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der a Creative Commons Attribuzione - Non commerciale - Non opere derivate

3.0 Italia License.
For more information see:
http://creativecommons.org/licenses/by-nc-nd/3.0/it/



Electronic Journal of Applied Statistical Analysis
Vol. 09, Issue 02, 2016, 267-296
DOI: 10.1285/i20705948v9n2p267

Change-point detection in environmental

time series based on the informational

approach

Marco Costa⇤a, A. Manuela Gonçalvesb, and Lara Teixeirac
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In this study, the Schwarz Information Criterion (SIC) is applied in order
to detect change-points in the time series of surface water quality variables.
The application of change-point analysis allowed detecting change-points in
both the mean and the variance in series under study. Time variations in
environmental data are complex and they can hinder the identification of the
so-called change-points when traditional models are applied to this type of
problems. The assumptions of normality and uncorrelation are not present
in some time series, and so, a simulation study is carried out in order to
evaluate the methodology’s performance when applied to non-normal data
and/or with time correlation.

keywords: change-point detection, water quality data, Schwarz Informa-
tion Criterion, mean and variance shift, simulation study.

1. Introduction

Statistical methodologies are applied in many practical contexts in order to identify
changes in a sequence of chronologically ordered data. Usually the change-point anal-
ysis presents two goals. The first is to detect if there is any change in the sequence of
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observed random variables. The second is to estimate the number of changes and their
corresponding locations (Chen and Gupta, 2012). The problem of detecting and analyz-
ing change-points is associated with different behavioral changes in the time series that
may occur: for instance, changes in the mean, in the variance, both in the mean and
in the variance, and also a change-point in regression models coefficients. A description
of the various types of change-points can be found in Chen and Gupta (2012) and in
Beaulieu et al. (2012).
Several methods with different approaches have been developed to tackle the problem

of change-point analysis. In a non-parametric approach, Hájek (1962) used tests ranks
for changes in a regression model. The change-point problems through a Bayesian-type
approach were studied by Chernoff and Zacks (1964). Likelihood ratio statistics for
testing for changes in the mean have been discussed by Hawkins (1977), and later by
Worsley (1979) (with known and unknown variance). An informational approach model,
the so-called Schwarz Information Criterion (SIC), was developed by Schwarz (1978)
to detect the change-point in means and variances in a sequence of normal random
variables. The statistic test and its approximate distribution for the multiple changes in
the mean vector for a sequence of normal random vectors was derived by Srivastava and
Worsley (1986). The corresponding problem of changes in the regression model has also
been studied (Krishnaiah and Miao, 1988). Most methods are mainly based on both
the normal model and the temporal uncorrelation, and don’t take into account other
possible time series properties such as seasonality and non-stationarity. There has been
significant progress in multiple change-point detection through penalties more advanced
than the BIC (Bayesian Information Criterion) and AIC (Akaike Information Criterion)
variants. The work Caussinus and Mestre (2004) proposes a simple BIC-like multiple
change-point penalty that is based on the total number of change-points. The problem
of modeling a class of nonstationary time series using piecewise autoregressive (AR)
processes where the minimum description length principle is applied to compare various
segmented AR fits to the data is analyzed in Davis et al. (2006). These ideas are taken
further in environmetrics applications in Li and Lund (2012) and in Lu et al. (2010).
Environmental data analysis has been gaining a great relevance due to the increasing

human activity exerted on nature, and so the use of differentiated methodologies for
the assessment of the impact and changes that have been occurring is pertinent and
essential for the management of the various problems resulting from these sustainability
issues. Within this context, it is proposed a work plan that aims at contributing to the
construction of more fruitful answers for the problems identified in the implementation
of environmental quality management systems. Change-point detection in this type of
systems has been frequently reported as extremely relevant in the processes of decision-
making by the competent entities.
In the environmental area, the change-point technique analysis has been widely used,

particularly in the context of the problems associated with an exhaustive exploration of
nature and its consequences. For instance, Lund and Reeves (2002) studied the annual
average temperature of Chula Vista, California, and monthly carbon dioxide concen-
trations reported at Mauna Loa, Hawaii, and Jarušková (2010) studied the monthly
temperature average in Stockholm. Regarding air pollution, Barratt et al. (2007) stud-
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ied changes in ambient mean air pollution levels following the introduction of a traffic
management scheme at Marylebone Road, Central London, and Jarušková (1996) ana-
lyzed air pressure time series at Swiss meteorological stations. Changes in a long-term
annual dataset by measuring maximum precipitation in South Taiwan were studied by
Chu et al. (2012).
In Economics and Finance areas, several change-point studies can also be found, such

as Inclán and Tiao (1994), who analyzed data series of International Business Machines
(IBM) stock prices, and Hsu (1977) who investigated the potential impacts of the Wa-
tergate events on the United States stock market.
This study focus on the informational approach, a general model technique selection

that can be adapted to a diverse set of situations, namely to detect the change-point in
both the mean and the variance of water quality variable.
The data concerns the Ave River basin situated in Northwest Portugal, where monitor-

ing has become a priority in water quality planning and management in this watershed.
The economic base of the Ave Valley is strongly linked to the industry, since water is a
key factor in industrial location, but this industrialization has led to poor water quality
since the mid-1970s. The variable that will be analyzed is DO, one of the most impor-
tant variables for assessing surface water quality (Costa and Gonçalves, 2011; Gonçalves
and Costa, 2011), measured monthly from January 1999 to December 2011, in eight
monitoring sites.
In this work, the study of the time series of Dissolved Oxygen water quality variable

is addressed in line with the research of Gonçalves and Costa (2011) and Gonçalves
and Alpuim (2011), who recently studied trend alterations in environmental variables,
including time series of water quality variables. Nevertheless, the application of change-
point techniques can be more fruitful because the instant of a change in a time series
may be not known and its estimation can be important.

2. Study area and data set description

The data was collected from the Portuguese National Information System for Water
Resources (SNIRH) that was created by the Institute of Water (INAG) and is related
to the Ave River basin. The Ave River basin is located in Northwest Portugal (Figure
1). The hydrological basin covers an area of 1400 km2, of which about 247 Km2 and
340 km2 correspond, respectively, to the areas of the basins of its two main adjacent
streams, the Este River and the Vizela River.
The Ave River develops in the general east-west direction and runs about 101 km

from its source in Serra da Cabreira to its mouth in Vila do Conde, creating a wide
and complex basin. In the Ave River basin, water courses present, in general, serious
disturbances (both physico-chemical and biological), except near the springs, resulting
in poor water quality, which in turn has obvious repercussions on aquatic communities.
This situation is mainly due to the strong pressure exerted by urban households that
are scattered throughout the basin. The Ave River basin region has an economy highly
dependent on the industry, and water has played an important role in this valley’s



270 Costa, Gonçalves, Teixeira

Figure 1: Spatial representation of the Ave River hydrological basin.

industry (mainly textiles and garment). A main reason for the extreme pollution of
these waters is that the construction of infrastructure in order to control and avoid
pollution has not accompanied the industrial development.
In this study, eight water monitoring sites are considered. These eight monitoring sites

result from the restructuring of the water quality monitoring network in 1998 (Table 1).
Its spatial representation is shown in Figure 1.

Table 1: Water quality monitoring sites.

Water stream Monitoring site Designation

Ave River Taipas TAI

Cantelães CANT

Riba d’Ave RAV

Santo Tirso STI

Ponte Trofa PTR

Ferro River Ferro FER

Vizela River Golães GOL

Vizela (Santo Adrião) VSA

The variable analyzed is DO, measured in milligrams per liter (mg/l), which is one of
the most important indicator variables in determining the pollution degree in a water
course. Organic matter oxidation, photosynthesis and respiration are transformation
processes that significantly affect this variable. The larger the amount of dissolved
oxygen, the better the water quality. The dataset used concerns the period from January
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1999 to December 2011.
Table 2 summarizes descriptive statistics, as well as the number of missing values for

the monthly measurements of the DO water quality variable at the 8 monitoring sites
during the above-mentioned period. The monitoring sites Riba d’Ave, Santo Tirso and
Ponte Trofa present mean values slightly lower when compared with the remaining five
monitoring sites, thus reflecting poor water quality. These sites present both the lowest
mean values and the largest DO dispersion.

Table 2: Descriptive statistics and missing values number of DO in 8 monitoring sites.

Monitoring Range Average Standard Skewness Missing

site deviation values

CANT 7.40� 12.80 9.76 1.03 0.20 6

TAI 6.60� 11.72 9.34 1.11 �0.04 5

RAV 1.80� 11.70 8.50 1.70 �0.73 1

STI 1.67� 12.00 8.28 2.04 �0.87 2

PTR 2.40� 11.70 8.06 1.85 �0.73 2

FER 7.30� 11.70 9.54 1.06 0.01 4

GOL 7.00� 11.70 9.46 1.06 0.02 5

VSA 7.20� 12.40 9.57 1.11 0.22 5

In an exploratory analysis of the observed values of DO it is indicated the possibility of
changes in the mean and/or variance (in particular between 2004 and 2006). As regards
the average, it apparently increases or decreases according to the monitoring site, but
the observations variability reduces in all monitoring sites, more evidently on some of
them. Another important feature is the indication of a seasonal component. This is
due to the seasonal relationship between DO concentration and the weather patterns
throughout the year, particularly temperature changes and precipitation intensity.

3. Methods

As said before, the change-point statistical inference has two goals: the first is to detect
if there is any change in the sequence of observed random variables; the second is to
estimate the number of changes and their corresponding locations. The detection of
multiple change-points can be performed through the binary segmentation procedure.
The binary segmentation procedure and its consistency were presented in Vostrikova
(1981).
For instance, the binary segmentation procedure was used in Chen (1998) to search the

existence of various change-points in the Boston Stock Exchange monthly sales volume,
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and has the advantage of detecting simultaneously the number of change-points and
their location.

3.1. General problem formulation

Consider a sequence of independent random variables X1, X2, . . . , Xn with probability
distribution functions F1, F2, . . . , Fn, respectively. Then, in general, the change-point
problem is to test the following null hypothesis,

H0 : F1 = F2 = . . . = Fn (1)

versus the alternative hypothesis

H1 : F1 = . . . = Fk1 6= Fk1+1 = . . . = Fk2 6= Fk2+1 = . . . = Fkq 6= Fkq+1 . . . = Fn, (2)

where 1 < k1 < k2 < . . . < kq < n, q is the unknown number of change-points and
k1, k2, . . . , kq are the respective unknown positions that have to be estimated.

If the distributions F1, F2, . . . , Fn belong to a common parametric family F (✓), where
✓ 2 IRp, then the change-point problem is to test the null hypothesis about the population
parameters ✓i, i = 1, . . . , n:

H0 : ✓1 = ✓2 = . . . = ✓n = ✓ (unknown) (3)

versus the alternative hypothesis

H1 : ✓1 = . . . = ✓k1 6= ✓k1+1 = . . . = ✓k2 6= . . . 6= ✓kq−1+1 = . . . = ✓kq 6= ✓kq+1 = . . . = ✓n,
(4)

where q and k1, k2, . . . , kq have to be estimated.
These hypotheses together reveal the aspects of change-point inference: determining

if any change-point exists in the process and estimating the number and position(s) of
change-point(s) Chen and Gupta (2001). Note also that the hypothesis can be adapted
where there is a single change-point or multiple change-points in the sequence of obser-
vations. Next sections are dedicated to the detection of one change-point in a time series
which may be applied in a binary segmentation procedure.

3.2. Change-point in both the mean and the variance

Change-point in both the mean and the variance sometimes occurs. This problem has not
been widely discussed and only the most recent studies present examples. For instance,
Chen and Gupta (1999) used the informational approach and Hawkins and Zamba (2005)
used the likelihood ratio statistics.
In case of a change-point both in the mean and in the variance, we want to test the

following hypothesis

H0 : µ1 = µ2 = . . . = µn = µ ^ �2
1 = �2

2 = . . . = �2
n = �2 (5)

versus the alternative hypothesis
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H1 : µI = . . . = µ1 = µk 6= µk+1 = . . . = µn = µII

^ (6)

�2
I = �2

1 = . . . = �2
k 6= �2

k+1 = . . . = �2
n = �2

II .

For instance, assuming the normality, the model representing a shift in both the mean
and the variance can be expressed as

Xt =

(
µI + ✏It , ✏It ⇠ N(0,�2

I ), t = 1, . . . , k

µII + ✏IIt , ✏IIt ⇠ N(0,�2
II), t = k + 1, . . . , n,

(7)

where µI and �2
I are the mean and the variance before the unknown change-point and

µII and �2
II are the mean and the variance after the unknown change-point.

3.3. The informational approach

The Akaike Information Criterion (AIC) was introduced by Akaike (1973) for model
selection in Statistics. The general formulation of the AIC to select the ”best” model
among M models can be expressed by

AICj = �2 ln L(Θ̂j) + 2pj , j = 1, 2, . . . ,M, (8)

where L(Θ̂j) is the maximum likelihood for model j, as a measure of model evaluation,
Θ̂j is a estimate for Θj , set of parameter values for model j, and pj is the number of
parameters that are estimated in model j. A model that minimizes the AIC (Minimum
AIC estimate, MAICE) is considered to be the most appropriate model. However,
the MAICE is not an asymptotically consistent estimator of model order (Schwarz,
1978). This criterion has profoundly influenced the developments in statistical analysis,
particularly in time series, outliers analysis (Kitagawa, 1979), robustness, regression
analysis, multivariate analysis (Bozdogan et al., 1994). Based on Akaike’s work, many
authors have further introduced various information criteria (Bozdogan, 1987; Rao and
Wu, 1989).

One of the AIC modifications is the Schwarz Information Criterion (SIC), proposed
by Schwarz (1978). The SIC is defined as following

SICj = �2 ln L(Θ̂j) + pj lnn, j = 1, 2, . . . ,M, (9)

where n is the sample size. This criterion is based on the maximum likelihood of a
given model penalized by the number of parameters that are estimated in the model.
Also, the model that minimizes the SIC is considered to be the most appropriate model,
representing the best compromise between parsimony (few parameters) and good fit
(small residuals).
Apparently, the difference between AIC and SIC is in the penalty term: instead of

2p, it is p lnn. However, SIC gives an asymptotically consistent estimate of the order
of the true model and makes use of the sample information (Chen and Gupta, 2012).
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In short, the informational approach (in this case by using the Schwarz Information
Criterion (SIC)) intends to identify the change-point through the identification of the
model that minimizes the SIC, that is, the model considered to be the most appropriate
in comparison with the model with no change-point. In this setting we considered two
models: one corresponding to the null hypothesis (5) and another to the alternative
hypothesis (6).
Under H0 (5) and assuming the normality and the independence, the maximum like-

lihood estimators for µ and �2 are µ̂ = X = 1
n

Pn
i=1Xi and �̂2 = 1

n

Pn
i=1(Xi � X)2

respectively. Then, denoting SIC under null hypothesis (5) by SIC(n), we have

SIC(n) = �2 ln L0(µ̂, �̂
2) + 2 lnn, (10)

and the maximum of the likelihood function is given by

L0(µ̂, �̂
2) =

nY

i=1

1p
2⇡�̂2

exp


�(Xi � µ̂)2

2�̂2

�
. (11)

The number two in the second term of the equation (10) represents the number of
parameters to estimate: the mean and the variance. Combining (10) through (11), we
thus have

SIC(n) = �2
nX

i=1

8
<
:ln

"
1q

2⇡
n

Pn
i=1(Xi �X)2

exp

✓
� (Xi �X)2

2
n

Pn
i=1(Xi �X)2

◆#9=
;+ 2 lnn

(12)
and then, after some simple computations, we obtain

SIC(n) = n ln 2⇡ + n ln
nX

i=1

(Xi �X)2 + n+ (2� n) lnn. (13)

Under the alternative hypothesis (6) it is necessary to estimate four parameters: two
means and two variances, before and after the change-point. Under alternative hypoth-
esis the SIC, denoted by SIC(k), is hence obtained as

SIC(k) = �2 ln L1(µ̂I , µ̂II , �̂
2
I , �̂

2
II) + 4 lnn. (14)

The maximum likelihood function is given by

L1(µ̂I , µ̂II , σ̂
2
I , σ̂

2
II) =

k
Y

i=1

(

1
p

2πσ̂2
I

exp



−

(Xi − µ̂I)
2

2σ̂2
I

�

)

n
Y

i=k+1

(

1
p

2πσ̂2
II

exp



−

(Xi − µ̂II)
2

2σ̂2
II

�

)

. (15)

After some algebraic simplifications, holds

SIC(k) = n ln 2⇡ + k ln �̂2
I + (n� k) ln �̂2

II + n+ 4 lnn, (16)

where XI = 1
k

Pk
i=1Xi, XII = 1

n−k

Pn
i=k+1Xi and �̂2

I = 1
k

Pk
i=1(Xi �XI)

2, �̂2
II =

1
(n−k)

Pn
i=k+1(Xi�XII)

2. The SIC(k) serves as the test statistics for the model selection.
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3.4. Model Selection

According to the information criterion principle, we are going to estimate the position
of change-point k such that SIC(k) is the minimal. Notice that in order to obtain the
maximum likelihood estimators, we can only detect changes that are located between
the second and (n� 2) positions. Then, the estimation of the change-point position by
k̂ is given by

SIC(k̂) = min
2≤k≤n−2

SIC(k). (17)

Chen and Gupta (1997) presented a theorem and its proof which states that the
estimator of k according to (17) is consistent to the true change-point. Furthermore, they
presented some properties of the test statistics SIC(k), in particular the characteristic
function, the mean and the variance.
The model with a change-point k is selected if SIC(k) < SIC(n), otherwise, the model

with no change-point SIC(n) is more reasonable. The information criteria, such as SIC,
provides a remarkable way for exploratory data analysis with no need to resort to either
the distribution or the significance level ↵. However, when SIC(k) and SIC(n) are very
close, we can question if the small difference between SIC(k) and SIC(n) might be caused
by data fluctuation, and therefore there may be no change at all. In order to investigate
the significance of the change-point (Chen and Gupta, 1997) introduced the significance
level ↵ and its associated critical value c↵, where c↵ � 0.
Thus, the null hypothesis should be rejected if

min
2≤k≤n−2

SIC(k) + c↵ < SIC(n) (18)

where c↵ and ↵ are computed such that

1� ↵ = P
h
SIC(n) < min

2≤k≤n−2
SIC(k) + c↵|H0

i
. (19)

The computation of the critical values c↵ needs the null distribution of min2≤k≤n−2 SIC(k).
Such a distribution, however, still remains unknown so far. Under the null hypothesis,
the asymptotic critical values can be computed through the approximate formula

c↵ ⇡ �2 lnn+

(
� 1

a(lnn)
ln ln


1�↵+exp

⇣
�2 exp

⇥
b(lnn)

⇤⌘�−1/2

+
b(lnn)

a(lnn)

)2

, (20)

where a(lnn) = (2 ln lnn)1/2 e b(lnn) = 2 ln lnn + ln ln lnn. For different significance
values c↵ and different sample sizes n, Chen and Gupta (1999) computed the c↵ values,
and the approximate c↵ values are tabulated in that work.

4. Change-point detection procedure: an application to a

real dataset

The change-point methods are often applied to detect changes in environmental time
series, which are complex and hinder the process of change-point detection. The detec-
tion of changes in time series includes the behavior knowledge of the studied variable
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over time. A common feature of environmental series is the significant time dependence
on the observations (autocorrelation), particularly at the monthly scale or at a smaller
time scale. The presence of an autocorrelation creates patterns in time series that can
be easily confused with change-points, especially if the magnitude of the change-point is
small (Jarušková, 1997). In the presence of dependence, the risk of false detection tends
to increase and the power of detection diminishes (Beaulieu et al., 2012). However, the
effect of serial correlation on the distributions of change-point statistics was studied in
some scenarios. Inferences about the change-point in regression models with AR(1) error
structure were considered in El-Shaarawi and Esterby (1982). When the variables are
not independent but form an ARMA sequence, Antoch et al. (1997) showed that the
asymptotic critical values in the CUSUM approach have to be multiplied by

p
2⇡f(0)/�,

where � is the variance and f(·) denotes the special density of the corresponding ARMA
process. A method for undocumented change-point detection for series with autocorre-
lated and periodic features based on a regression F-type statistics was developed by Lund
et al. (2007). The detection of changes of one variable observed in a set of locations but
analyzed as an independent series was performed in Jarušková and Rencov (2008) and
in Alpuim and El-Shaarawi (2009). The change-point detection method of Antoch et al.
(1997) was incorporated by Gonçalves and Alpuim (2011) in a state-space modeling in
order to identify possible changes of water quality variables.
The monthly environmental series are often skewed. The data transformations must

be done very carefully because they can eliminate important data behaviors, which may
lead to changes that prevent the change-point detection or the acceptance of existing
change-points that do not exist (false change-point detection). Statisticians analyze the
hydrometeorological data often transforming the observations, usually by using the log-
arithmic transformation (Jarušková, 1997). Sometimes the interpretation of a change in
parameters causes problems as the mean and the variance of log-normal distribution are
functions of both parameters. An example of monthly averages of water discharges of a
small creek in the Erzgebirge Mountains was presented in Jarušková (1997) in order to
show that tests detect a change in the mean but not in the variance of the transformed
data, concluding that the scale characteristic changed but the shape characteristic of
the original series remained the same. Thus, variations in these time series can be easily
misinterpreted and result in identifying apparent changes, even though there are none.
This is a challenging problem in change-point detection, as most techniques were devel-
oped for independent observations. In the same paper, the author advises to deal, when
possible, with the annual averages instead of monthly averages, because the problem of
skewness is usually not so serious (averaging reduces data skewness).
In this work, the main goal is to study the DO time series and to perform the change-

point analysis by using the SIC procedure. It will be carried out a change-point analysis
for the eight DO time series, at each monitoring site, in order to understand whether the
changes suggested by the exploratory analysis performed – relatively to change-points
in both mean and variance – are statistically significant or only due to inherent data
variation (associated with random hydrological phenomena). As the datasets under
study present a seasonal behavior, a special attention was required by addressing this
characteristic through the use of linear models. This approach arises as a strategy to
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tackle the problem of the presence of a seasonal component in time series, especially
in environmental data analysis. Generally, the hydrometeorological data consists of
monthly observations, and they usually have a seasonal character (for instance, this can
be explained by natural processes such as the seasons). DO observations in the eight
monitoring sites are monthly measurements that evidence a seasonal component. So,
this impact should be first minimized in the application of the change-point detection
procedure.
A simple approach consists of subtracting the overall January average from January’s

data, the overall February average from the February’s data, and so on. This approach
is more suitable for series with no evident trend. In this work it is adopted the method
followed by Gonçalves and Alpuim (2011): the seasonal component, st, takes twelve dif-
ferent values, �i, i = 1, . . . , 12, associated with each month and expressing the positive
or negative deviation from the data due to that month’s effect. This effect is usually
described with the help of twelve dummy variables, which must add up to zero, by con-
sidering the linear model with an intercept term. The seasonal component is represented
by a linear combination of eleven explanatory variables, st,i, defined as

st,i =

8
><
>:

1, if date t corresponds to month i

�1, if date t corresponds to month 12

0, otherwise

.

The seasonal component for December can be calculated from the other month compo-
nents through the formula �̂12 = �

P11
i=1 �̂i. The choice of December to be written as a

linear combination of the other months is arbitrary and any month can be used for that
purpose. Finally, it is applied a multiple regression model providing estimators with
optimal properties.
Time series can present statistical properties such as a constant mean and seasonality,

whose parameters can be estimated at the same time. Thus, the adjusted model is

X
(M1)
t = µ+ st + ✏t, t = 1, . . . , n, (21)

where µ is the global series mean, st is the seasonal component and ✏t is a white noise with

E(✏2t ) = �2. The change-point detection considers the errors series ✏̂t = X
(M1)
t �µ̂�ŝt, t =

1, . . . , n.
The aim is to detect change-points in both the mean and the variance, i.e., to test

the null hypothesis (5) versus the alternative hypothesis (6), through the application of
the Schwarz Information Criterion (SIC) to the new series {✏̂t}t=1,...,n, corresponding the
SIC(n) to the model (13) and the SIC(k) to the model (16). For a better understanding
of the differences between the information criterion values of the different models repre-
sented by SIC(k) values and the SIC(n) � c↵ we considered values for two significance
levels, ↵ = 5% and ↵ = 1%, and they are represented in the graphics by horizontal
reference lines.

If, statistically, a change-point is detected, a second model will be adjusted to the
original data,

X
(M2)
t = µt + st + ✏t, t = 1, . . . , n, (22)
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where st is the seasonal component for t = 1, . . . , n,

µt =

(
µI if t  k

µII if t > k
and ✏t =

(
N(0,�2

I ) if t  k

N(0,�2
II) if t > k

.

After the adjustment of the model (22) for each series, it is applied the binary seg-
mentation process with the second change-point detection, in the two errors sequences,
before and after change-point. The verification of the assumption of data normality is
performed through the histograms and the Shapiro Wilk test. In order to investigate if
residuals follow a white noise process, the autocorrelation function (ACF) and partial au-
tocorrelation function (PACF) are estimated in each residual series. In the change-point
procedure it is considered a significant level of 5%.

5. Results

Taking into account previous studies about this hydrological basin, namely, Gonçalves
and Alpuim (2011), Costa and Gonçalves (2011) and Gonçalves and Costa (2011) in this
study it is not considered a trend component in the modeling procedure. However, the
data exploratory analysis suggests the incorporation of change in both the mean and the
variance at unknown times in the modeling process.
The linear model M1 (21) was adjusted to the DO data series (original data, without

any data transformation). Table 3 presents model parameters estimates of model M1.
The SIC procedure was applied to all series according to the methodology presented
in subsection 3.4, considering the asymptotic critical values at a significance level of
5%. Table 4 summarizes the results of SIC procedures. For all series it was detected a
significant change-point considering the respective critical value.
Notice that in all series the differences SIC(n) � SIC(k̂) are clearly superior to the

approximate critical values at a 5% level. Moreover, considering a significance level of
1%, only the difference SIC(n)� SIC(k̂) related to the Taipas (TAI) series is lower than
the approximate critical value of c1% (for instance, c1% ⇡ 15.079 when n = 150). Thus,
change-point procedures are assertive about the existence of a change-point in both the
mean and the variance in each series, even considering a conservative significance level.
For instance, Figure 2 presents SIC(k) values, 2  k  154, for the Cantelães series and
the values SIC(n)� c↵ with ↵ = 1%, 5%.

Once the change-point k̂i is detected in the series i (i = 1, 2, ..., 8), model M2 (Eq. 22)
was adjusted in order to estimate the vector of parametersΘ = (µI , µII ,�

2
I ,�

2
II , s1, ..., s12).

In order to investigate the verification of assumptions of the change-point procedure, Ta-
ble 5 presents statistical results of the series of residuals assumptions of uncorrelation
and normality. In seven series of residuals time correlation is statistically significant with
a AR(1) process behavior suggested by PACF and ACF functions; however, the normal-
ity is rejected. The Ponte Trofa (PTR) series presents different statistical properties
because the correlation is not significant but the normality is accepted.
Thus, the initial assumptions of the SIC procedures are not satisfied, and so, it was

designed a simulation study in order to evaluate its performance in the presence of serial
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Table 3: Parameters estimates of model M1 (no change-point) for the eight series and
the coefficients of determination.

CANT TAI RAV STI PTR FER GOL VSA

µ 9.77 9.34 8.51 8.28 8.05 9.53 9.46 9.57

�2 0.55 0.46 1.05 1.65 1.27 0.58 0.55 0.59

s1 0.77 1.23 1.62 1.89 1.86 0.96 1.04 0.95

s2 0.93 1.05 1.44 1.72 1.64 1.00 0.83 1.08

s3 0.77 0.69 0.91 1.09 0.93 0.60 0.73 0.60

s4 0.29 0.36 0.54 0.67 0.75 0.42 0.30 0.37

s5 �0.07 �0.03 0.28 0.36 0.45 0.08 �0.15 0.04

s6 �0.71 �0.80 �0.70 �1.37 �1.02 �0.74 �0.69 �0.80

s7 �0.95 �1.19 �2.39 �2.73 �1.79 �0.81 �0.82 �1.10

s8 �0.94 �1.46 �1.43 �1.71 �2.02 �1.18 �1.26 �1.24

s9 �0.94 �0.82 �1.84 �1.91 �2.06 �1.04 �0.81 �0.98

s10 �0.31 �0.33 �0.92 �1.05 �1.26 �0.24 �0.44 �0.09

s11 0.43 0.50 0.64 1.14 0.63 0.31 0.56 0.33

s12 0.73 0.80 1.85 1.90 1.89 0.64 0.71 0.84

R2 0.48 0.62 0.64 0.60 0.63 0.49 0.51 0.52

correlation and/or non-normality. For instance, the application of the SIC framework
in the context of serial correlation (usually presented in monthly environmental data)
needed to be adapted, namely through a simulation study, in order to compute the
corrected significant levels corresponding to the usual level of 5%. This study is presented
in annex. In this context, approximations of the significance levels c∗ were obtained using
(20) when there is a serial correlation of � = 0.3 with Gaussian data and uncorrelated
data with a zero mean Exponential distribution (a very asymmetrical distribution) in
order to get a real significance level of 5%. The significance levels obtained were 2.4%
and 0.4%, respectively. Note that in the case of exponential distribution it is necessary
to compute the critical value associated to a very lower significance level in order to
obtain a real significance level of 5%. Table 6 presents the corrected critical values for
each series, thus confirming the statistical significance of the change-points according to
Table 4.
After, it was performed the binary segmentation procedure for testing the existence

of any change-points in each subseries. Four new change-points were detected, namely
in CANT, TAI, RAV and VSA, considering the critical values associated to 5% and
assuming the assumptions of the SIC procedure. However, if the corrected critical values
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Table 4: Results of change-point procedures (ni-number of observations in site i, k̂ =
argmin2≤k≤154SIC(k)).

Site n SIC(n) k̂ SIC(k̂) c5% change-point

CANT 150 345.67 73 287.25 6.802 Jan/2005

TAI 151 321.79 70 307.96 6.791 Oct/2004

RAV 155 456.53 89 436.03 6.746 May/2006

STI 154 523.33 89 493.54 6.757 May/2006

PTR 154 482.48 83 443.22 6.757 Nov/2005

FER 152 356.58 70 341.12 6.780 Oct/2004

GOL 151 348.35 77 312.58 6.791 May/2005

VSA 151 358.44 74 321.06 6.791 Feb/2005

Table 5: Estimates of significant autoregressive coefficients and p-values of Shapiro Wilk
tests for the normality for the residuals series.

CANT TAI RAV STI PTR FER GOL VSA

�̂ 0.23∗ 0.29∗ 0.27∗ 0.25∗ 0.01 0.20∗ 0.18∗ 0.22∗

SW p-value 0.66 0.52 0.20 0.95 0.03∗ 0.25 0.34 0.24
∗ significant at a 5% level

are computed considering correlation, once the correlation is present in these series, only
a second change-point (June/2005) remains statistically significant, namely in RAV, as
it is presented in Table 7. Thus, model M2 was adjusted to RAV considering two change-
points. The global results of the models adjustment are presented in Table 8 and their fit
to original data is presented in Figure 3 and Figure 4. Note that models present a good
fitting because they have coefficients of determination superior to 0.55. Relatively to the
final model adjusted to the RAV series, the residuals present a correlation of � = 0.268
and the normality was accepted (SW p-value =.996).
Except for RAV, in the remaining monitoring sites there was a decrease of variance,

and with regard to the mean, there is a first group (composed by Cantelães, Taipas, Ferro,
Golães and Vizela Santo Adrião) which presents DO values that on average are higher
in the first subseries in comparison with the observations of the second subseries. The
second group (composed by the monitoring sites Santo Tirso and Ponte Trofa) presents
lower average values before change-point, which increase, in average, after this. In the
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Figure 2: SIC(k) values for the Cantelães series.

Table 6: Approximated critical values c∗ for each series considering serial correlation and
normality for all locations, with the exception of PTR whose critical value was
obtained considering uncorrelated data with Exponential distribution.

CAN TAI RAV STI PTR FER GOL VSA

n 150 151 155 154 154 152 151 151

c∗ 10.390 10.378 10.328 10.340 24.810 10.365 10.378 10.378

first group the change-points positions occur in the end of 2004 and in the beginning
of 2005, and in the second group they occur a little later, in the end of 2005 and in
the beginning of 2006. This analysis suggests that are two distinct monitoring sites
groups: a group that presents, along the time observed, a water quality improvement
relatively to the DO mean concentration, whereas the other group presents water quality
degradation. The identification of these two groups corroborates the results obtained in
the same hydrological basin in Gonçalves and Alpuim (2011).
The RAV series was the only site where there were identified two change-points (in

March 2006 and June 2005). In a more recent period, after March 2006, DO concen-
tration has a mean level greater than before. However, in the period between the two
change-points the analysis indicates a bad period with respect to DO. Despite attempts
by the authorities, it was not possible to identify an objective reason for this.
In the appendix it is presented a simulation study that was conducted in order to assess
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Figure 3: Adjustment of the final models.
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Figure 4: Adjustment of the final models.
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Table 7: Results of the second step of the binary segmentation procedure.

CANT TAI RAV VSA

n 67 86 88 82

↵∗ 0.026 0.026 0.026 0.026

c∗ 11.51 11.03 10.99 11.12

SIC(n) 161.36 159.72 288.33 144.00

SIC(k) 151.01 149.09 273.32 135.57

SIC(n)� c∗ >SIC(k) no no yes no
bk 78

change-point June/2005

the autocorrelation and non-normality impacts on the change-point detection when it is
adopted the SIC approach.

6. Conclusions

We detected change-points in both the mean and the variance in the eight time series
observed in the monitoring site of the Ave River hydrological basin. Whereas in seven
water monitoring sites was detected one change-point, in the RAV site series were iden-
tified two change-points statistically significant according to the binary segmentation
procedure.
The residual analysis of the adjusted models showed that some of the assumptions

of the applied methodology are not fully verified in some time series, namely indepen-
dence and normality of errors. Thus, the simulation study developed allowed a better
assessment of the impact of non-verification of these assumptions in the change-point
detection process.
The main conclusion of this study is that in the presence of positive autocorrelation,

even if weak, the methodology tends to detect false change-points, i.e., the real signifi-
cance is greater than what is considered for purposes of determining the critical point.
For example, for samples of size 150 (sample size similar to the DO time series) the em-
pirical significance obtained is approximately 14%, considering a critical point associated
to a significance of 5%. The simulation study presented in the appendix revealed that
when the errors are not Gaussian distributed and have a very asymmetric distribution (as
the Exponential distribution) the SIC procedure’s performance is jeopardized. However,
the non-Gaussian errors occur only in one site but even in this case the change-point is
statistically highly significant.
The analysis of the time series allowed to verify that in every monitoring sites there

was a variance decrease. In five monitoring sites (Cantelães, Taipas, Ferro, Golães
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and Vizela Santo Adrião) there was a decrease in average, which translates into water
quality deterioration, considering only DO concentration. In the sites of Santo Tirso
and Ponte Trofa there was a water quality improvement. However, these two monitoring
sites continue to present the smallest DO mean concentrations, i.e., they present lower
water quality. These results are in agreement with the results presented by Costa and
Gonçalves (2011). The RAV series presents an alternating behavior due to the three
periods identified.
It was not possible, in spite of diligences made to the official authorities, to identify

factors or specific actions that might be at the origin of the detected change-points. How-
ever, a consistent result of performed analysis was the decrease of the DO concentration
variability, which might be associated with the improvement of measuring instruments.
The main conclusions of this study are both the lowest variability of data and a sta-

tistically significant change in the DO concentration mean after the period of May 2004
– October 2006 in all monitoring sites. However, this change in the DO concentration
average in a group of sites was for better (higher levels of DO) and in the other group it
was verified a deterioration of water quality concerning the DO concentration.
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Appendix

A. Simulation study

A.1. Simulation study design

A simulation study was conducted to investigate the performance of the Schwarz Infor-
mation Criterion procedure in many scenarios, namely when the methodology for the
change-point problem described in the previous section is applied when the errors are not
normally distributed or when the uncorrelation assumption of errors is violated. From
the practical point of view, it is relevant to investigate the methodology’s performance by
assessing if it is suitable to extend conclusions, even when assumptions are not verified.
The conclusions drawn are only valid for the analyzed scenarios once they are established
to encompass the behaviors of the studied time series, namely the change-point in the
mean and in the variance, the presence of correlation or the lack of normality in the
errors distribution. In order to develop the simulation study it was used the freeware
statistical software R (R Development Core Team 2011).
Two scenarios are considered. In the first, time series are generated without change-

points. In the second, it is set a change-point, both in the mean and in the variance.
When no change-point is simulated, time series are generated according to the model

Xt = µ+ ✏t, t = 1, . . . , n, (23)

where µ is the mean, ✏t is a white noise error, and n the sample size.
In the second scenario, when a change-point is set, this is induced in the midpoint

t = n
2 instant. This option is due to the fact that the change-points found in the study of

real data (Dissolved Oxygen time series) occurred at central instants in the time series.
In this case, the time series are generated according to the model

Xt =

(
µI + ✏It , t = 1, . . . , k

µII + ✏IIt , t = k + 1, . . . , n,
(24)

where µI and µII are the means before and after change-point, and ✏It and ✏IIt are the
errors with mean 0 and variances �2

I and �2
II , respectively.

A comparative study was performed in order to estimate the error of Type I, which is
estimated by the empirical significant level calculated by the ratio of the null hypothesis
rejected, where the generated series doesn’t present a change-point. A comparative
study was also be conducted in order to obtain the empirical power of the statistical
test, which is estimated by the ratio of the null hypothesis rejected when one change-
point was induced in the generated series. Also, it is important to evaluate when the
change-point is detected in an appropriate way, i.e., close to the true change-point instant
k. In each of the above scenarios were considered different stochastic errors structures
(uncorrelated and correlated errors) and the Normal and Exponential distributions. The
Exponential distribution is considered due to its strong skewness.



290 Costa, Gonçalves, Teixeira

When errors are considered with a correlation structure, this is assumed to be char-
acterized by a first-order autocorrelation process AR(1), i.e., it follows the structure
✏t = �✏t−1 + at, with | � |< 1, wherein at is a white noise with null mean. In this
study, � = 0.3 represents the correlation that was detected in some series in the previous
section.
Normality of errors was assumed, since it is one of the assumptions of the adopted

methodology and serves as a reference to compare with the series generated from expo-
nential errors. In the exponential case, the errors are obtained by ✏t = Yt � 1

�
, where

Yt ⇠ Exp(�) and E(Yt) =
1
�
. We considered samples with size n = 50 (small samples),

a sample size approximate to the time series studied n = 150, and yet high dimensional
sample size with n = 500.
For each sample size, it is considered a vector of parameters that characterizes the

simulated model. When a series does not have a change-point the parameter vector
is Θ = {µ,�2,�}, and when there is a induced change-point the parameter vector is
Θ = {µI , µII ,�

2
I ,�

2
II ,�}. In the series without change-point, the mean considered is

µ = 0, without loss of generality. Different shifts are considered when a change-point is
generated. In the first subseries it is taken µI = 0; after the change-point it is considered
µII = 0.2, µII = 0.5 or µII = 0.8. Note that these values were considered according to
the practical results obtained in the series studied in the previous section.
The possible variance values are established taking into account the empirical re-

sults of the time series. Thus, the series without change-point assumed variances errors
�2 = 0.5, �2 = 1 and �2 = 1.5. When a change-point is induced, the following values
were considered (0.6, 0.3) and (2, 0.6) for the pair (�2

I ,�
2
II). In cases where errors follow

an AR(1) process, the white noise at is simulated with a variance �2
a = (1� �2)�2

✏ . Fur-
thermore, when errors have Exponential distribution, these are obtained by considering
� =

p
1/�2

✏ , when there is no correlation and � =
p
1/�2

a, otherwise.
The simulation study was designed by generating 2000 samples per each scenario,

without change-point and with change-point, and for each parameter combination Θ, by
considering Normal and Exponential random errors distributions. The SIC procedure
was performed considering the critical value of the test with a significance level of 5%.

A.2. Simulation results

Tables 9 and 10 present the empirical significances when under H0. As expected, when
the errors are independent and normally distributed (� = 0), the empirical significance
is very close to the considered significance of 5%, even for small samples (n = 50).
When the methodology is applied to correlated observations (� = 0.3) the empirical

significance is greater than the adopted significance (5%), being even double or triple.
Thus, these results are in accordance with those reported in Beaulieu et al. (2012). It is
emphasized, however, that the correlation’s impact becomes stronger for larger sample
sizes. Bibliographical research carried out did not found any reference to this fact. The
results show that the magnitude of the observations variance has no major impact in the
SIC test performance, since the empirical significance obtained is similar for different �2

✏

values.
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Figure 5: Histograms of false change-points detected by considering samples with n = 50
and errors normally distributed.

In order to examine the false change-points detected when series with no change-
points were generated, their histograms were drawn. For instance, Figure 5 and Figure
6 show that false change-points correspond to instants close to the beginning or the end
of the time series, predominantly where the errors are Gaussian. In fact, when errors
are exponential, the false change-point detection is more uniform over the series time
interval. However, for larger samples, the results are closer to those obtained for the
Gaussian errors.
Tables 11 and 12 present the empirical power where errors are normally and exponen-

tially distributed, respectively, under the alternative hypothesis H1. Results show that
the empirical power is greater when there is a dependency structure in the observations.
As expected, when the differences µII �µI are higher, the empirical power is greater for
both normal and exponential errors.
It should be noted that the impact of the changes in variances does not affect the

overall relative pattern of the methodology’s performance. However, the results show
that when the mean difference is small, the empirical power is higher when the variances
difference is superior. When the mean difference is 0.8 and it is associated with a greater
change in the magnitude of variances, the empirical power tends to decrease. The applied
methodology shows a good performance for large samples (n = 500) once it has empirical
powers near 100% in almost all scenarios.
In order to allow a more thorough analysis of the proposed methodology’s performance
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Figure 6: Histograms of false change-points detected by considering samples with n = 50
and errors exponentially distributed.

as well the accuracy of the location of the detected change-points, the percentages of
the detected change-points close to the true change-point (k = n

2 ) were computed. For
this purpose, upper and lower limits were established, among which a change-point was
detected with a reasonable accuracy (19� 31, 63� 87 and 226� 274 for samples of size
n = 50, n = 150 and n = 500, respectively).

For each case it was computed the ratio of statistical significant change-point within
the established limits under H1 and the ratio of the change-point within the limits over
the number of all change-point detected. The results are presented in Table 13 for the
normal errors and in Table 14 for the exponential errors.
The results highlight the tendency that when the observations are correlated, the

adopted methodology provided best performance (in change-point detection), even con-
sidering the change-points located within the established limits. By comparing the
results for the series presenting random errors that follow a normal distribution with
errors that follow an exponential distribution, we could conclude that, in the latter case,
the performance is inferior compared to the observations from a normal distribution.
Globally, we can say that the difference between the performance in the scenarios

of independence or autocorrelation presence is attenuated when we analyzed the per-
centages of detected change-points located within the limits, mainly for smaller samples
(n = 50).
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Table 8: Parameters estimates of final model M2 considering the change-points in each
series (after the binary segmentation procedure) and the coefficient of determi-
nation.

Parameter CANT TAI RAV STI PTR FER GOL VSA

µI 10.22 9.62 8.51 7.97 7.78 9.81 9.85 9.96

µII #9.41 #9.12 #6.79 "8.69 "8.37 #9.31 #9.11 #9.24
µIII "8.78
�2
I 0.58 0.49 1.00 2.21 1.70 0.70 0.51 0.65

�2
II #0.24 #0.34 "2.22 #0.64 #0.60 #0.37 #0.34 #0.31

�2
III #0.45

s1 0.70 1.21 1.66 1.92 1.87 0.95 1.00 0.89

s2 1.00 1.06 1.48 1.76 1.65 1.01 0.81 1.05

s3 0.76 0.70 0.95 1.13 0.94 0.59 0.71 0.63

s4 0.31 0.37 0.58 0.71 0.75 0.41 0.28 0.40

s5 �0.09 �0.05 0.31 0.40 0.46 0.07 �0.20 0.03

s6 �0.69 �0.79 �0.82 �1.39 �1.02 �0.75 �0.64 �0.77

s7 �0.96 �1.21 �2.37 �2.74 �1.79 �0.83 �0.81 �1.11

s8 �0.92 �1.46 �1.41 �1.72 �2.01 �1.17 �1.22 �1.21

s9 �0.95 �0.83 �1.82 �1.96 �2.08 �1.03 �0.80 �0.98

s10 �0.32 �0.35 �0.91 �1.06 �1.26 �0.27 �0.43 �0.10

s11 0.41 0.52 0.66 1.12 0.63 0.34 0.57 0.32

s12 0.75 0.83 1.70 1.83 1.86 0.68 0.73 0.85

R2 0.64 0.67 0.72 0.63 0.65 0.55 0.63 0.63

Table 9: Empirical significance for 2000 replicates simulated from a Normal distribution.

n = 50 n = 150 n = 500

µ �2 � = 0 � = 0.3 � = 0 � = 0.3 � = 0 � = 0.3

0 0.5 0.050 0.133 0.052 0.138 0.048 0.161

1 0.048 0.114 0.047 0.146 0.039 0.163

1.5 0.048 0.123 0.042 0.141 0.044 0.168
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Table 10: Empirical significance for 2000 replicates simulated from a Exponential distri-
bution.

n = 50 n = 150 n = 500

µ �2 � = 0 � = 0.3 � = 0 � = 0.3 � = 0 � = 0.3

0 0.5 0.307 0.403 0.443 0.544 0.571 0.687

1 0.316 0.388 0.442 0.555 0.569 0.677

1.5 0.298 0.375 0.431 0.532 0.585 0.685

Table 11: Empirical power from 2000 samples generated from a Normal distribution.

n = 50 n = 150 n = 500

µI µII �2
I �2

II � = 0 � = 0.3 � = 0 � = 0.3 � = 0 � = 0.3

0 0.2 0.6 0.3 0.130 0.280 0.475 0.710 0.995 0, 999

2 0.6 0.310 0.443 0.939 0.953 1.000 1.000

0 0.5 0.6 0.3 0.356 0.716 0.962 0.996 1.000 1.000

2 0.6 0.409 0.621 0.985 0.995 1.000 1.000

0 0.8 0.6 0.3 0.773 0.973 1.000 1.000 1.000 1.000

2 0.6 0.617 0.866 0.998 1.000 1.000 1.000

Table 12: Empirical power from 2000 replicates simulated from a Exponential distribu-
tion.

n = 50 n = 150 n = 500

µI µII �2
I �2

II � = 0 � = 0.3 � = 0 � = 0.3 � = 0 � = 0.3

0 0.2 0.6 0.3 0.402 0.521 0.717 0.889 0.998 1.000

2 0.6 0.538 0.608 0.911 0.958 1.000 1.000

0 0.5 0.6 0.3 0.601 0.864 0.992 1.000 1.000 1.000

2 0.6 0.595 0.786 0.994 0.999 1.000 1.000

0 0.8 0.6 0.3 0.919 0.995 1.000 1.000 1.000 1.000

2 0.6 0.781 0.938 1.000 1.000 1.000 1.000
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Table 13: Ratios of statistical significant change-points within the established limits from
all samples under H1. Between parenthesis are shown the ratios of the change-
points within the limits from all change-points detected. Errors with Normal
distribution.

n = 50 n = 150 n = 500

µI µII �2
I �2

II � = 0 � = 0.3 � = 0 � = 0.3 � = 0 � = 0.3

0 0.2 0.6 0.3 0.055 0.127 0.336 0.426 0.889 0.875

(0.421) (0.451) (0.706) (0.600) (0.893) (0.875)

2 0.6 0.214 0.273 0.825 0.773 0.984 0.975

(0.690) (0.615) (0.879) (0.811) (0.984) (0.975)

0 0.5 0.6 0.3 0.252 0.534 0.839 0.894 0.990 0.986

(0.708) (0.745) (0.872) (0.897) (0.990) (0.986)

2 0.6 0.301 0.450 0.896 0.875 0.994 0.990

(0.736) (0.725) (0.910) (0.879) (0.994) (0.990)

0 0.8 0.6 0.3 0.689 0.886 0.980 0.987 1.000 1.000

(0.891) (0.910) (0.980) (0.987) (1.000) (1.000)

2 0.6 0.512 0.713 0.959 0.939 0.997 0.996

(0.828) (0.824) (0.960) (0.939) (0.997) (0.996)
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Table 14: Ratios of statistical significant change-points within the established limits from
all samples under H1. Between parenthesis are shown the ratios of the change-
points within the limits from all change-points detected. Errors with Expo-
nential distribution.

n = 50 n = 150 n = 500

µI µII �2
I �2

II � = 0 � = 0.3 � = 0 � = 0.3 � = 0 � = 0.3

0 0.2 0.6 0.3 0.136 0.208 0.295 0.452 0.749 0.843

(0.339) (0.399) (0.412) (0.509) (0.750) (0.843)

2 0.6 0.247 0.313 0.572 0.639 0.872 0.920

(0.458) (0.514) (0.628) (0.667) (0.872) (0.920)

0 0.5 0.6 0.3 0.365 0.620 0.825 0.909 0.983 0.997

(0.607) (0.717) (0.832) (0.909) (0.983) (0.997)

2 0.6 0.348 0.531 0.803 0.867 0.945 0.976

(0.585) (0.675) (0.908) (0.868) (0.945) (0.976)

0 0.8 0.6 0.3 0.777 0.909 0.963 0.983 0.998 0.999

(0.846) (0.914) (0.963) (0.983) (0.998) (0.999)

2 0.6 0.589 0.765 0.920 0.945 0.972 0.996

(0.754) (0.816) (0.920) (0.945) (0.972) (0.996)


