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Abstract

We propose a systematic method for testing and identifying a subgroup with an enhanced 

treatment effect. We adopts a change-plane technique to first test the existence of a subgroup, and 

then identify the subgroup if the null hypothesis on non-existence of such a subgroup is rejected. 

A semiparametric model is considered for the response with an unspecified baseline function and 

an interaction between a subgroup indicator and treatment. A doubly-robust test statistic is 

constructed based on this model, and asymptotic distributions of the test statistic under both null 

and local alternative hypotheses are derived. Moreover, a sample size calculation method for 

subgroup detection is developed based on the proposed statistic. The finite sample performance of 

the proposed test is evaluated via simulations. Finally, the proposed methods for subgroup 

identification and sample size calculation are applied to a data from an AIDS study.
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1 INTRODUCTION

Classical clinical trials are designed to assess therapeutic benefits of treatments for the 

whole population that has been considered. However, due to patients’ heterogeneity in 

response to treatments, it is likely that a new treatment is effective or has an enhanced effect 

compared to a standard treatment only for a specific subpopulation. By making use of 

patient-specific baseline covariates, subgroup analysis aims to identify subgroups of patients 

with enhanced treatment effects, which can help to narrow down the target population of a 

treatment. Hence, it provides an important tool for assessing treatment effects and selecting 

target populations for future studies.

A number of data-driven approaches have been developed for the subgroup identification. 

Song and Pepe (2004) considered the binary response case and proposed using the selection 

impact curve (SIC) to evaluate treatment policies dictated by a single covariate. Then, based 

on the SIC, an optimal division of the population for assigning treatments can be obtained. 

Bonetti and Gelber (2004) grouped patients by values of a single covariate and estimated 
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treatment effects on overlapping subsets of patients using a moving average procedure. Kuk 

et al. (2010) used recursive subsetting algorithm for identifying subgroups who respond to 

treatment with high prediction accuracy for clinical outcomes. Foster et al. (2011) developed 

a “Virtual Twins” method which first predicted the probabilities of response to treatment and 

control, and then used tree methods to obtain the subgroups with an enhanced treatment 

effect. Cai et al. (2011) and Zhao et al. (2013) proposed using parametric scoring systems 

based on multiple baseline covariates to rank treatment effects and then identified patients 

who benefit more from the new treatment. There are, however, well known risks for 

undertaking subgroup analysis (Assmann et al., 2000; Wang et al., 2007). For example, 

subgroup identification may suffer from false positive findings without being performed 

with a sound statistical hypothesis testing procedure.

Recently, Shen and He (2015) considered a linear logistic-normal mixture model for the 

response and developed a likelihood-based test for the existence of a subgroup. If a subgroup 

exists as indicated by the test, the fitted logistic regression model for the subgroup indicator 

can be used to score patients for treatment selection. The method proposed in Shen and He 

(2015) provides a valid test for detecting the subgroup with the following two limitations. 

First, the method relies on some parametric assumptions, such as linear covariate effects and 

a logistic-normal mixture model for the response, which may be restrictive in applications. 

Second, since the subgroup is defined by a latent binary variable, the fitted logistic 

probability for the subgroup indicator is used for treatment selection. This requires selecting 

a proper threshold parameter, which can be subjective.

In this paper, we consider change-plane analysis for subgroup detection and sample size 

calculation. Our contribution over the literature can be summarized in the following three 

folds. First, we consider a semiparametric model with an unspecified baseline function and 

an interaction between a subgroup indicator and the treatment for the mean response, which 

greatly improves the flexibility of the response models considered in the literature. In 

addition, the subgroup indicator is explicitly defined by a change-plane as a function of 

covariates. Second, adopting techniques similar as those in change-point analysis (Liang et 

al., 1990; Andrews, 1993; Bai, 1997), we propose a doubly-robust score-type statistic for 

testing the existence of a subgroup with an enhanced treatment effect. The proposed test is 

doubly-robust in the sense that it is valid when either the baseline function or the propensity 

score model is correctly specified. If the null hypothesis that a subgroup does not exist is 

rejected, the change-plane that defines the subgroup can be estimated by maximizing the 

score-type statistic. Third, we derive the asymptotic distributions of the proposed statistic 

under both the null and the local alternative hypotheses. A resampling method is developed 

to approximate the asymptotic null distribution of the test statistic. Based on the derived 

asymptotic distributions, we also propose a sample size calculation procedure to design a 

randomized clinical trial for subgroup detection, which has been seldom studied in the 

literature.

The remainder of this paper is organized as follows. Section 2 introduces the considered 

semi-parametric model and the proposed doubly-robust score test statistic for subgroup 

detection. The asymptotic distributions of the test statistic under both the null and local 

alternative hypotheses are also presented. Section 3 presents a sample size calculation 
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procedure based on the proposed test. The numerical performance of the proposed test and 

the associated sample size calculation method are evaluated by simulation studies in Section 

4. An application of the proposed method to a data from the AIDS Clinical Trials Group 

protocol 175 is illustrated in Section 5. The paper is concluded with some discussions in 

Section 6. All the technical derivations are given in the Appendix.

2 CHANGE-PLANE ANALYSIS

2.1 The Proposed Model

Let X denote the baseline covariates collected for a subject in an experimental or 

observational study, A denote the treatment received by the subject, and Y denote his or her 

response of interest. Here we restrict our attention to a dichotomous treatment coded as 0 

and 1, and a continuous response. Let Z = (XT, A, Y)T. The observed data consist of 

, which are n independent and identically distributed 

(i.i.d.) copies of Z. Consider the following semiparametric model

(1)

where μ(X) is an unknown baseline mean function for patients in treatment 0, 1(·) is the 

indicator function, and E(εi|Ai, Xi)) = 0. We assume that the first element of X is 1, X is a (p 

+ 1)-dimensional vector (1, X1, ..., Xp)T, and θ = (θ0, θ1, ..., θp)T, is a (p + 1)-dimensional 

vector of parameters. For the identifiability of θ, let ∥θ∥ = 1, where ∥ · ∥ is the ℓ2-norm. 

When τ = 0, treatments do not have an effect on the response and thus there are no 

subgroups with enhanced treatment effects. When τ ≠ 0, a subgroup of patients with an 

enhanced treatment effect exists and is defined by the change-plane 1(θTX ≥ 0).

The proposed model is flexible since it puts no assumptions on the baseline mean function. 

On the other hand, it places constraints on the form of subgroup and the treatment effect for 

the subgroup, which are directly related to our goal of subgroup detection and identification. 

Semipara-metric models analogous to model (1) have been considered in the literature for 

deriving optimal treatment regimes (Murphy, 2003; Robins, 2004). The difference is the way 

that the interaction between treatment A and covariates X is modeled. For the subgroup 

identification problem, we consider the interaction term A1(θTX ≥ 0). To test whether there 

exists a subgroup with an enhanced treatment effect, it is equivalent to test the hypothesis

(2)

2.2 A Doubly-Robust Test

When θ is known, model (1) fits in the class of semiparametric models considered in Robins 

and Rotnizky (2001). Based on the semiparametric theory (Tsiatis, 2007), a class of doubly-

robust estimating equations for τ is given by
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(3)

where λ(X) and h(X) are arbitrary functions, and π(X) = P(A = 1|X) is the propensity score. 

It can be shown that when either the baseline mean function h(X) or the propensity score 

model π(X) is correctly specified, (3) is a consistent estimating equation for τ.

Under the assumption that the random errors εi's are homoscedastic, the most efficient 

doubly-robust estimating equation is obtained by setting λ(X) = 1(θTX ≥ 0) and h(X) = μ(X). 

As the true baseline function μ(X) and propensity score model π(X) may not be known in 

practice, we posit parametric models h(X, β) and π(X, γ) for h(X) and π(X), respectively. 

Hereinafter, we assume a linear model for h(X, β) and a logistic model for π(X, γ). 

However, other parametric models can also be used. Define η = (βT, γT)T. We consider the 

following score test statistic for testing H0 : τ = 0:

where ,  is an estimator of β under the null, and  is an estimator of γ. 

Specifically,  and  are solutions to the following equations

where Dβ(Xi) = ∂h(Xi, β)/∂β and Dγ(Xi) = [π(Xi, γ){1 – π(Xi, γ)}]−1∂π(Xi, γ)/∂γ.

Here, although two parametric models are considered for fitting the baseline mean and 

propensity score functions, we do not require that both models hold in our theoretical 

derivation. In fact, our theoretical results show that the proposed test is valid when the model 

for either the baseline mean or propensity score function is correctly specified but not 

necessarily both, i.e. the so-called doubly robust property. In particular, when the propensity 

score is known as in randomized clinical trials, the proposed test is valid for any 

nonparametric baseline mean function, regardless of correctness of the posited linear model. 

Such theoretical results were also justified by our simulation studies. In this sense, although 

the proposed test has a parametric form, it is semiparametric in nature.

Note that model (1) does not depend on θ when τ = 0, hence the parameter θ is identifiable 

only under the alternative hypothesis. This makes the testing problem given in (2) non-
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regular and standard asymptotic testing framework are not directly applicable. Davies (1977, 

1987) consider tests when a nuisance parameter appears under the alternative hypothesis. 

Andrews (2001) studied such non-regular testing problems for a number of likelihood-based 

testing procedures under a variety of parametric models. Similar testing problems have also 

been widely studied for detecting change-points. However, to our knowledge, it remains 

uninvestigated for detecting the existence of a change-plane based on a semiparametric 

model. We consider a supremum of squared score test statistics:

(4)

where  and  is a consistent estimator for the asymptotic 

variance of  under the null hypothesis. The definition of  is 

given in the next section.

To compute the test statistic Tn, we need to find the supremum of squared score test statistics 

over a unit ball in . Since it is infeasible to get the supremum explicitly, we use a 

numerical method to find the maximum over the space Θ. To incorporate the unit ball 

constraint, it is natural to consider a sphere coordinates transformation ϕ = (ϕ1, ..., ϕp)T 7→ 
θ, where ϕp ranges over [0, 2π) and other elements of ϕ range over [0, π]. The 

transformation is given as follows

We consider a set of grid points of ϕ over [0, π]p-1 × [0, 2π) and compute the maximum of 

squared score statistics over the set of grid points to approximate Tn.

In the next section, we establish the asymptotic distributions of Tn under both the null and 

the local alternative hypotheses. In addition, we propose a resampling method to compute 

the critical values of the limiting null distribution. When the null hypotheses is rejected, the 

change-plane parameter θ can be estimated by

(5)

Similar methods for estimating a change point have been studied in the literature (e.g. Bai, 

1997). Thus the estimated subgroup with an enhanced treatment effect is .
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2.3 Asymptotic Distributions of Tn

Define Ψ2(β) = E{Ψ2n(β)} and Ψ3(γ) = E{Ψ3n(γ)}. To establish the asymptotic 

distributions of Tn, we make the following assumptions:

A1. Equations Ψ2(β) = 0 and Ψ3(γ) = 0 have unique solutions β0 and γ0, 

respectively, and the solutions  are in a compact set of the parameter 

space.

A2. We have

where C1 = E{∂ψ2(Z, β)/∂βT|β=β0}, C2 = E{∂ψ3(Z, γ)/∂γT|γ=γ0}, and both of them 

are finite and positive definite deterministic matrices.

A3. The function ψ1(Z, η;θ) is twice continuously differentiable with respect to η, 

and has bounded first and second derivatives.

A4. The function E[{Y – h(X, β)}2] is uniformly bounded in β.

A5. We have 0 < P(θTX ≥ 0) < 1 for any θ ∈ Θ.

Assumptions A1 and A2 ensure the consistency and asymptotic normality of  and  These 

assumptions are satisfied for many commonly used parametric models under mild 

conditions, such as a linear model for h(X, β) and a logistic model for π(X, γ). The 

asymptotic distributions of  under the null and local alternative hypotheses are similar to 

those established in Le Cam's third lemma (Van der Vaart (2000, p. 90)). Assumptions A3-

A5 are assumed to establish the weak convergence of the process 

indexed by θ.

Theorem 1—Suppose that either the baseline mean function h(X, β) or the propensity 

model π(X, γ) is correctly specified, but not necessarily both. If Assumptions A1-A5 hold, 

Tn converges in distribution to supθ ∈Θ G2(θ) under H0 as n goes to infinity , where{G(θ) : 

θ ∈ Θ} is a mean zero Gaussian process with the covariance function

for any θ1, θ2 ∈ Θ, where
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K1 = E{∂ψ1(Z, η0; θ)/∂β}, and K2 = E{∂ψ1(Z, η0; θ)/∂γ}.

Next, we establish the asymptotic distribution of Tn under a sequence of local alternatives 

H1n: τ = n−1/2δ.

Theorem 2—Suppose that either the baseline mean function h(X, β) or the propensity 

model π(X,γ) is correctly specified, but not necessarily both. If Assumptions A1-A5 hold, 

Tn converges in distribution to  under H1n as n goes to infinity, where{Gδ(θ) : 

θ ∈ Θ} is a Gaussian process with the mean function

and the covariance function Σ(θ1, θ2), where θ0 is true value of θ and π0(X) is the true 

propensity score model.

To calculate the critical values for the test, we use a resampling method to approximate the 

limiting null distribution of the test statistic. Define

where , , , and , are the empirical estimates of their population counterparts. 

Specifically, , , 

 and . Then, 

. We consider the following perturbed test statistic

where ξ1, ..., ξn are i.i.d. standard normal random variables independent of data. By 

generating a large number of perturbed test statistics, we can use the empirical distribution 

of  to compute the critical value Cα, the upper α quantile of the empirical distribution. 

Then an α-level test reject the null hypothesis when Tn > Cα.

3 SAMPLE SIZE CALCULATION

Since most clinical trials are designed to detect the overall treatment effect, they may lack 

power to detect a subgroup with an enhanced treatment effect (Yusuf et al., 1991; Rothwell, 

2005). For example, Brookes et al. (2004) has shown that a trial with 80% power for the 
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overall effect had only 29% power to detect an interaction effect of the same magnitude. To 

appropriately conduct a subgroup analysis with targeted power, a careful design and 

predefined statistical analysis protocol are important (Assmann et al., 2000; Cui et al., 2002). 

In this section, we provide a sample size calculation method based on the proposed test for 

subgroup detection in a randomized clinical trial.

To derive the sample size formula, we first calculate the asymptotic power of the test under 

the local alternatives H1n : τ = n−1/2δ, where n is the sample size. The sample size formula 

can then be derived at a pre-specified power 1 – β. Here we are interested in sample size 

calculation for a randomized trial, therefore the propensity score is given and there is no 

need to estimate γ. In addition, we assume that the errors εi's in model (1) are i.i.d. with 

mean 0 and variance σ2. Under this case, the asymptotic covariance function of the test 

statistic Tn can be simplified as

where g(X) = π(1 – π)[{μ(X) – h(X, β0)}2 + σ2] and π = P(A = 1). In addition, under the 

local alternatives, the asymptotic mean function of Tn is given by

For an α-level test to have 1 – β power in detecting an enhanced treatment effect of size τ0, 

we need to find δ0 such that , where qα is the upper α-

quantile of the distribution of supθ∈Θ G2(θ) is the Gaussian process defined in Theorem 1. 

Based on the relationship τ0 = n−1/2δ0, the required sample size is given by n = (δ0/τ0)2. To 

find δ0, we take the following three steps. In Step 1, we compute the mean function μ(θ) and 

the covariance function Σ(θ1, θ2) via numerical integration, for which we need to specify the 

true value (θ) in the change-plane, the distribution of covariates X, the difference between 

the true baseline mean function and the posited mean function, μ(X) − h(X, β0), and σ2, the 

variance of ε. These quantities can be estimated from historical data or a pilot study. In Step 

2, for any given δ, we compute the probability  via Monte Carlo 

simulations detailed as follows. We first approximate  by , 

where θ1, ..., θK is a set of fine grids of θ ∈ Θ. This can be done by the same sphere 

coordinates transformation used previously. Next, we generate (W1, ...,WK)T from a 

multivariate normal distribution with the mean (μ(θ1), ..., μ(θK))T and the variance-

covariance matrix {Σ(θk1, θk2) : k1, k2 = 1, ..., K}. Finally, we compute the probability 

 based on the empirical distribution of . Note that qα 
can be calculated similarly by generating (W1, ...,WK)T from a multivariate normal 
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distribution with mean 0 and the same variance-covariance matrix. In practice, we generate a 

large set, say 10, 000 of  to compute the probability. In Step 3, we find δ0 

via a grid search.

4 SIMULATION STUDIES

4.1 Test and Estimation

We conducted extensive simulation studies to investigate the empirical performance of the 

proposed test for subgroup detection and the estimation for the change-plane parameter θ 
under the alternative hypotheses. In particular, we considered various settings to examine the 

robustness of the test against the misspecification of the baseline mean function in both 

randomized and observational studies.

Simulated data with sample sizes n = 500 and 1000 were generated based on model (1), 

where two covariates X = (X1, X2)T were considered. Here, X1 follows a Bernoulli 

distribution with the success probability 0.5 and X2 follows a uniform distribution on (−1, 

1). The random noise ε is normally distributed with mean zero and variance 0.25. For the 

treatment assignment indicator A, we considered the following two settings for the 

propensity score model π(X) (In short as P-Model hereinafter):

- P-Model I: π(X) = 0.5;

- P-Model II: , γ0 = 0, γ1 = γ2 = 0.5.

The two settings represent a randomized clinical trial and an observational study, 

respectively. We also considered three baseline mean functions for μ(X) (In short as B-

Model hereinafter):

- B-Model I: μ(X) = β0 + β1X1 + β2X2, β0 = β1 = β2 = 1;

- B-Model II: μ(X) = β0 + β1X1 + , β0 = 1, β1 = 0.5, β2 = 0, β3 = 1;

- B-Model III: μ(X) = β0 + β1 sin(β2X1 + β3πX2), β0 = β1 = β2 = β3 = 1.

The proposed test was implemented on each simulated dataset. When calculating the test 

statistic in (4), we fit a linear model h(X, β) for the baseline mean function and a logistic 

model π(X, γ) for the propensity score. Therefore, the baseline mean function is correctly 

specified for the setting with B-Model I and is misspecified for the settings with B-Models II 

and III, while the propensity score model is correctly specified for both P-Model I and II. 

When calculating the test statistic, we used the spherical coordinates transformation and 

searched the supremum over K = 100 × 100 grid points, with 100 grid values for each 

angular coordinate. For each test, we used 1000 resamplings to obtain the critical values of 

the test. We reported the empirical type I errors and powers of the test. Simulation results are 

summarized below for both the null (τ ≠ 0) and the alternative (τ ≠ 0), respectively.

4.1.1 Type I Errors—For each setting, we simulated 5000 data sets to compute type I 

errors of the test with the significance level of 0.05 and 0.1. The results in Table 1 show that 

the empirical type I errors are all close to their nominal values, which demonstrate the 

validity and robustness of the proposed test for subgroup detection.
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4.1.2 Powers and Estimates of Change-Plane Parameters—Under alternative 

hypotheses, the enhanced treatment effect in the subgroup is set to be τ = ±0.1, ± 0.25 and 

±0.5. In addition, the true change-plane parameter is chosen as θ0 = (−0.15, 0.3, 0.942)T for 

all settings. With this choice of θ0, the subgroup with an enhanced treatment effect contains 

approximately 50% of the population, and includes subjects with X1 = 1 and X2 ≥ −0.159 or 

X1 = 0 and X2 ≥ 0.159.

Empirical powers based on 1000 simulated datasets for all settings are shown in Table 2. As 

expected, the powers for detecting the subgroup increase as the sample size n or the 

magnitude of treatment effect τ increases. When the magnitude of treatment effect τ 
increases to 0.5, the powers are almost 100% for all settings. The powers for B-Model II are 

comparable to those for B-Model I, while the powers for B-Model III are relatively smaller 

than those of B-Models I and II. One explanation may be that since B-Model III has a very 

nonlinear baseline mean function, a posited linear model may not be a good fit and thus lost 

some efficiency.

Next, we estimated the change-plane parameter θ by (5). We report the bias and the 

empirical standard deviation of the estimates  in Figure 1. We also report the 

misclassification rate for identifying the true subgroup in Table 3. The misclassification rate 

is the proportion of subjects who are misidentified either as members in the subgroup or as 

members not in the subgroup, and is calculated by 

.

Based on the results, it is observed that the biases and standard deviations of the estimates 

decrease as the sample size or the magnitude of treatment effect increase. In particular, when 

the magnitude of treatment effect increases to 0.5, all the estimate are nearly unbiased. For 

small treatment effects, the estimators for θ are underestimated. This may be because that 

the true θ2 = 0.942, which is likely to be underestimated due to the upper limit of 1 for θ. 

Similar to the power results, the estimates for B-Model III have larger biases and standard 

deviations compared to those for B-Model I and II. In addition, Table 3 shows that the 

misclassification rates also decrease as the sample size n or the magnitude of treatment 

effect τ increases. When the magnitude of the treatment effect increases to 0.5, most 

misclassification rates are less than 5% except for those under B-Model III.

For practical use, we also report the computational time for conducting the proposed test for 

different sample sizes n and number of grid points K on the unit ball Θ. Table 4 summarizes 

the average computational time (in seconds) and its standard deviation over 1000 simulation 

runs for the setting with B-Model I, P-Model I, τ = 0.5 and M = 1000. The average 

computational time increases almost linearly in n and K. But even with n = 2000 and K = 

10000, the average computational time is less than 2 minutes.

Furthermore, we compare the proposed method with the test of Shen and He (2015) (named 

EM test) in terms of power for detecting the subgroup and with the method of Zhao et al. 

(2013) in terms of accuracy for identifying the true subgroup. Specifically, when comparing 

with the EM test of Shen and He (2015), we consider the simulation settings with P-Model I 
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and B-Model I/II/III at τ = 0, 0.1 and 0.5. Note that under B-Model I, since the null model is 

a linear model, the EM test is a valid test. The type-I error and power results are reported in 

Table 5. We only present the results for B-Model I. Based on the results, we observe that 

when the baseline mean model is linear (B-Model I), the EM test has correct type I error at 

both levels, however, its empirical power is smaller than that of the proposed test, especially 

for τ = 0.1. When the baseline mean model is not linear (B-Model II and III), the model 

assumption for the EM test of Shen and He (2015) is violated. Our results (not presented 

here) show that the EM test has severely inflated type I error and hence is not valid as 

expected, while the proposed test still has correct type I error due to the doubly robust 

property.

In Zhao et al. (2013), the subgroup of interest is defined by , where  is 

the estimated treatment difference and c is a threshold that will be determined based on data. 

Specifically, they propose an estimate of the average treatment effect in the subgroup defined 

by  and denote it by . Then, under the monotonicity assumption, the 

threshold c is a chosen to solve the equation , where τ is a desired treatment effect 

in the subgroup. In our implementation, following Zhao et al. (2013), we first fit a linear 

model: . Note that in our notation, the covariates X include 

a column of 1 as the first column. The estimated treatment difference is  with 

the subgroup defined by  Then, we obtain the estimated average treatment 

difference  in the subgroup and determine the threshold c using the same method as in 

Zhao et al. (2013). We consider the simulation settings with P-Model I and B-Model I/II/III 

at τ = 0.1 and 0.5. Misclassification rates of the identified subgroups using Zhao et al. 

(2013)'s method and our method compared with the true subgroup are reported in Table 6. 

The results show that the identified subgroups using Zhao et al. (2013)'s method have much 

higher misclassification rates compared with the proposed method.

4.2 Sample Size Calculation Examples

In this section, we conducted a simulation study to evaluate the proposed sample size 

calculation procedure for a randomized trial with the equal treatment assignment probability, 

i.e. π = 0.5. In this simulation study, we considered a single covariate X from a uniform 

distribution on (−1,1) in all settings. The subgroup of interest is defined by X ≥ θ0, where θ0 

was chosen as: −0.5, 0 and 0.5, corresponding to the scenarios that 75%, 50% and 25% of 

the population are in the subgroup with an enhanced treatment effect. The variance of the 

random noise ε is set as σ2 = 0.25. We considered three levels of treatment effects: τ = 0.1, 

0.25 and 0.5, which represent small, medium and large effects, respectively. In addition, we 

considered three baseline mean functions: μ(X) = 1 + X, 1 – X2 and 1 + , where  is 

the circumference to diameter ratio. In our test statistics, we fit a linear model h(X, β) for 

μ(X). After some calculation, it can be shown that when μ(X) = 1 – X2, h(X, β0) = 2/3; while 

when , . Therefore, the difference μ(X) – h(X, 

β0) can be calculated accordingly. We calculate the required sample size n for the test with 
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level α = 0.05 and power 1 − β = 90%. For each setting, based on the calculated sample size 

n, we generated 1000 data sets and computed the empirical power of the proposed test 

statistic. Table 7 summarizes the results. We observe that the empirical powers under all 

settings are close to the nominal level 90%, which shows the validity of the proposed sample 

size formula.

For comparison, we also compute the required sample size for subgroup analysis based on a 

simple method proposed by Brookes et al. (2004). The main idea of Brookes et al. (2004) is 

to inflate the original sample size for testing the overall treatment effect such that the 

interaction test between treatment and subgroup can achieve the nominal level. For example, 

when the subgroup contains half of the population, the required sample size for testing the 

treatment-subgroup interaction is n = 4noverall, where noverall is the required sample size for 

testing the overall treatment effect. In our considered simulation settings, θ0 = 0 corresponds 

to the case that the subgroup contains half of the population. We only consider this setting in 

our comparison. Based on their formula, we need to calculate the sample size noverall for 

testing the overall treatment effect based on model Y = β0 + β1X + τA + ε. Here, we use the 

sample size formula for analysis of covariance proposed in Borm et al. (2007). Specifically, 

noverall = (1 – ρ2)nt, where  is the required sample size for a standard two-

sample t-test, σ2 is the variance of ε, and ρ is the correlation between X and Y.

Table 8 shows the calculated sample size using the above formula for level α = 0.05 and 

power 1 – β = 0.9. We also report the corresponding empirical power of our proposed test 

under the calculated sample size. Based on these results, the sample sizes calculated using 

the method of Brookes et al. (2004) are all smaller than those obtained using the proposed 

sample size formula given in Table 7, and the corresponding power is much lower than the 

desired 90% level. This demonstrates that simply inflating the sample size for testing the 

overall treatment effect may not work well for detecting the subgroup and the proposed 

delicate sample size formula is necessary.

5 APPLICATION TO AIDS DATA

We illustrated the proposed method with a data from the AIDS Clinical Trials Group 

(ACTG) protocol 175 (Hammer et al., 1996), a study that randomized subjects to four 

different daily regimens: zidovudine (ZDV) monotherapy, ZDV + didanosine (ddI), ZDV + 

zalcitabine (zal) and ddI monotherapy. We focused on comparing two treatments: ZDV+ddI 

(treatment 1) and ZDV+zal (treatment 0). There are 522 subjects in treatment 1 and 524 

subjects in treatment 0. Following Lu et al. (2013), we considered the CD4 counts (cells/

mm3) at 20±5 weeks after randomization as the response and used two covariates for 

subgroup identification: age (years) and homosexual activity (0=no, 1=yes), denoted as 

homo.

We applied the proposed method to detect whether there is a subgroup with an enhanced 

treatment effect. A linear model was used for the baseline function. The value of the test 

statistic is 21.25, which is calculated based on 200 × 50 grid points of the sphere 

coordinates. The p-value based on 1000 resamplings is less than 0.001, showing a strong 

evidence for the existence of a subgroup with an enhanced treatment effect. The estimated 
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change-plane parameter . The identified subgroup includes 

subjects with age > 37.64 if homo = 1 or with age > 15.58 if homo = 0. There are 622 

subjects included in this subgroup, among which 315 subjects received treatment 1 and 307 

received treatment 0. Given the estimated change-plane and the fitted linear model for the 

baseline mean function, we can estimate the enhanced treatment effect τ, which is . 

Therefore, for patients in the identified subgroup, treatment 1 is better than treatment 0. This 

agrees with the findings in Lu et al. (2013) that treatment 1 is better than treatment 0 for 

older patients.

Next, based on the AIDS data, we calculated the required sample size for subgroup detection 

in future balanced randomized trials. As an illustration, we considered the test with size α = 

0.05 and power 1–β = 0.9. From the AIDS data, we estimated the standard deviation of ε as 

. Therefore, we set  and the true change-plane parameter as θ0 = (−0.576, 

0.037, −0.816)T. Covariate age is assumed from a normal distribution with estimated mean 

35.33 and standard deviation 8.75 and covariate homo is from a Bernoulli distribution with 

the success probability 0.66, similar to those in the AIDS data. For simplicity, we set the 

difference μ(X) – h(X, β0) = 0. The estimated sample sizes for different treatment effect sizes 

are given in Table 9. The estimated sample size has a wide range, which is common in 

practice since the weaker the treatment effect is, the larger the sample size is required. For 

this AIDS study, there were 1046 subjects receiving either treatment 1 or treatment 0. 

Therefore, the proposed test can approximately achieve 90% power for identifying a 

subgroup with an enhanced treatment effect τ = 60.

6 DISCUSSION

In this paper, based on a change-plane analysis technique, we developed a doubly-robust 

testing procedure for detecting a subgroup with an enhanced treatment effect. We established 

the asymptotic distributions of the proposed test statistic under both the null and the local 

alternative hypotheses. We also developed its associated sample size calculation method, 

which is useful for sizing a clinical trial with desired power for subgroup detection.

In our current work, the subgroup with an enhanced treatment effect is defined by a change-

plane, which may be restrictive sometimes. It is feasible to extend the way for defining a 

subgroup from a change-plane to more general forms, for example, a combination of 

multiple change-planes 1(θ10 + θ11X1 + θ12X2 ≥ 0) and 1(θ20 + θ21X3 ≥ 0). However, a 

more complicated form for defining a subgroup requires a more comprehensive way of 

searching the supremum of squared score-type statistics over the possible space, which may 

be challenging. One assumption made in the considered semiparametric model is that the 

enhanced treatment effect in the subgroup is constant. It is also interesting to study a more 

general situation that the magnitude of the enhanced treatment effect varies for subjects in 

the subgroup. Lastly, it is likely that many covariates are collected at the baseline but not all 

of them are useful for subgroup detection. Therefore, a built-in variable selection for 

subgroup detection will be very helpful, which warrants further investigation.
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Appendix: Proofs of Theorems

Proof of Theorem 1

By Taylor expansion and assumptions A1-A2, we have

where ψ1* (Zi, η0; θ)'s are i.i.d. with mean 0 under the null when either the propensity score 

model or the baseline mean function is correctly specified.

In addition, by assumptions A3-A5, we can show that the class 

is P-Donsker. Therefore,  converges weakly to a mean zero Gaussian 

process with the convariance function , where θ1, θ2 ∈ Θ. 

Finally, it is easy to show that the variance estimator  converges uniformly to 

 for θ ∈ Θ under both the null and the local alternative hypotheses. 

Therefore, the results established in Theorem 1 hold.

Proof of Theorem 2

Under the local alternatives, we have the same asymptotic representation (6). In addition,

The terms in the first summation are i.i.d. with mean 0 under the local alternatives when 

either the propensity score mode or the baseline mean function is correctly specified. As in 

Theorem 1, it can be show that the first summation term converges weakly to the same mean 

zero Gaussian process as  does under the null. In addition, it can be 

shown that the second summation term converges uniformly to 

 for θ ∈ Θ. Therefore, the results 

established in Theorem 2 hold.

Fan et al. Page 14

J Am Stat Assoc. Author manuscript; available in PMC 2017 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



References

Andrews DW. Tests for parameter instability and structural change with unknown change point. 
Econometrica: Journal of the Econometric Society. 1993; 61(4):821–856.

Andrews DW. Testing when a parameter is on the boundary of the maintained hypothesis. 
Econometrica. 2001; 69(3):683–734.

Assmann SF, Pocock SJ, Enos LE, Kasten LE. Subgroup analysis and other (mis) uses of baseline data 
in clinical trials. The Lancet. 2000; 355(9209):1064–1069.

Bai J. Estimation of a change point in multiple regression models. Review of Economics and Statistics. 
1997; 79(4):551–563.

Bonetti M, Gelber RD. Patterns of treatment effects in subsets of patients in clinical trials. 
Biostatistics. 2004; 5(3):465–481. [PubMed: 15208206] 

Borm GF, Fransen J, Lemmens WA. A simple sample size formula for analysis of covariance in 
randomized clinical trials. Journal of clinical epidemiology. 2007; 60(12):1234–1238. [PubMed: 
17998077] 

Brookes ST, Whitely E, Egger M, Smith GD, Mulheran PA, Peters TJ. Subgroup analyses in 
randomized trials: risks of subgroup-specific analyses; power and sample size for the interaction 
test. Journal of clinical epidemiology. 2004; 57(3):229–236. [PubMed: 15066682] 

Cai T, Tian L, Wong PH, Wei L. Analysis of randomized comparative clinical trial data for 
personalized treatment selections. Biostatistics. 2011; 12(2):270–282. [PubMed: 20876663] 

Cui L, James Hung H, Wang SJ, Tsong Y. Issues related to subgroup analysis in clinical trials. Journal 
of biopharmaceutical statistics. 2002; 12(3):347–358. [PubMed: 12448576] 

Davies RB. Hypothesis testing when a nuisance parameter is present only under the alternative. 
Biometrika. 1977; 64(2):247–254.

Davies RB. Hypothesis testing when a nuisance parameter is present only under the alternative. 
Biometrika. 1987; 74(1):33–43.

Foster JC, Taylor JM, Ruberg SJ. Subgroup identification from randomized clinical trial data. Statistics 
in medicine. 2011; 30(24):2867–2880. [PubMed: 21815180] 

Hammer SM, Katzenstein DA, Hughes MD, Gundacker H, Schooley RT, Haubrich RH, Henry WK, 
Lederman MM, Phair JP, Niu M, et al. A trial comparing nucleoside monotherapy with 
combination therapy in hiv-infected adults with cd4 cell counts from 200 to 500 per cubic 
millimeter. New England Journal of Medicine. 1996; 335(15):1081–1090. [PubMed: 8813038] 

Kuk A, Li J, Rush AJ. Recursive subsetting to identify patients in the star* d: a method to enhance the 
accuracy of early prediction of treatment outcome and to inform personalized care. The Journal of 
clinical psychiatry. 2010; 71(11):1502–1508. [PubMed: 21114950] 

Liang K-Y, Self SG, Liu X. The cox proportional hazards model with change point: An epidemiologic 
application. Biometrics. 1990; 46(3):783–793. [PubMed: 2242414] 

Lu W, Zhang HH, Zeng D. Variable selection for optimal treatment decision. Statistical methods in 
medical research. 2013; 22(5):493–504. [PubMed: 22116341] 

Murphy SA. Optimal dynamic treatment regimes. Journal of the Royal Statistical Society: Series B 
(Statistical Methodology). 2003; 65(2):331–355.

Robins, JM. Proceedings of the Second Seattle Symposium in Biostatistics. Springer; 2004. Optimal 
structural nested models for optimal sequential decisions.; p. 189-326.

Robins JM, Rotnizky A. Comment on the Bickel and Kwon article, “Inference for semiparametric 
models: some questions and an answer”. Statistica Sinica. 2001; 11(4):920–936.

Rothwell PM. Subgroup analysis in randomised controlled trials: importance, indications, and 
interpretation. The Lancet. 2005; 365(9454):176–186.

Shen J, He X. Inference for subgroup analysis with a structured logistic-normal mixture model. Journal 
of the American Statistical Association. 2015; 110(509):303–312.

Song X, Pepe MS. Evaluating markers for selecting a patient's treatment. Biometrics. 2004; 60(4):874–
883. [PubMed: 15606407] 

Tsiatis, A. Semiparametric theory and missing data. Springer Science & Business Media; 2007. 

Van der Vaart, AW. Asymptotic statistics, volume 3. Cambridge university press; 2000. 

Fan et al. Page 15

J Am Stat Assoc. Author manuscript; available in PMC 2017 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Wang R, Lagakos SW, Ware JH, Hunter DJ, Drazen JM. Statistics in medicinereporting of subgroup 
analyses in clinical trials. New England Journal of Medicine. 2007; 357(21):2189–2194. [PubMed: 
18032770] 

Yusuf S, Wittes J, Probstfield J, Tyroler HA. Analysis and interpretation of treatment effects in 
subgroups of patients in randomized clinical trials. Jama. 1991; 266(1):93–98. [PubMed: 2046134] 

Zhao L, Tian L, Cai T, Claggett B, Wei L-J. Effectively selecting a target population for a future 
comparative study. Journal of the American Statistical Association. 2013; 108(502):527–539. 
[PubMed: 24058223] 

Fan et al. Page 16

J Am Stat Assoc. Author manuscript; available in PMC 2017 August 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 

Bias and standard deviation of estimated change-plane parameter θ.
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Table 1

Type I errors of the proposed test based on resampling. (Corresponding standard errors for type I errors with 

size 0.05 and 0.1 are 0.003 and 0.004.)

B-Model I B-Model II B-Model III

n P-Model size 0.05 size 0.1 size 0.05 size 0.1 size 0.05 size 0.1

100
I 0.052 0.104 0.054 0.107 0.050 0.099

II 0.050 0.105 0.052 0.110 0.051 0.106

500
I 0.052 0.100 0.045 0.102 0.047 0.092

II 0.055 0.105 0.051 0.106 0.054 0.101

1000
I 0.050 0.101 0.049 0.100 0.053 0.108

II 0.051 0.105 0.044 0.102 0.053 0.108
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Table 2

Power (%) of the proposed test at 0.05 and 0.1 levels. (Standard errors are shown in parenthesis.)

B-Model I B-Model II B-Model III

n P-Model τ size 0.05 size 0.1 size 0.05 size 0.1 size 0.05 size 0.1

500 I 0.1 21.2 (1.3) 31.1 (1.5) 17.5 (1.2) 27.5 (1.4) 9.9 (0.9) 16.1 (1.2)

0.25 90.3 (0.9) 95.1 (0.7) 81.3 (1.2) 88.4 (1.0) 45.9 (1.6) 57.7 (1.6)

0.5 100 (0) 100 (0) 100 (0) 100 (0) 97.5 (0.5) 99.1 (0.3)

-0.1 19.9 (1.3) 30.1 (1.5) 16.9 (1.2) 27.0 (1.4) 9.1 (0.9) 16.5 (1.2)

-0.25 88.7 (1.0) 94.0 (0.7) 74.5 (1.4) 84.3 (1.2) 47.6 (1.6) 60.4 (1.5)

-0.5 100 (0) 100 (0) 100 (0) 100 (0) 99.4 (0.2) 99.7 (0.2)

II 0.1 18.8 (1.2) 29.5 (1.4) 21.4 (1.3) 30.8 (1.5) 11.1 (1.0) 18.6 (1.2)

0.25 84.6 (1.1) 90.2 (0.9) 76.6 (1.3) 83.3 (1.2) 42.9 (1.6) 58.2 (1.6)

0.5 100 (0) 100 (0) 99.9 (0.1) 100 (0) 97.1 (0.5) 98.8 (0.3)

-0.1 20.1 (1.3) 29.6 (1.4) 18.3 (1.2) 26.4 (1.4) 12.7 (1.1) 20.8 (1.3)

-0.25 84.5 (1.1) 91.5 (0.9) 73.9 (1.4) 82.5 (1.2) 46.2 (1.6) 58.0 (1.6)

-0.5 100 (0) 100 (0) 99.9 (0.1) 100 (0) 98.4 (0.4) 98.8 (0.3)

1000 I 0.1 41.3 (1.6) 52.5 (1.6) 30.4 (1.5) 43.3 (1.6) 19.5 (1.3) 27.1 (1.4)

0.25 99.8 (0.1) 99.9 (0.1) 99.0 (0.3) 99.5 (0.2) 77.1 (1.3) 86.0 (1.1)

0.5 100 (0) 100 (0) 100 (0) 100 (0) 100 (0) 100 (0)

-0.1 39.3 (1.5) 51.3 (1.6) 29.9 (1.4) 43.1 (1.6) 17.3 (1.2) 24.3 (1.4)

-0.25 99.7 (0.2) 99.8 (0.1) 98.2 (0.4) 99.4 (0.2) 78.8 (1.3) 86.4 (1.1)

-0.5 100 (0) 100 (0) 100 (0) 100 (0) 100 (0) 100 (0)

II 0.1 36.2 (1.5) 48.5 (1.6) 29.7 (1.4) 42.1 (1.6) 15.5 (1.1) 23.7 (1.3)

0.25 99.2 (0.3) 99.8 (0.1) 97.4 (0.5) 99.4 (0.2) 71.9 (1.4) 81.2 (1.2)

0.5 100 (0) 100 (0) 100 (0) 100 (0) 100 (0) 100 (0)

-0.1 37.6 (1.5) 50.3 (1.6) 27.9 (1.4) 40.1 (1.6) 18.9 (1.2) 29.9 (1.4)

-0.25 99.6 (0.2) 99.7 (0.2) 96.4 (0.6) 98.0 (0.4) 79.5 (1.3) 88.2 (1.0)

-0.5 100 (0) 100 (0) 100 (0) 100 (0) 100 (0) 100 (0)
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Table 3

Misclassification rate (%) of identified subgroup based on estimated change-plane parameter θ. (Standard 

errors are shown in parentheses.)

P-Model I P-Model II

n τ B-Model I B-Model II B-Model III B-Model I B-Model II B-Model III

500 0.1 26.3 (1.4) 28.3 (1.4) 33.3 (1.5) 26.2 (1.4) 30.6 (1.5) 33.1 (1.5)

0.25 11.8 (1.0) 12.7 (1.1) 22.1 (1.3) 12.2 (1.0) 14.6 (1.1) 22.9 (1.3)

0.5 4.8 (0.7) 4.7 (0.7) 12.4 (1.0) 4.8 (0.7) 5.2 (0.7) 12.3 (1.0)

–0.1 26.6 (1.4) 29.2 (1.4) 33.0 (1.5) 26.6 (1.4) 29.0 (1.4) 34.1 (1.5)

–0.25 12.0 (1.0) 14.1 (1.1) 21.7 (1.3) 11.8 (1.0) 14.2 (1.1) 23.6 (1.3)

–0.5 4.6 (0.7) 6.3 (0.8) 9.9 (0.9) 4.9 (0.7) 6.1 (0.8) 11.2 (1.0)

1000 0.1 20.9 (1.3) 23.0 (1.3) 30.0 (1.5) 22.9 (1.3) 25.9 (1.4) 32.2 (1.5)

0.25 7.6 (0.8) 8.5 (0.9) 17.4 (1.2) 8.1 (0.9) 9.4 (0.9) 18.0 (1.2)

0.5 2.6 (0.5) 3.0 (0.2) 9.1 (0.9) 3.0 (0.5) 3.3 (0.5) 9.3 (0.9)

–0.1 22.6 (1.3) 23.9 (1.3) 31.0 (1.5) 21.2 (1.3) 24.0 (1.4) 31.0 (1.5)

–0.25 7.9 (0.9) 9.6 (0.9) 17.1 (1.2) 7.7 (0.8) 9.2 (0.9) 17.4 (1.2)

–0.5 2.9 (0.5) 4.7 (0.7) 7.2 (0.8) 2.8 (0.5) 4.0 (0.6) 7.9 (0.9)
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Table 4

Average computational time (in seconds).

K n = 500 n = 1000 n = 2000

1000 4.10 (0.29) 7.14 (0.79) 10.20 (1.22)

10000 36.55 (5.40) 62.74 (1.24) 102.72 (12.57)
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Table 5

Type I error and power (%) of the EM test and proposed test for B-Model I at 0.05 and 0.1 levels. (Standard 

errors are shown in parenthesis.)

EM Test Proposed Test

n τ size 0.05 size 0.1 size 0.05 size 0.1

500 0 4.6 (0.7) 9.4 (0.9) 5.2 (0.3) 10.0 (0.4)

0.1 6.9 (0.8) 12.6 (1.0) 21.2 (1.3) 31.1 (1.5)

0.5 89.6 (0.9) 93.3 (0.8) 100 (0) 100 (0)

1000 0 5.4 (0.7) 10.4 (1.0) 5.0 (0.3) 10.1 (0.4)

0.1 10.4 (1.0) 18.6 (1.2) 41.3 (1.6) 52.5 (1.6)

0.5 99.8 (0.1) 100 (0) 100 (0) 100 (0)
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Table 6

Misclassification rates (%) of the identified subgroups using Zhao et al. (2013)'s method and our method. 

(Standard errors are shown in parenthesis.)

Zhao et al. (2013) Proposed Method

n τ B-Model I B-Model II B-Model III B-Model I B-Model II B-Model III

500 0.1 36.3 (0.6) 39.4 (0.6) 42.6 (0.6) 26.3 (1.4) 28.3 (1.4) 33.3 (1.5)

0.5 13.5 (0.3) 13.5 (0.3) 17.6 (0.4) 4.8 (0.7) 4.7 (0.7) 12.4 (1.0)

1000 0.1 32.2 (0.5) 34.8 (0.6) 37.0 (0.5) 20.9 (1.3) 23.0 (1.3) 30.0 (1.5)

0.5 10.9 (0.2) 11.2 (0.2) 13.3 (0.3) 2.5 (0.5) 3.0 (0.2) 9.1 (0.9)
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Table 7

Results for sample size calculation. Here, n is the required sample size given by our procedure. Empirical 

power of the test under the calculated sample size is reported based on 1000 data replications.

µ(X) 1 + X 1 – X2 1 + sin π X

τ θ 0 n Power n Power n Power

0.1

0 2992 91.3 4054 90.0 5440 91.1

0.5 6034 91.8 8972 94.3 10924 90.6

−0.5 2042 90.8 2726 90.2 3514 91.7

0.25

0 480 91.4 650 88.9 872 88.5

0.5 966 91.8 1436 94.2 1748 89.7

−0.5 328 90.8 436 89.1 564 88.7

0.5

0 120 87.2 164 85.6 218 85.4

0.5 242 88.4 360 92.7 438 88.5

−0.5 82 87.6 110 85.3 142 89.0
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Table 8

Results for sample size calculation based on the method in Brookes et al. (2004). Here, n is the required 

sample size. Empirical power of the proposed test under the calculated sample size is reported based on 1000 

data replications.

µ(X) 1 + X 1 – X2 1 + sin π X

τ θ 0 n Power n Power n Power

0.1 0 1580 63.9 1840 57.0 2318 52.3

0.25 0 254 61.1 296 51.0 372 48.2

0.5 0 64 52.4 74 41.6 94 38.2
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Table 9

Required sample sizes for detecting a subgroup with an enhanced treatment effect τ based on the AIDS study 

data.

treatment effect τ sample size n

40 2392

60 1064

80 598

100 384
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