∗)- and (ΣCn , ΩCn)-adjunctions allow us to use the isomor-
phism τ to compute the homotopy groups of the spectrum ι∗Z. Let α be
in RO+(G,U), and K be a compact G-space. Consider the colimit of the
sequence of morphism groups [ΣCn(SαU ∧K), ΣCnZ]UG over the sequence of
maps

[ΣCn(SαU ∧K), ΣCnZ]UG → [ΣCn+Dn(SαU ∧K), ΣCn+DnZ]UG
∼= [ΣCn+1(SαU ∧K), ΣCn+1Z]UG

induced by suspension by Dn. A simple application of Lemma I.4.8 of [18]
yields the following computationally useful consequence of our theorem.
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Corollary 5.2. There are isomorphisms

[SαU ′ ∧K, ι∗Z]U
′

G
∼= [SαU ∧K, ι∗ι∗Z]UG ∼= colim

n
[ΣCn(SαU ∧K), ΣCnZ]UG,

which are natural in K and Z. In particular , if H ≤ G, then there are
isomorphisms

πH,U
′

α ι∗Z ∼= πH,Uα ι∗ι∗Z ∼= colim
n

πH,Uα+CnΣ
CnZ,

which are natural in Z. Moreover , under these isomorphisms, the maps

σι : [SαU ∧K,Z]UG → [SαU ′ ∧K, ι∗Z]U
′

G and σι : πH,Uα Z → πH,U
′

α ι∗Z

induced by ι∗ become the inclusions of the first terms of the colimit diagrams
into the colimits.

R e m a r k 5.3. If α is in RO+(G,U ′) but not in RO+(G,U), then, by
a more careful use of adjunctions, Theorem 5.1 can still be used to compute
πH,U

′
α ι∗Z. Represent α by a formal difference V −W in which W imbeds

into U ′ up to G-orbits. Then

πH,U
′

α ι∗Z = [SαU ′ ∧G/H+, ι∗Z]U
′

G
∼= [SVU ′ ∧G/H+, ι∗ΣWZ]U

′
G

∼= colim
n

πH,UV+CnΣ
Cn+WZ.

Thus, all of the RO+(G,U ′)-graded homotopy groups of ι∗Z may be de-
scribed in terms of the RO+(G,U)-graded homotopy groups of Z and its
suspensions.

In order to prove Theorem 5.1, we must delve much more deeply into
the construction of the category h̃GSU than we have before. Recall from
Chapter I of [18] that the stable category h̃GSU associated with aG-universe
U is obtained from a category GSU of G-spectra and actual G-maps of
G-spectra by passing to the homotopy category hGSU of GSU and then
inverting weak equivalences. The category GSU is a subcategory of the
category GPU of G-prespectra indexed on U , and there is a left adjoint
L : GPU → GSU , called the spectrafication functor , to the inclusion of GSU
into GPU . The spectrum-level change of universe functor ι∗ : GSU → GSU ′
and suspension functor ΣW : GSU → GSU are obtained by applying the
spectrafication functors L′ : GPU ′ → GSU ′ and L : GPU → GSU to
a prespectrum-level change of universe functor ιP : GPU → GPU ′ and
suspension functor ΣW

P : GPU → GPU . In order to define ιP and ΣW
P ,

we assume hereafter that all prespectra associated with the universe U are
indexed on our standard indexing sequence {Am} and that all prespectra
associated with U ′ are indexed on the indexing set {Am + Cn}. If X is a
prespectrum indexed on U , then the component spaces of the prespectra
ιPX and ΣW

P X are given by

(ιPX)(Am + Cn) = ΣCnXAm and (ΣW
P X)(Am) = ΣWXAm.



Change of universe functors 151

The structure maps of ιPX and ΣW
P X are defined in the obvious way (see

Definitions II.1.1 and I.3.1 of [18]). A prespectrum X indexed on the uni-
verse U is said to be a Σ-inclusion prespectrum if, for every integer m, the
structure map ς : ΣBmXAm → XAm+1 of X is a closed inclusion (see Defi-
nitions I.8.2 of [18]). For our present purposes, Σ-inclusion prespectra have
several advantages over arbitrary prespectra. The first advantage is that, if
X is a Σ-inclusion prespectrum indexed on U , then the spectrum LX is
given by

(LX)(Am) = colim
p≥m

ΩAp−AmXAp,

where the colimit is taken over the obvious sequence of maps derived from
the structure maps of X. Here, and hereafter in this section, Ap − Am de-
notes the orthogonal complement of Am in Ap. It follows easily from this
description of L that, if f : X → Y is a map between two Σ-inclusion pre-
spectra which is a spacewise weak equivalence (that is, fAm : XAm → YAm
is a weak equivalence of based G-spaces for each integer m), then the map
Lf : LX → LY is a weak equivalence of spectra. If the prespectrum X is not
a Σ-inclusion prespectrum, then LX does not have such a simple descrip-
tion. Moreover, L need not convert a spacewise weak equivalence between
arbitrary prespectra into a weak equivalence between spectra. A second
advantage of Σ-inclusion prespectra is that the prespectrum-level functors
ιP and ΣW

P take Σ-inclusion prespectra to Σ-inclusion prespectra. Thus,
if X is a Σ-inclusion prespectrum, then the spectra ι∗LX ∼= LιPX and
ΣWLX ∼= LΣW

P X have relatively simple descriptions. These descriptions
allow us to prove the following result, from which we derive Theorem 5.1.

Proposition 5.4. Let X be a Σ-inclusion G-prespectrum indexed on the
indexing sequence {Am} for the universe U . Then there is an isomorphism

ι∗ι∗LX ∼= colim
n

ΩCnΣCnLX

in GSU , which is natural in X. Moreover , under this isomorphism, the unit
η : LX → ι∗ι∗LX of the (ι∗, ι∗)-adjunction is identified with the canonical
inclusion of the spectrum LX = ΩC0ΣC0LX into the colimit.

P r o o f. Since ΣCnLX ∼= LΣCn
P X and ι∗LX ∼= LιPX, the asserted

isomorphism may be derived from an isomorphism between ι∗LιPX and
colimnΩ

CnLΣCn
P X. The colimit here is intended to be taken in the cat-

egory GSU of spectra. Colimits in the category of spectra are generally
obtained by applying L to the corresponding colimits in the category of
prespectra. Since L can be rather badly behaved, colimits in the category
of spectra can also be rather badly behaved. However, here we show that
the prespectrum-level colimit of the spectra ΩCnLΣCn

P X is isomorphic to
the spectrum ι∗LιPX. This prespectrum-level colimit, being a spectrum, is
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therefore also the spectrum-level colimit, and we need not apply L. From
the descriptions of L and ιP given above, we obtain an isomorphism

(ι∗LιPX)(Am) = (LιPX)(Am + 0) ∼= colim
n,p≥m

Ω(Ap−Am)+CnΣCnXAp,

for each m ≥ 0. However,

colim
n,p≥m

Ω(Ap−Am)+CnΣCnXAp ∼= colim
n

colim
p≥m

ΩCnΩ(Ap−Am)ΣCnXAp

∼= colim
n

ΩCn(colim
p≥m

Ω(Ap−Am)ΣCnXAp).

Here, the functor ΩCn commutes with the colimits because the space SCn

is compact and the colimits are taken over sequences of maps which are
inclusions. The space colimp≥mΩ(Ap−Am)ΣCnXAp is just the component
space (LΣCn

P X)(Am) of the spectrum LΣCn
P X. Thus, the mth component

space of the prespectrum-level colimit colimnΩ
CnLΣCn

P X is also described
by an isomorphism

(colim
n

ΩCnLΣCn
P X)(Am) ∼= colim

n
ΩCn(colim

p≥m
Ω(Ap−Am)ΣCnXAp).

Combining these identifications, we obtain an isomorphism

γm : (ι∗LιPX)(Am) ∼= (colim
n

ΩCnLΣCn
P X)(Am)

between the component spaces of the spectrum ι∗LιPX and the prespec-
trum colimnΩ

CnLΣCn
P X. It is easy to check that the isomorphisms γm, for

m ≥ 0, commute with the structure maps of these two prespectra. It follows
that the prespectrum-level colimit colimnΩ

CnLΣCn
P X is a spectrum and is

isomorphic, in GSU , to the spectrum ι∗LιPX. It is relatively easy to chase
through the sequence of isomorphisms given above and verify the asserted
relationship between the unit η : LX → ι∗ι∗LX of the (ι∗, ι∗)-adjunction
and the canonical inclusion of the spectrum LX = ΩC0ΣC0LX into the
colimit.

P r o o f o f T h e o r e m 5.1. Let Z be a G-spectrum indexed on U . By
Propositions I.8.13 and I.8.14 of [18], there is a Σ-inclusion G-prespectrum
X and a map f : X → Z of G-prespectra such that the spectrum LX has the
G-homotopy type of a G-CW spectrum and the map f̃ : LX → Z induced
by f is a weak equivalence. The natural projection

Tel
n
ΩCnΣCnLX → colim

n
ΩCnΣCnLX

is a weak equivalence in GSU because, as indicated in the proof of the
proposition above, the colimit colimnΩ

CnΣCnLX may be formed as a
prespectrum-level colimit over a sequence of maps that are spacewise in-
clusions. Moreover, the map

Tel
n
ΩCnΣCnLX → Tel

n
ΩCnΣCnZ,
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induced by the map f̃ , is a weak equivalence since f̃ is. These two weak
equivalences, combined with the composite

colim
n

ΩCnΣCnLX ∼= ι∗ι∗LX
ι∗ι∗f̃−−→ ι∗ι∗Z,

yield the isomorphism in h̃GSU of the theorem. The assertion in the the-
orem about the relation between the unit η : Z → ι∗ι∗Z of the (ι∗, ι∗)-
adjunction and the canonical inclusion of Z = ΩC0ΣC0Z into the telescope
TelnΩCnΣCnZ follows from the analogous assertion in Proposition 5.4.

6. The proof of Theorem 1.2. We have already noted that the “if”
portion of Theorem 1.2(a) follows from Theorem 1.2(b). In this section, we
give a counterexample to establish the “only if” portions of both part (a)
and part (b) of the theorem and then prove the “if” portion of part (b).

The following example proves the “only if” portion of Theorem 1.2(b) by
showing that, if ι : U → U ′ is a linear G-isometry between two G-universes
that are not G-orbit equivalent, then the map

σι : [SnU ∧G/H+, S
0
U ]UG → [ι∗SnU ∧G/H+, ι∗S0

U ]U
′

G
∼= [SnU ′ ∧G/H+, S

0
U ′ ]

U ′
G

is not onto for some subgroup H of G and some positive integer n.

Example 6.1. Let ι : U → U ′ be a linear G-isometry between two
G-universes that are not G-orbit equivalent. Since ι is an equivariant isom-
etry, U must be contained in U ′ up to G-orbit equivalence. Thus, U ′ cannot
be contained in U up to G-orbit equivalence, and there exist a pair of sub-
groups K ≤ H of G such that H/K H-imbeds in U ′ but does not H-imbed
in U . Hereafter, we refer to such a subgroup K as a bad subgroup of H. We
wish to show that, for this subgroup H, there is a positive integer n such
that the map

σι : [SnU ∧G/H+, S
0
U ]UG → [SnU ′ ∧G/H+, S

0
U ′ ]

U ′
G

is not onto. Under the change of group isomorphisms (see Theorem II.4.7
and Lemma II.4.8 of [18])

[SnU ∧G/H+, S
0
U ]UG ∼= [SnU , S

0
U ]UH and [SnU ′ ∧G/H+, S

0
U ′ ]

U ′
G
∼= [SnU ′ , S

0
U ′ ]

U ′
H ,

this map is identified with the map

σι : [SnU , S
0
U ]UH → [SnU ′ , S

0
U ′ ]

U ′
H

induced by the change of universe functor ι∗ : h̃HSU → h̃HSU ′. The group
[S0
U , S

0
U ]UH is just the free abelian group generated by the equivariant Euler

characteristics of the orbits H/J such that H/J H-imbeds in U and J has
finite index in its H-normalizer NJ . The map

σι : [S0
U , S

0
U ]UH → [S0

U ′ , S
0
U ′ ]

U ′
H
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simply takes these generators in [S0
U , S

0
U ]UH to the corresponding generators

in [S0
U ′ , S

0
U ′ ]

U ′
H . Thus, if there is a bad subgroup K of H that has finite index

in its H-normalizer NK, then the equivariant Euler characteristic of H/K
is a nonzero element of [S0

U ′ , S
0
U ′ ]

U ′
H that is not in the image of σι. If no bad

subgroup K of H has finite index in its H-normalizer, then we must make
use of the splitting introduced in [15] to produce an example in which σι is
not an isomorphism. By that splitting, for any positive integer n,

[SnU , S
0
U ]UH ∼=

⊕
πn(Σ∞EWJ+ ∧WJSA(J)),

where the sum runs over the H-conjugacy classes of subgroups J of H such
that H/J H-imbeds in U . Here, WJ is the Weyl group NJ/J of J , A(J) is
the adjoint representation of WJ , and the homotopy groups on the right are
just nonequivariant stable homotopy groups. For each subgroup J , the space
EWJ+ ∧ WJSA(J) is the Thom space of a bundle over the classifying space
BWJ . It has a lowest-dimensional nonvanishing stable homotopy group that
must be either Z or Z/2 (see Lemma IX.1.6 of [18]). The equivariant stable
homotopy group [SnU ′ , S

0
U ′ ]

U ′
H splits in a similar fashion. With respect to these

splittings, the map σι is just the inclusion of those summands of [SnU ′ , S
0
U ′ ]

U ′
H

indexed on the H-conjugacy classes of subgroups J of H such that H/J
H-imbeds in both U and U ′. Clearly, the summand of [SnU ′ , S

0
U ′ ]

U ′
H indexed

on the conjugacy class of the bad subgroup K of H is not in the image of σι.
This summand is either Z or Z/2 for some integer n, and σι is therefore not
onto.

The “only if” part of Theorem 1.2(a) follows from this example and
Corollary 5.2. Assume that W is a finite-dimensional G-representation that
is not contained in U up to G-orbit type. Let U ′ be the direct sum of U
and countably infinitely many copies of W , and let ι : U → U ′ be the
inclusion of U into U ′ as a direct summand. Then U and U ′ cannot be
G-orbit equivalent. Therefore, by the example above, the map

σι : [SnU ∧G/H+, S
0
U ]UG → [ι∗SnU ∧G/H+, ι∗S0

U ]U
′

G
∼= [SnU ′ ∧G/H+, S

0
U ′ ]

U ′
G

is not onto for some subgroup H of G and some positive integer n. However,
Corollary 5.2 describes the group [SnU ′ ∧G/H+, S

0
U ′ ]

U ′
G as the colimit of the

groups [ΣmW (SnU ∧G/H+), SmWU ]UG, for m ≥ 0, over the maps

[ΣmW (SnU ∧G/H+), SmWU ]UG → [Σ(m+1)W (SnU ∧G/H+), S(m+1)W
U ]UG

induced by the suspension functor ΣW . In terms of this description, the map
σι is just the inclusion of the group [SnU ∧ G/H+, S

0
U ]UG into the colimit. If

the functor ΣW were invertible, then this colimit would be the colimit of a
diagram of isomorphisms, and the inclusion of the group [SnU ∧G/H+, S

0
U ]UG

into the colimit would be an isomorphism, contradicting the fact that σι is
not onto.
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The following proposition is the key to proving the “if” part of Theorem
1.2(b).

Proposition 6.2. Let ι : U → U ′ be a linear G-isometry between
G-universes U and U ′ which are G-orbit equivalent. Then

(a) For every pair of G-spectra X, Y indexed on U , the map

σι : [X,Y ]UG → [ι∗X, ι∗Y ]U
′

G ,

induced by the change of universe functor ι∗, is an isomorphism.
(b) For every G-spectrum Z indexed on U ′, there is a G-spectrum Y

indexed on U such that ι∗Y and Z are isomorphic in h̃GSU ′.
P r o o f. For part (a), the commuting diagram

[X,Y ]UG [ι∗X, ι∗Y ]U
′

G

[X, ι∗ι∗Y ]UG

σι //

η∗
KKKKKKKK%%

∼=
²²

indicates that it suffices to prove that the unit η of the (ι∗, ι∗)-adjunction
is an isomorphism in h̃GSU . To verify this, it suffices to show that either
of the maps σι or η∗ in the diagram is an isomorphism whenever X is an
equivariant sphere spectrum SqU ∧G/H+, where q ∈ Z and H ≤ G. A change
of groups isomorphism (see Theorem II.4.7 and Lemma II.4.8 of [18]) reduces
this to showing that the map

σι : [SqU , Y ]UH → [ι∗S
q
U , ι∗Y ]U

′
H
∼= [SqU ′ , ι∗Y ]U

′
H

is an isomorphism. We can now replace Y by an isomorphic H-CW spec-
trum and argue by induction over its skeleton. This reduces the problem to
showing that, for each pair of subgroups K ≤ H of G and each integer q,
the map

σι : [SqU , Σ
∞
U H/K+]UH → [ι∗S

q
U , ι∗Σ

∞
U H/K+]U

′
H
∼= [SqU ′ , Σ

∞
U ′H/K+]U

′
H

is an isomorphism. Recall now from the remarks at the beginning of Sec-
tion 5 that we can assume that U ′ is the direct sum of U and a reduced
G-universe U ′′, and that ι is the inclusion of U into U ′ as a direct summand.
As in Section 5, we select indexing sequences {Am}m≥0 for U and {Cn}n≥0

for U ′′, and adopt the collection {Am⊕Cn}m,n≥0 as an indexing set for U ′.
Then, by Corollary I.4.9 of [18], we have isomorphisms

[SqU , Σ
∞
U H/K+]UH ∼= colim

n
[Sq+Am , ΣAmH/K+]H
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and

[SqU ′ , Σ
∞
U ′H/K+]U

′
H
∼= colim

m,n
[Sq+Am+Cn , ΣAm+CnH/K+]H ,

where, in each case, the morphism sets on the right hand side are in the
homotopy category of based H-spaces. Under these isomorphisms, the map
σι : [SqU , Σ

∞
U H/K+]UH → [SqU ′ , Σ

∞
U ′H/K+]U

′
H is obtained by passage to co-

limits from the maps

σm,n : [Sq+Am , ΣAmH/K+]H → [Sq+Am+Cn , ΣAm+CnH/K+]H

induced by the space-level suspension functors ΣCn . Since the universes U
and U ′ are G-orbit equivalent, the representations Cn must be contained in
U up to G-orbits. The classical equivariant suspension theorem [4, 7, 24, 27]
therefore indicates that, for each nonnegative integer n, there is a positive
integer Mn such that, if m ≥ Mn, then the map σm,n is an isomorphism.
Thus, on a cofinal portion of the relevant colimit diagrams, the maps σm,n
are isomorphisms. It follows that the induced map σι between the colimits
is an isomorphism.

To prove part (b), we can assume that Z is a G-CW spectrum indexed
on U ′ (see Section I.5 of [18]). Since the functor ι∗ takes the equivariant
sphere spectra SqU ∧ G/H+ indexed on U to the corresponding equivariant
sphere spectra SqU ′ ∧ G/H+ indexed on U ′ and the map σι of part (a) is
an isomorphism, it is possible to work inductively up the skeleton of Z to
construct a G-CW spectrum Y indexed on U such that ι∗Y is isomorphic
to Z in h̃GSU ′.

A few categorical formalities now complete the proof of the “if” portion
of Theorem 1.2(b).

P r o o f (of the sufficiency of G-orbit equivalence in Theorem 1.2(b)).
Assume that ι : U → U ′ is a linear G-isometry between two G-universes U
and U ′ which are G-orbit equivalent. To show that the functors

ι∗ : h̃GSU → h̃GSU ′ and ι∗ : h̃GSU ′ → h̃GSU
are inverse equivalences of categories, it suffices to show that the unit
η : Y → ι∗ι∗Y and counit ε : ι∗ι∗Z → Z of the (ι∗, ι∗)-adjunction are
natural isomorphisms. In the proof of Proposition 6.2, we showed that η is
a natural isomorphism. The triangle identity

ι∗Y ι∗ι∗ι∗Y

ι∗Y

ι∗η //

id

GGGGGGG##
ε

²²
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for the adjunction indicates that the counit ε : ι∗ι∗ι∗Y → ι∗Y is an iso-
morphism for any G-spectrum Y indexed on U . Part (b) of the proposition
indicates that each G-spectrum Z indexed on U ′ is isomorphic to a spectrum
of the form ι∗Y for some G-spectrum Y indexed on U . Thus, ε is always an
isomorphism.
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