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Abstract

In this paper several testing procedures are proposed that can detect change-points

in the error distribution of nonparametric regression models. Different settings are con-

sidered where the change-point either occurs at some time point or at some value of the

covariate. Fixed as well as random covariates are considered. Weak convergence of the sug-

gested difference of sequential empirical processes based on nonparametrically estimated

residuals to a Gaussian process is proved under the null hypothesis of no change point. In

the case of testing for a change in the error distribution that occurs with increasing time

in a model with random covariates the test statistic is asymptotically distribution-free

and the asymptotic quantiles can be used for the test. This special test statistic can also

detect a change in the regression function. In all other cases the asymptotic distribution

depends on unknown features of the data generating process and a bootstrap procedure

is proposed in these cases. The small sample performances of the proposed tests are

investigated by means of a simulation study, and the tests are applied to a data example.

AMS Classification: 62G08, 62G10

Keywords and Phrases: bootstrap, change-point, nonparametric regression, residuals

1 Introduction

In classical change-point problems one obverves a sample ε1, . . . , εn of random variables and

one is interested in testing the null hypothesis that ε1, . . . , εn are independent and identically
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distributed (i. i. d.) versus the alternative that there exists a change-point θ ∈ (0, 1), such that

ε1, . . . , εbnθc are i. i. d. with some distribution function F and εbnθc+1, . . . , εn are i. i. d. with some

distribution function G 6= F . Test statistics are often based on the difference of the sequential

empirical processes built from the first bnsc and the last n − bnsc observations (0 ≤ s ≤ 1),

respectively. An asymptotically distribution-free test statistic is, for instance,

sup
s∈[0,1],y∈R

∣∣∣
√
n
bnsc
n

(1− bnsc
n

)
( 1

bnsc

bnsc∑

i=1

I{εi ≤ y} − 1

n− bnsc
n∑

i=bnsc+1

I{εi ≤ y}
)∣∣∣,

see Shorack and Wellner (1986, p. 131). Picard (1985) considers this test statistic in a time series

context whereas Carlstein (1988) proposes an estimator for the change-point θ. A procedure

based on sequential quantile processes was suggested by Csörgö and Szyszkowicz (2000). Other

change-point tests as well as estimators for the change-point were considered by Ritov (1990),

Dümbgen (1991), Ferger and Stute (1992), and Ferger (1994, 1996), among others. A lot of

attention has also been paid to the analogous testing problem where the random variables

ε1, . . . , εn are not observed directly but are error variables in parametric time series models. In

a time series setting with independent errors ε1, . . . , εn, sequential empirical processes based

on estimated residuals ε̂i and corresponding change-point tests have been considered by Bai

(1994) in the context of ARMA-models, by Koul (1996) in the context of nonlinear time series

and by Ling (1998) for nonstationary autoregressive models. Apart from these papers, a vast

literature on change-point tests in the time series context is available, see Giraitis, Leipus and

Surgailis (1996), Inoue (2001), Horvath, Kokoszka and Teyssiere (2001), Boldin (2002), Lee and

Na (2004), among others.

In this paper we consider a nonparametric regression model of the form Yi = m(Xi) + εi with

independent observations, and construct change-point tests for the error distribution. These

tests are able to detect change points in the error variance, but allow also to detect any other

changes in the error distribution, like e.g. changes in skewness or kurtosis. Tests for changes in

the error variance have been studied by Oyet and Sutradhar (2003) and Huh and Kang (2005),

among others. The former paper tests whether the variance changes over time, whereas the

latter paper considers the problem of testing whether the error variance jumps at some value

of the covariate.

The tests proposed in this paper have many practical applications. Changes over time are of

interest e.g. when analyzing stock market returns (where it is often assumed that the rates of

return are independent), or when the measuring instrument has been cleaned or adjusted in the

period during which the measurements have been taken in chronological order. Also, testing

for changes in the error distribution in relation to the level of the covariate may be important

when it is suspected that the accuracy of the measurement instrument differs for higher levels

of the covariate (e. g., increasing temperature, humidity or dose of some substance), or in

experimental toxicology studies on humans or animals, where it is often believed that there is

a certain threshold from which on the toxic substance starts reacting.
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The test statistics we are going to consider are based on sequential empirical processes of

nonparametrically estimated residuals, ε̂i = Yi − m̂(Xi), i. e.

1

bnsc

bnsc∑

i=1

I{ε̂i ≤ y}.

The corresponding residual based empirical distribution function (s = 1) was considered by

Akritas and Van Keilegom (2001) and Cheng (2002). Müller, Schick and Wefelmeyer (2004)

suggested a smooth version of this empirical distribution function. Einmahl and Van Keilegom

(2006) constructed tests for the independence of εi and Xi in the model Yi = m(Xi) + εi. The

tests for changes in the covariate developed in this paper can be viewed as a special case of their

test, in the sense that the dependence of εi on Xi is assumed to be given by a change-point

model.

The test statistic we propose for testing for a change in time in a setting with random covariates

is asymptotically distribution-free, and, moreover, can detect changes in the regression function

as well. Tests or estimators for change-points in nonparametric regression functions or their

derivatives were proposed by Müller (1992), Loader (1996), Antoniadis and Gijbels (2002),

Grégoire and Hamrouni (2002), Horvath and Kokoszka (2002) and Gijbels and Goderniaux

(2004), among others.

The paper is organized as follows. In section 2 we consider the regression model under the

assumption of random covariates and propose test statistics for testing for a change in the

error distribution, where the change either occurs at some time point or at some value of the

covariate. In section 3 analogous results are presented for a model with fixed covariates. Section

4 and 5 contain simulations and a real data example. All proofs are deferred to an appendix.

2 The random design case

2.1 Model and assumptions

In this section we consider a nonparametric regression model with independent observations,

Yi = m(Xi) + εi, i = 1, . . . , n,(2.1)

where εi is independent of Xi, and all εi are identically distributed with E(εi) = 0 and Var(εi) =

σ2 ∈ (0,∞) (the index i represents the order in which the observations have been collected).

We assume the univariate covariates X1, . . . , Xn to be independent and identically distributed

with distribution function FX on compact support, say [0, 1]. Further we assume that FX has

a twice continuously differentiable density fX such that supx∈[0,1] fX(x) > 0. To estimate the

error distribution we build nonparametric residuals ε̂i = Yi − m̂(Xi), i = 1, . . . , n, where m̂
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denotes the Nadaraya–Watson estimator (Nadaraya, 1964, Watson, 1964), that is

m̂(x) =
1

n

n∑

i=1

1

h
K(

Xi − x
h

)Yi
1

f̂X(x)
(2.2)

and f̂X(x) = 1
n

∑n
i=1

1
h
K(Xi−x

h
) denotes the kernel density estimator of the covariates. Here

we assume the regression function m to be twice continuously differentiable. K denotes a

symmetric, twice continuously differentiable density with compact support, say [−1, 1], and∫
uK(u) du = 0, and h = hn denotes a sequence of bandwidths such that nh4 = o(1),

nh3+2δ(log(h−1))−1 → ∞ for n → ∞ (for some δ > 0). Finally, we define the following

class of distribution functions,

D=
{
F : R→ [0, 1]

∣∣∣F is a twice continuously differentiable distribution function with(2.3)

density f such that supy∈R f(y) <∞, supy∈R |f ′(y)| <∞ and infy∈R f(y) > 0
}
.

2.2 Testing for a change in time

We want to test the null hypothesis of independent and identically distributed errors versus

the alternative

∃θ0 ∈ (0, 1) such that ε1, . . . , εbnθ0c i. i. d. ∼ F, εbnθ0c+1, . . . , εn i. i. d. ∼ G 6= F.(2.4)

For this aim we define a Kolomogorov-Smirnov type test statistic, sup
s∈[0,1]

sup
y∈R
|T̂n1(s, y)|, where

T̂n1(s, y) =
√
n
bnsc
n

(1− bnsc
n

)
(
F̂bnsc(y)− F̂ ∗n−bnsc(y)

)

is based on the sequential empirical processes of the first bnsc and last n−bnsc nonparametric

residuals,

F̂bnsc(y) =
1

bnsc

bnsc∑

i=1

I{ε̂i ≤ y}

F̂ ∗n−bnsc(y) =
1

n− bnsc
n∑

i=bnsc+1

I{ε̂i ≤ y}.

Let Tn1(s, y), Fbnsc(y) and F ∗n−bnsc(y) be defined analogously, but replacing the residuals ε̂i by

true errors εi. Under the null hypothesis we have the following asymptotic representation and

weak convergence result.

Proposition 2.1 Assume that model (2.1) is valid under the assumptions stated in section 2.1

with errors ε1, . . . , εn that are independent and identically distributed with distribution function

F ∈ D defined in (2.3). Then,

bnsc
n

(
F̂bnsc(y)− F (y)

)
=

1

n

bnsc∑

i=1

(I{εi ≤ y} − F (y)) +
bnsc
n

f(y)
1

n

n∑

i=1

εi + op(
1√
n

)
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uniformly with respect to y ∈ R and s ∈ [0, 1].

Theorem 2.2 Assume that model (2.1) is valid under the assumptions stated in section 2.1

with errors ε1, . . . , εn that are independent and identically distributed with distribution function

F ∈ D defined in (2.3). Then it holds that

sup
s∈[0,1]

sup
y∈R
|T̂n1(s, y)− Tn1(s, y)| = op(1)

and therefore T̂n1(s, y) converges weakly to a mean zero Gaussian process G1(s, F (y)) with

covariance Cov(G1(s, x), G1(t, z)) = (s ∧ t− st)(x ∧ z − xz).

The limit of our test statistic is distribution-free,

sup
s∈[0,1]

sup
y∈R
|T̂n1(s, y)| = sup

s∈[0,1]

sup
z∈[0,1]

|T̂n1(s, F−1(z))| d−→ sup
s∈[0,1]

sup
z∈[0,1]

|G1(s, z)|,

provided f(y) > 0 for all y, and the asymptotic quantiles tabled by Picard (1985) can be used

for the test. This is an extraordinary case in the context of test statistics based on the empirical

distribution function of nonparametric residuals as usual the asymptotic distribution of such

tests depends heavily on the unknown error distribution F as well as on the density f , see

for instance Pardo-Fernández, Van Keilegom and González-Manteiga (2006) or Neumeyer and

Dette (2006) and the asymptotic results in the following sections 2.3, 3.2 and 3.3.

Remark 2.3 The considered test statistic sups,y |T̂n1(s, y)| can additionally detect changes

that occur in the regression function m at some time point i. We consider to this end model

(2.1) under the assumptions of section 2.1 with identically distributed errors, but under the

alternative we assume the existence of some θ ∈ (0, 1) such that for the regression function the

representation

m(Xi) = m1(Xi)I{i ≤ bnθc} +m2(Xi)I{i > bnθc}(2.5)

is valid, where m1 6= m2, but m1 and m2 are both continuous. Under this alternative the kernel

estimator

m̂(x) =
1

n

bnθc∑

i=1

1

h
K(

Xi − x
h

)(m1(Xi) + εi)
1

f̂X(x)
+

1

n

n∑

i=bnθc+1

1

h
K(

Xi − x
h

)(m2(Xi) + εi)
1

f̂X(x)

converges in probability to θm1(x)+(1−θ)m2(x). Hence, F̂bnθc(y) estimates F1(y) =
∫
F (y+(1−

θ){m2(x)−m1(x)})dFX(x) and F̂ ∗n−bnθc(y) estimates F2(y) =
∫
F (y+θ{m1(x)−m2(x)})dFX(x)

in a consistent way. To show the consistency of the test against the fixed alternative (2.5), let

us assume that F1 ≡ F2. Then, under our assumptions and by an application of Theorem 1 in

Pardo-Fernández, Van Keilegom and González-Manteiga (2006), it follows that the functions

(1− θ)(m2−m1) and θ(m1−m2) are equal, and hence m1 equals m2. This shows that F1 ≡ F2

if and only if m1 ≡ m2, from which the consistency can be deduced.
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Remark 2.4 The result of Theorem 2.2 remains valid in models without covariates. Here

residuals are defined as ε̂i = Yi − 1
n

∑n
j=1 Yj and all other notations are as before. The aim

here is to test for a change in the distribution of independent random variables with the same

constant mean. An important application of this type of tests comes from the analysis of stock-

market prices, where it is often assumed that the rates of return (i.e. Ri = (Pi+1−Pi)/Pi, where

Pi is a certain index value at time i) are independent. It is then of interest to test whether,

after normalization to zero mean, the distribution of the Ri’s shows any change in time, caused

by e.g. a major economical or political event. A nice example of this type of data is analyzed

in Hsu (1979), among others.

Remark 2.5 The above results can be used to establish the consistency of an estimator of the

change point θ0. First, note that

θ0 = arg maxs∈[0,1]

(
sup
y∈R
|A(s, y)|

)
,

where

A(s, y) = {s(1− s)}1/2
[1

s
{(s ∧ θ0)F (y) + (s− θ0)+G(y)}

− 1

1− s{(θ0 − s)+F (y) + (1− s ∨ θ0)G(y)}
]

=
{bnsc

n
(1− bnsc

n
)
}1/2{ 1

bnsc

bnsc∑

i=1

P (εi ≤ y)− 1

n− bnsc
n∑

i=bnsc+1

P (εi ≤ y)
}

+ op(1).

Hence, a natural estimator of θ0 is given by

θ̂n = arg maxs∈Jn

(
sup
y∈R
|Ân(s, y)|

)
,

where Ân(s, y) = { bnsc
n

(1− bnsc
n

)}1/2{F̂bnsc(y)− F̂ ∗n−bnsc(y)} and Jn = {k/n : 1 ≤ k ≤ n− 1}. It

can be easily shown that

sup
s

∣∣∣ sup
y
|Ân(s, y)| − sup

y
|A(s, y)|

∣∣∣

≤ sup
s,y
|Ân(s, y)− A(s, y)| = op(1),

where the convergence in probability follows from Proposition 2.1. It can now be proved, using

Theorem 5.7 in van der Vaart (1998, page 45), that θ̂n − θ0 = op(1). Similar remarks apply to

the results in Theorems 2.7, 3.2 and 3.4.

2.3 Testing for a change in covariate

In this section we want to test whether there is a change in the error distribution connected with

or caused by increasing covariate values, i.e. we want to test the null hypothesis of independence

6



of εi and Xi for all i, versus the alternative that there exists a 0 < x0 < 1 such that

ε|X = x ∼ F for all x ≤ x0, and ε|X = x ∼ G 6= F for all x > x0.(2.6)

Define the test statistic now as sup
s∈[0,1]

sup
y∈R
|T̂n2(s, y)|, where

T̂n2(s, y) =
√
nF̂X(s)(1− F̂X(s))

(
1

F̂X(s)
F̂n(s, y)− 1

1− F̂X(s)
F̂ ∗n(s, y)

)

is based on the modified sequential residual based empirical processes,

F̂n(s, y) =
1

n

n∑

i=1

I{Xi ≤ s}I{ε̂i ≤ y}(2.7)

F̂ ∗n(s, y) =
1

n

n∑

i=1

I{Xi > s}I{ε̂i ≤ y},(2.8)

and where F̂X denotes the empirical distribution function of the covariates, i. e.

F̂X(s) =
1

n

n∑

i=1

I{Xi ≤ s}.

In this setting the test statistic is no longer asymptotically distribution-free. We have the

following asymptotic results.

Proposition 2.6 Assume that model (2.1) is valid under the assumptions stated in section 2.1

with errors ε1, . . . , εn that are independent and identically distributed with distribution function

F ∈ D defined in (2.3). Then,

F̂n(s, y) =
1

n

n∑

i=1

I{Xi ≤ s}I{εi ≤ y}+ f(y)
1

n

n∑

i=1

εi

∫ s

0

1

h
K(

Xi − x
h

) dx+ op(
1√
n

)

uniformly with respect to y ∈ R and s ∈ [0, 1].

Theorem 2.7 Assume that model (2.1) is valid under the assumptions stated in section 2.1

with errors ε1, . . . , εn that are independent and identically distributed with distribution function

F ∈ D defined in (2.3). Then it holds that

T̂n2(s, y) =
1√
n

n∑

i=1

(
[I{εi ≤ y} − F (y)][I{Xi ≤ s} − FX(s)]

+f(y)εi

[ ∫ s

0

1

h
K(

Xi − x
h

) dx− FX(s)
])

+ op(1)

uniformly with respect to y ∈ R, s ∈ [0, 1]. T̂n2 converges weakly to a mean zero Gaussian

process G2 with covariance

Cov(G2(s, y), G2(t, z)) = (FX(s) ∧ FX(t)− FX(s)FX(t))
(
F (y ∧ z)− F (y)F (z) + σ2f(y)f(z)

+ f(y)E[ε1I{ε1 ≤ z}] + f(z)E[ε1I{ε1 ≤ y}]
)
.
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The asymptotic covariances of the process T̂n2 depend on the distributions of covariates and

errors, but the asymptotic distribution of the test statistic,

sup
y∈R

sup
s∈[0,1]

|T̂n2(s, y)| = sup
y∈R

sup
t∈[0,1]

|T̂n2(F−1
X (t), y)|,

depends only on the error distribution.

Remark 2.8 When the distribution FX would be known, we do not need to estimate it in the

formula of T̂n2(s, y). As a consequence the term −F (y)F (z) in the asymptotic covariance of

the process G2(s, y) vanishes.

Remark 2.9 The following smooth residual bootstrap can be applied to approximate the

critical values of the test. Based on the original sample (X1, Y1), . . . , (Xn, Yn) build bootstrap

observations

Y B
i = m̂(Xi) + εBi + aZi, i = 1, . . . , n,

where εBi is drawn randomly with replacement from centered residuals ε̂k − 1
n

∑n
j=1 ε̂j, k =

1, . . . , n, a is a small smoothing parameter and Z1, . . . , Zn are independent centered random

variables, independent from the original sample. Denote by F̂B
n , F̂ ∗Bn and T̂Bn2 the analogues

of F̂n, F̂ ∗n and T̂n2, respectively, calculated from the bootstrap sample (X1, Y
B

1 ), . . . , (Xn, Y
B
n ).

Neumeyer (2006) shows that under regularity conditions under the null hypothesis as well as

under fixed alternatives the process
√
n(F̂B

n (1, y) − F̂n(1, y)), y ∈ R, converges conditionally

on the original sample in probability to the limit distribution (under the null hypothesis) of

the process
√
n(F̂n(1, y)− F (y)), y ∈ R. Combining the methods in Neumeyer’s (2006) proofs

with the proofs given in the current work it can be shown that a similar result holds for the

sequential empirical processes. Hence, the critical values of the test statistic sups,y |T̂n2(s, y)|
can be approximated by the quantiles of the conditional distribution of sups,y |T̂Bn2(s, y)| given

the original sample. These quantiles are estimated by resampling b times from the original

sample for some large b and calculating the corresponding order statistics. In a similar way it

can be shown that the critical values of the test statistic sups,y |T̂n1(s, y)| can be approximated

by the above smooth residual bootstrap.

3 The fixed design case

3.1 Model and assumptions

In this section we consider a nonparametric regression model with independent observations

Yi = m(xni) + εi, i = 1, . . . , n,(3.1)

where the distribution of εi is the same for all i, with E(εi) = 0 and Var(εi) = σ2 ∈ (0,∞).

The covariates xn1, . . . , xnn are not random. We assume the existence of a strictly increasing

8



known distribution function FX with support [0, 1] and density fX , such that FX(xni) = g( i
n
),

i = 1, . . . , n, for some one-to-one known permutation function g from [0, 1] onto [0, 1] that is

piecewise linear with slopes 1 or −1 and right-continuous. The function g allows the exper-

imenter to select designs others than the one that starts with the smallest value at the first

time point and which increases the value of the covariate at each time point. Indeed, in or-

der to distinguish the effect of time from the effect of the covariate, it is better not to take

this simple design, but to use instead a non-monotone design, like e.g. the one corresponding

to the function g(s) = sI(s ≤ 0.25) + (s + 0.25)I(0.25 < s ≤ 0.5) + (s + 0.25)I(0.5 < s ≤
0.75) + (s− 0.5)I(0.75 < s), which we will use in the simulations.

Assumptions on the errors, the design density fX , the regression function m, also assumptions

on K and h are as in section 2.1. The estimators f̂X (now deterministic), m̂ and ε̂i are as

before, but replacing the random design points Xi by the fixed xni.

3.2 Testing for a change in time

The definitions of the null and alternative hypotheses, and of the sequential empirical processes

F̂bnsc, F̂ ∗n−bnsc, Fbnsc and F ∗n−bnsc are the same as in section 2.2. The test statistic is given by

T̂n3(s, y) = T̂n1(s, y). In contrast to the random design case, the asymptotic distribution of the

test statistic will in this case not be distribution-free, but depend on the error distribution.

Proposition 3.1 Assume that model (3.1) is valid under the assumptions stated in section 3.1

with errors ε1, . . . , εn that are independent and identically distributed with distribution function

F ∈ D defined in (2.3). Then,

bnsc
n

(
F̂bnsc(y)− F (y)

)
=
bnsc
n

(
Fbnsc(y)− F (y)

)
+ f(y)

1

n

n∑

i=1

εi

∫

S(s)

1

h
K(

xni − x
h

) dx

+ op(
1√
n

)

uniformly with respect to y ∈ R and s ∈ [0, 1], where S(s) = {F −1
X (g(t)) : 0 ≤ t ≤ s}.

Theorem 3.2 Assume that model (3.1) is valid under the assumptions stated in section 3.1

with errors ε1, . . . , εn that are independent and identically distributed with distribution function

F ∈ D defined in (2.3). Then it holds that

T̂n3(s, y) =
1√
n

n∑

i=1

(
I{εi ≤ y}

[
I{ i
n
≤ s} − bnsc

n

]

+ f(y)εi

[ ∫

S(s)

1

h
K(

xni − x
h

)dx− bnsc
n

])
+ op(1)
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uniformly with respect to y ∈ R, s ∈ [0, 1]. T̂n3 converges weakly to a mean zero Gaussian

process G3 with covariance

Cov(G3(s, y), G3(t, z)) = [s ∧ t− st]
(
F (y ∧ z) + σ2f(y)f(z) + f(y)E[ε1I{ε1 ≤ z}]

+f(z)E[ε1I{ε1 ≤ y}]
)
.

3.3 Testing for a change in covariate

The null hypothesis of i. i. d. errors ε1, . . . , εn will now be tested against the alternative that

there exists a 0 < x0 < 1 such that

εi ∼ F for all xni ≤ x0, and εi ∼ G 6= F for all xni > x0.(3.2)

We can use a process similar to T̂n2 defined in section 2.3 but we do not have to estimate FX .

Therefore we define

T̂n4(s, y) =
√
nFX(s)(1− FX(s))

(
1

FX(s)
F̂n(s, y)− 1

1− FX(s)
F̂ ∗n(s, y)

)
,

where F̂n and F̂ ∗n are as in (2.7) and (2.8), respectively (replace Xi by xni).

The proofs of the following results are omitted, as they can be obtained in a somewhat similar

way as those of Propositions 2.6 and 3.1 and Theorems 2.7 and 3.2.

Proposition 3.3 Assume that model (3.1) is valid under the assumptions stated in section 3.1

with errors ε1, . . . , εn that are independent and identically distributed with distribution function

F ∈ D defined in (2.3). Then,

F̂n(s, y) =
1

n

n∑

i=1

I{xni ≤ s}I{εi ≤ y}+ f(y)
1

n

n∑

i=1

εi

∫ s

0

1

h
K(

xni − x
h

) dx+ op(
1√
n

)

uniformly with respect to y ∈ R and s ∈ [0, 1].

Theorem 3.4 Assume that model (3.1) is valid under the assumptions stated in section 3.1

with errors ε1, . . . , εn that are independent and identically distributed with distribution function

F ∈ D defined in (2.3). Then it holds that

T̂n4(s, y) =
1√
n

n∑

i=1

(
I{εi ≤ y}[I{xni ≤ s} − FX(s)]

+f(y)εi

[ ∫ s

0

1

h
K(

xni − x
h

) dx− FX(s)
])

+ op(1)

uniformly with respect to y ∈ R, s ∈ [0, 1]. T̂n4 converges weakly to a mean zero Gaussian

process G4 with covariance

Cov(G4(s, y), G4(t, z)) = (FX(s) ∧ FX(t)− FX(s)FX(t))
(
F (y ∧ z) + σ2f(y)f(z)

+ f(y)E[ε1I{ε1 ≤ z}] + f(z)E[ε1I{ε1 ≤ y}]
)
.

10



Our test statistic is then

sup
y∈R

sup
s∈[0,1]

|T̂n4(s, y)| = sup
y∈R

sup
t∈[0,1]

|T̂n4(F−1
X (t), y)| = sup

y∈R
sup
t∈[0,1]

|T̂n3(t, y)|

and we have the same limit as in Theorem 3.2.

Remark 3.5 In a similar way as for the random design case, we can approximate the critical

values of the test statistics T̂n3 and T̂n4 by using a smooth bootstrap procedure based on

resampling the residuals. As for the random design case, the proof of the asymptotic validity of

this bootstrap procedure can be done by generalizing results in Neumeyer (2006) for sequential

empirical processes.

4 Simulations

Under the null hypothesis of no change-point, we consider the following model : when the

design is random, let

Yi = m(Xi) + εi(4.1)

(i = 1, . . . , n), where Xi follows a uniform distribution on [0, 1], m(Xi) = Xi + 1 and εi follows

a zero mean normal distribution with variance 0.52. For the fixed design case, we replace Xi

by xni = g(i/n), where

g(s) = sI(s ≤ 0.25) + (s+ 0.25)I(0.25 < s ≤ 0.5)

+(s+ 0.25)I(0.5 < s ≤ 0.75) + (s− 0.5)I(0.75 < s).

Next, we specify the distributions F and G, which together with the values of x0 = 0.5 and

θ0 = 0.5 completely determine the alternative hypotheses (2.4), (2.6) and (3.2) :

Model 1 : F = N(0, 0.52), G = N(0, (0.5 + δ)2),

Model 2 : F = N(0, 0.52), G =
1

2
N(−2δ, 0.52) +

1

2
N(2δ, 0.52),

where δ > 0. The simulations are carried out for samples of size 50, 100 and 200. A total of 1000

samples are selected at random, and for each sample b = 1000 random resamples are drawn

(except for n = 200, for which we take 500 samples and b = 500 resamples). To estimate the

regression function m(·) we use a biquadratic kernel function K(u) = (15/16)(1−u2)2I(|u| ≤ 1)

and we determine the bandwidth h by using a cross-validation procedure, i.e. we select the value

of h that minimizes
n∑

i=1

[Yi − m̂(i),h(Xi)]
2,

11



where m̂(i),h(·) is the estimator defined in (2.2), but without using observation i. The criti-

cal values of our test statistics supy,s |T̂nj(s, y)| (j = 1, 2, 3, 4) are obtained my means of the

smoothed bootstrap procedure, proposed in Remarks 2.9 and 3.5. The pilot bandwidth a used

to smooth the bootstrap distribution equals 0.1 and the Zi are standard normally distributed.

For the test statistic supy,s |T̂n1(s, y)| we calculate in addition the critical values based on its

asymptotic distribution.

The results are shown in Figures 1 and 2. The figures show that the level is well respected for

all sample sizes, all four setups and both the asymptotic and the bootstrap procedure (take

δ = 0). The exact values of the rejection probabilities under the null hypothesis are given in

Table 1. Under the alternative hypothesis, both model 1 and 2 demonstrate that the power

increases with increasing sample size and increasing value of δ. Only small differences are

observed between the powers under the four setups. Finally, for the test supy,s |T̂n1(s, y)| the

power obtained from the asymptotic procedure seems to work equally well as the one obtained

from the bootstrap method.
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Figure 1: Rejection probabilities obtained from the asymptotic distribution of the test statistic

supy,s |T̂n1(s, y)| for n = 50 (solid curve), n = 100 (dashed curve) and n = 200 (dotted curve).

The thin curves represent the results for model 1, the thick curves the results for model 2.
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Figure 2: Rejection probabilities obtained from the bootstrap distribution of the test statistics

supy,s |T̂nj(s, y)| (j = 1, 2, 3, 4) for n = 50 (solid curve), n = 100 (dashed curve) and n = 200

(dotted curve). The thin curves represent the results for model 1, the thick curves the results

for model 2. The random (fixed) design case is shown in the first (second) row; the results for

a change in time (covariate) are in the left (right) column.
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Random design Fixed design

n Time Covar Time Covar.

Asym. Boot.

50 .037 .059 .037 .053 .047

100 .049 .060 .043 .047 .058

200 .052 .058 .060 .048 .046

Table 1: Rejection probabilities under the null hypothesis of no change-point.

5 Real data example

We now analyze data concerning the so-called LIDAR technique (which stands for LIght Detec-

tion And Ranging), that uses the reflection of laser-emitted light to detect chemical compounds

in the atmosphere. We consider as response the logarithm of the ratio of received light from

two laser sources, whereas the covariate is the distance traveled before the light is reflected back

to its source. A scatterplot of the data set, consisting of 221 observations, is shown in Figure

3, together with a kernel estimator of the regression function (with bandwidth h = 50 obtained

from cross-validation). See Ruppert, Wand and Carroll (2003) for more details on this data

set. As is mentioned in Huh and Kang (2005), the scatterplot suggests that a change-point

in the error distribution might exist near x = 600. The application of the proposed testing

procedure gives a p-value of 0 (obtained from 1000 bootstrap samples), which strongly suggests

the presence of a change-point. An estimator of the change-point (see Remark 2.5 for details)

is given by x = 586.5. The change-point splits the data set in two new data sets, consisting of

those data points for which the covariate is either smaller or larger than the change-point. We

apply the testing procedure on each of these new data sets, and find non-significant p-values,

indicating that there is only one change-point in the data.
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Figure 3: Scatterplot of the LIDAR data, together with a kernel estimator of the regression

function and the location of the change-point.

A Appendix: Proofs

Proof of Proposition 2.1

Lemma A.1 Under the assumptions of Proposition 2.1 we have

sup
s∈[0,1]

sup
y∈R

∣∣∣ 1
n

n∑

i=1

(
I{ε̂i ≤ y} − I{εi ≤ y} −

∫ 1

0

F (y + m̂(x)−m(x))fX(x) dx+ F (y)
)
I{ i
n
≤ s}

∣∣∣

= op(
1√
n

).

Proof: The proof is similar to but less complicated than the proof of Lemma A.3 in the fixed

design case and is therefore omitted. 2

The assertion of Proposition 2.1 now follows by Taylor’s expansion similar to the proof of

Proposition 2.6. 2
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Proof of Theorem 2.2

Under the null hypothesis from Lemma A.1 and the analogous result for F̂ ∗n−bnsc we obtain

uniformly in s ∈ [0, 1] and y ∈ R

T̂n1(s, y) =
√
n(1− bnsc

n
)
bnsc
n

(F̂bnsc(y)− F (y))−√nbnsc
n

(1− bnsc
n

)(F̂ ∗n−bnsc(y)− F (y))

=
√
n(1− bnsc

n
)
bnsc
n

(
Fbnsc(y)− F (y) +

∫ 1

0

(F (y + m̂(x)−m(x))− F (y))fX(x) dx
)

−√nbnsc
n

(1− bnsc
n

)
(
F ∗n−bnsc(y)− F (y) +

∫ 1

0

(F (y + m̂(x)−m(x))− F (y))fX(x) dx
)

+ op(1)

= Tn1(s, y) + op(1).

2

Proof of Proposition 2.6

Lemma A.2 Under the assumptions of Proposition 2.6 we have

sup
s∈[0,1]

sup
y∈R

∣∣∣1
n

n∑

i=1

I{ε̂i ≤ y}I{Xi ≤ s} − I{εi ≤ y}I{Xi ≤ s}

−
∫ s

0

F (y + m̂(x)−m(x))fX(x) dx+ F (y)FX(s)
∣∣∣ = op(

1√
n

).

Proof: Note that I{ε̂i ≤ y} = I{εi ≤ y + m̂(Xi)−m(Xi)} and consider the empirical process

1√
n

n∑

i=1

(
ϕ(Xi, εi)− E[ϕ(Xi, εi)]

)
(ϕ ∈ F)

indexed by the following class of functions,

F =
{

(X, ε) 7→ I{ε ≤ y + d(X)}I{X ≤ s} − I{ε ≤ y}I{X ≤ s}
∣∣∣ y ∈ R, s ∈ [0, 1], d ∈ C1+δ

1 [0, 1]
}

(see van der Vaart and Wellner, 1996, p. 154, for the definition of C1+δ
1 [0, 1]). F is a product of

the uniformly bounded Donsker classes {(X, ε) 7→ I{X ≤ s}|s ∈ [0, 1]} and {(X, ε) 7→ I{ε ≤
y + d(X)} − I{ε ≤ y}|y ∈ R, d ∈ C1+δ

1 [0, 1]} (see Akritas and Van Keilegom, 2001, Lemma

B.1) and is therefore Donsker as well (Ex. 2.10.8, van der Vaart and Wellner, 1996, p. 192).

The remaining part of the proof follows exactly the lines of the end of the proof of Lemma B.1,

Akritas and Van Keilegom (2001, p. 567), using the observation that

Var
(
I{ε ≤ y + d(X)}I{X ≤ s} − I{ε ≤ y}I{X ≤ s}

)
≤ E

[(
I{ε ≤ y + d(X)} − I{ε ≤ y}

)2]
.

2
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From Lemma A.2 above we have the following expansion, uniformly with respect to s ∈ [0, 1]

and y ∈ R,

F̂n(s, y) = Fn(s, y) +

∫ s

0

(F (y + m̂(x)−m(x))− F (y)) fX(x) dx+ op(
1√
n

)

= Fn(s, y) + f(y)

∫ s

0

(m̂(x)−m(x))fX(x) dx+ op(
1√
n

)

by Taylor’s expansion, the assumption supy |f ′(y)| <∞ and the fact that

sup
x∈[0,1]

(m̂(x)−m(x))2 = Op(
log h−1

nh
) = op(n

−1/2)

by standard results about kernel regression estimators and the bandwidth assumptions. Using

the definition of m̂ we further obtain

F̂n(s, y) = Fn(s, y) + f(y)
1

n

n∑

i=1

εi

∫ s

0

1

h
K(

Xi − x
h

)
fX(x)

f̂X(x)
dx(A.1)

+ f(y)
1

n

n∑

i=1

∫ s

0

1

h
K(

Xi − x
h

)(m(Xi)−m(x))
fX(x)

f̂X(x)
dx+ op(

1√
n

).(A.2)

Next, we want to replace the random denominator f̂X by the true density. To this end we write

sup
s∈[0,1]

∣∣∣ 1
n

n∑

i=1

εi

∫ s

0

1

h
K(

Xi − x
h

)
fX(x)

f̂X(x)
dx− 1

n

n∑

i=1

εi

∫ s

0

1

h
K(

Xi − x
h

) dx
∣∣∣

≤
∫ 1

0

|f̂X(x)− fX(x)| dx sup
x∈[0,1]

∣∣∣ 1
n

n∑

i=1

εi
1

h
K(

Xi − x
h

)
1

f̂X(x)

∣∣∣.

The second factor is of the type supx |ĝ(x) − g(x)| where ĝ denotes the Nadaraya-Watson

estimator in a special regression model yi = g(Xi)+εi with regression function g ≡ 0. Therefore

for the whole product term we obtain the rate Op(log(h−1)n−1h−1) = op(n
−1/2). In a similar

way we replace the random denominator in (A.2) by the true density. Next, we will prove

sup
s∈[0,1]

∣∣∣ 1√
n

n∑

i=1

∫ s

0

1

h
K(

Xi − x
h

)(m(Xi)−m(x)) dx
∣∣∣ = op(1).(A.3)

One can show similar to but less complicated than the proof of Theorem 2.7 that the process

1√
n

n∑

i=1

(ϕn,s(Xi)− E[ϕn,s(Xi)]) , s ∈ [0, 1],

converges weakly to a Gaussian process, where ϕn,s(Xi) =
∫ s

0
1
h
K(Xi−x

h
)(m(Xi) − m(x)) dx.

To prove (A.3) it remains to show that for fixed s ∈ [0, 1], E[ϕn,s(Xi)] = o(n−1/2) and

Var(ϕn,s(Xi)) = o(1). The details are omitted for the sake of brevity. We now obtain

F̂n(s, y) = Fn(s, y) + f(y)
1

n

n∑

i=1

εi

∫ s

0

1

h
K(

Xi − x
h

) dx+ op(
1√
n

)

uniformly with respect to s ∈ [0, 1] and y ∈ R. 2
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Proof of Theorem 2.7

Using the definition of T̂n2 and Proposition 2.6 we have the following expansion, uniformly with

respect to s ∈ [0, 1], y ∈ R:

T̂n2(s, y) = (1− F̂X(s))
1√
n

n∑

i=1

(
I{Xi ≤ s}I{εi ≤ y}+ f(y)εi

∫ s

0

1

h
K(

Xi − x
h

) dx
)

− F̂X(s)
1√
n

n∑

i=1

(
I{Xi > s}I{εi ≤ y}+ f(y)εi

∫ 1

s

1

h
K(

Xi − x
h

) dx
)

+ op(1)

=
1√
n

n∑

i=1

(
I{εi ≤ y}[(1− FX(s))I{Xi ≤ s} − FX(s)I{Xi > s}]

+ f(y)εi

[
(1− FX(s))

∫ s

0

1

h
K(

Xi − x
h

) dx− FX(s)

∫ 1

s

1

h
K(

Xi − x
h

) dx
])

+
√
n
(
FX(s)− F̂X(s)

)( 1

n

n∑

i=1

[
I{Xi ≤ s}I{εi ≤ y}+ I{Xi > s}I{εi ≤ y}

+ f(y)εi

∫ s

0

1

h
K(

Xi − x
h

) dx+ f(y)εi

∫ 1

s

1

h
K(

Xi − x
h

) dx
])

+ op(1).

Inserting the definition of F̂X(s) we further obtain

T̂n2(s, y) =
1√
n

n∑

i=1

(
I{εi ≤ y}[I{Xi ≤ s} − FX(s)] + f(y)εi

[ ∫ s

0

1

h
K(

Xi − x
h

) dx− FX(s)
]

−
( 1

n

n∑

j=1

I{εj ≤ y}+ f(y)
1

n

n∑

j=1

εj

)
[I{Xi ≤ s} − FX(s)]

)
+ op(1).

Furthermore, one can show that n−1
∑n

j=1 I{εj ≤ y}+ f(y)n−1
∑n

j=1 εj can be replaced by its

expectation F (y), and therefore,

T̂n2(s, y) =
1√
n

n∑

i=1

(
[I{εi ≤ y} − F (y)][I{Xi ≤ s} − FX(s)]

+f(y)εi

[ ∫ s

0

1

h
K(

Xi − x
h

) dx− FX(s)
]

+ op(1).

To show weak convergence of the process we write the main term of T̂n2(s, y) as

1√
n

n∑

i=1

(
ϕn,s,y,f(y)(Xi, εi)− E[ϕn,s,y,f(y)(Xi, εi)]

)
,

where the functions are defined by

ϕn,s,y,z(X, ε) = (I{ε ≤ y} − F (y))(I{X ≤ s} − FX(s)) + zε
(∫ s

0

1

h
K(

X − x
h

) dx− FX(s)
)

18



(the n-dependence comes from h = hn). The error density is bounded by assumption. Let

B > 0 satisfy f(y) ≤ B for all y ∈ R. We apply Theorem 2.11.23 in van der Vaart and Wellner

(1996, p. 221) to the sequence of function classes

Fn = {ϕn,s,y,z | s ∈ [0, 1], y ∈ R, z ∈ [0, B]}.

The envelope Φn of the class Fn is uniformly bounded by a function Φenv(X, ε) = 1 + cε for

some constant c. The first two conditions of (2.11.21) in van der Vaart and Wellner (1996,

p. 220) are fulfilled because E[(Φenv(X1, ε1))
2] < ∞. For the last condition in (2.11.21) we

calculate

E
[
(ϕn,s,y,z(X1, ε1)− ϕn,s′,y′,z′(X1, ε1))2

]

= E
[(

(I{ε1 ≤ y} − F (y)− I{ε1 ≤ y′}+ F (y′))(I{X1 ≤ s} − FX(s))

+ (I{ε1 ≤ y′} − F (y′))(I{X1 ≤ s} − FX(s)− I{X1 ≤ s′}+ FX(s′))

+ ε1(z − z′)
[ ∫ s

0

1

h
K(

X1 − x
h

) dx− FX(s)
]

+ ε1z
′
[ ∫ s

0

1

h
K(

X1 − x
h

) dx− FX(s)−
∫ s′

0

1

h
K(

X1 − x
h

) dx+ FX(s′)
])2]

.

For s ≤ s′ we have

∫ 1

0

(∫ s′

s

1

h
K(

u− x
h

) dx
)2

du ≤
∫ s′

s

∫ 1

0

1

h
K(

u− x
h

) du dx = O(1)(s′ − s),

and therefore we can write

E
[
(ϕn,s,y,z(X1, ε1)− ϕn,s′,y′,z′(X1, ε1))

2
]
≤ Cρ((s, y, z), (s′, y′, z′)),

where C is some constant independent of n, s, y, z, s′, y′, z′ and we define the semimetric ρ on

T = [0, 1]× R× [0, B] by

ρ((s, y, z), (s′, y′, z′)) = |s− s′|+ |F (y)− F (y′)|+ |z − z′|.(A.4)

T is a totally bounded semimetric space with respect to ρ and condition (2.11.21) is satisfied.

Next we show that the bracketing condition given in Theorem 2.11.23 in van der Vaart and

Wellner (1996) is fulfilled, that is
∫ δn

0
(logN[ ](ε,Fn, L2(P )))1/2dε converges to zero for every

δn ↘ 0. To this end, let ε > 0. We choose grids −∞ = y1 < y2 < . . . < ym = ∞,

0 = s1 < s2 < . . . < sM = 1 and 0 = z1 < z2 < . . . < zL = B such that F (yj)− F (yj−1) < ε2,

sk − sk−1 < ε2 and zl − zl−1 < ε2. The number of grid points are m = O(ε−2), M = O(ε−2)

and L = O(ε−2). We define N[ ](ε,Fn, L2(P )) = O(ε−6) brackets for the class Fn by [FL
j,k,l, F

U
j,k,l]

where

FL
j,k,l(X, ε) = (I{ε ≤ yj−1} − F (yj))(I{X ≤ sj−1} − FX(sj))
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+ zl−1ε
(∫ sj−1

0

1

h
K(

X − x
h

) dx− FX(sj)
)

FU
j,k,l(X, ε) = (I{ε ≤ yj} − F (yj−1))(I{X ≤ sj} − FX(sj−1))

+ zlε
(∫ sj

0

1

h
K(

X − x
h

) dx− FX(sj−1)
)
.

Each bracket has L2–norm smaller than ε which can be shown analogously to the verification

of condition (2.11.21) above. The brackets cover Fn by construction. Note that the brackets

depend on n but the number of brackets does not. Therefore the bracketing integral converges

to zero for every δn ↘ 0. From Theorem 2.11.23 we can deduce weak convergence of the process

provided the sequence of covariances

E
[
ϕn,s,y,z(X1, ε1)ϕn,s′,y′,z′(X1, ε1)

]
− E

[
ϕn,s,y,z(X1, ε1)

]
E
[
ϕn,s′,y′,z′(X1, ε1)

]

= E
[
(I{ε1 ≤ y} − F (y))(I{ε1 ≤ y′} − F (y′))(I{X1 ≤ s} − FX(s))(I{X1 ≤ s′} − FX(s′))

]

+ σ2zz′E
[( ∫ s

0

1

h
K(

X1 − x
h

) dx− FX(s)
)(∫ s′

0

1

h
K(

X1 − x
h

) dx− FX(s′)
)]

+ zE[ε1(I{ε1 ≤ y′} − F (y′))]E
[( ∫ s

0

1

h
K(

X1 − x
h

) dx− FX(s)
)

(I{X1 ≤ s′} − FX(s′))
]

+ z′E[ε1(I{ε1 ≤ y} − F (y))]E
[( ∫ s′

0

1

h
K(

X1 − x
h

) dx− FX(s′)
)

(I{X1 ≤ s} − FX(s))
]

converges pointwise (for n→∞, h→ 0). This is fulfilled because, for example,

E
[ ∫ s

0

1

h
K(

X1 − x
h

) dx
]

=

∫ 1

0

∫ s

0

1

h
K(

u− x
h

) dx du

=

∫ s∧(1−h)

h

∫ (1−x)/h

−x/h
K(v) dv dx+O(h) =

∫ s

0

dx+ o(1) = s+ o(1),

because for h→ 0 we have uniformly in x ∈ (h, s∧ (1−h)) that −x/h ≤ −1 and (1−x)/h ≥ 1.

Note that in the special case z = f(y), z′ = f(y′) the sequence of covariances converges to

Cov(G2(s, y), G2(s
′, y′)) defined in Theorem 2.7. Weak convergence of the process T̂n2(s, y) can

be deduced from considering the subclass of Fn that is defined by z = f(y). 2

Proof of Proposition 3.1

Lemma A.3 Under the assumptions of Proposition 3.1 we have

sup
s∈[0,1]

sup
y∈R

∣∣∣ 1
n

n∑

i=1

(
I{ε̂i ≤ y} − I{εi ≤ y} − F (y + m̂(xni)−m(xni)) + F (y)

)
I{ i
n
≤ s}

∣∣∣ = op(
1√
n

).

Proof: We are going to apply Theorem 2.11.9 in van der Vaart and Wellner (1996, p. 211) to

the process
n∑

i=1

Zo
ni(ϕ) =

n∑

i=1

(Zni(ϕ)− E[Zni(ϕ)]), ϕ = (y, d, s) ∈ F ,
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where F = {(y, d, s) | y ∈ R, d ∈ C1+δ
1 [0, 1], s ∈ [0, 1]} and

Zni(ϕ) = n−1/2
(
I{εi ≤ y + d(xni)} − I{εi ≤ y}

)
I{ i
n
≤ s}.

We have m̂ −m ∈ C1+δ
1 [0, 1] with probability converging to one by Proposition 3 and Lemma

B.1 in Akritas and Van Keilegom (2001). First note that F is a totally bounded semimetric

space with semimetric ρ defined by

ρ((y, d, s), (y′, d′, s′)) = max
{
D(y, y′), sup

x∈[0,1]

|d(x)− d′(x)|, |s− s′|
}
,(A.5)

where

D(y, y′) = sup
x∈[0,1]

sup
d∈C1+δ

1 [0,1]

|F (y + d(x))− F (y′ + d(x))|.

We postpone the verification that (F , ρ) is a totally bounded semimetric space to the end of

this proof.

Because supf∈F |Zni(f)| ≤ n−1/2 the first condition in Theorem 2.11.9 in van der Vaart and

Wellner (1996, p. 211) is fulfilled, that is

n∑

i=1

E
[

sup
f∈F
|Zni(f)|I{sup

f∈F
|Zni(f)| > η}

]
= o(1)

for all η > 0. For the verification of the second condition we assume δn = o(1), ϕ = (y, d, s),

ϕ′ = (y′, d′, s′) and write

sup
ρ(ϕ,ϕ′)<δn

n∑

i=1

(Zni(ϕ)− Zni(ϕ′))2

≤ sup
ρ(ϕ,ϕ′)<δn

1

n

n∑

i=1

(
8E[(I{εi ≤ y + d(xni)} − I{εi ≤ y + d′(xni)})2]

+ 8E[(I{εi ≤ y + d′(xni)} − I{εi ≤ y′ + d′(xni)})2]

+ 4E[(I{εi ≤ y} − I{εi ≤ y′})2] + 8E[(I{ i
n
≤ s} − I{ i

n
≤ s′})2]

)

≤ 8 sup
ρ(ϕ,ϕ′)<δn

1

n

n∑

i=1

(
|F (y + d(xni))− F (y + d′(xni))|+ |F (y + d′(xni))− F (y′ + d′(xni))|

+ |F (y)− F (y′)|+ bnsc − bns
′c

n

)

≤ 8
(

sup
y∈R

f(y) sup
ρ(ϕ,ϕ′)<δn

1

n

n∑

i=1

|d(xni)− d′(xni)|+ 2δn + δn +
1

n

)

= O(δn +
1

n
) = o(1).
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Next we verify the third condition in the aforementioned theorem, that is,

∫ δn

0

(logN[ ](ε,F , Ln2))1/2dε −→ 0 for all δn ↘ 0.(A.6)

In order to calculate the bracketing number N[ ](ε,F , Ln2 ) for a fixed ε > 0 we partition F in

the following way into subregions Fmkj such that

n∑

i=1

E
[

sup
ϕ,ϕ′∈Fmkj

|Zni(ϕ)− Zni(ϕ′)|2
]

≤ 2n−1

n∑

i=1

E
[

sup
ϕ,ϕ′∈Fmkj

∣∣∣I{εi ≤ y + d(xni)}I{
i

n
≤ s} − I{εi ≤ y′ + d′(xni)}I{

i

n
≤ s′}

∣∣∣
2]

(A.7)

+ 2n−1
n∑

i=1

E
[

sup
ϕ,ϕ′∈Fmkj

∣∣∣I{εi ≤ y}I{ i
n
≤ s} − I{εi ≤ y′}I{ i

n
≤ s′}

∣∣∣
2]

(A.8)

≤ Cε2

for some constant C [where ϕ = (y, d, s), ϕ′ = (y′, d′, s′)]. In the following we concentrate

on (A.7) [(A.8) is treated similarly]. To this end let dLm ≤ dUm, m = 1, . . . ,M , be M =

O(exp(κε−2/(1+δ))) brackets for C1+δ
1 [0, 1] with length ε2 with respect to the supremum norm (see

van der Vaart and Wellner, 1996, Th. 2.7.1 and Cor. 2.7.2). Then define for each m = 1, . . . ,M ,

FL
m(y) = n−1

∑n
i=1 P (ε1 ≤ y + dLm(xni)) and let yLmk (k = 1, . . . , K = O(ε−2)) partition the

line in segments such that F L
m(yLmk) − FL

m(yLm,k−1) < ε2. Define yUmk in a similar way using

FU
m(y) = n−1

∑n
i=1 P (ε1 ≤ y+dUm(xni)). For the brackets of [0, 1] we have to consider two cases.

First let ε2 ≥ n−1. Then we divide [0, 1] into J = O(ε−2) subintervals [sj, sj+1) of length less or

equal to ε2. Now define

Fmkj = {(y, d, s) | ỹLmk ≤ y ≤ ỹUmk, d
L
m ≤ d ≤ dUm, sj ≤ s < sj+1}

where ỹLmk = yLmk and ỹUmk is the smallest of the yUmk which is larger than or equal to yLm,k+1. We

obtain as upper bound for (A.7),

2n−1
n∑

i=1

E
[
I{εi ≤ ỹUmk + dUm(xni)} − I{εi ≤ ỹLmk + dLm(xni)}

]

+ 2n−1

n∑

i=1

I{ i
n
< sj+1} − I{

i

n
≤ sj}

= 2(FU
m(ỹUmk)− FL

m(ỹLmk)) + 2(n−1 + ε2)

≤ 2
(
|FU
m(ỹUmk)− FU

m(ỹLm,k+1)|+ |FU
m(ỹLm,k+1)− FL

m(ỹLm,k+1)|

+ |FL
m(ỹLm,k+1)− FL

m(ỹLmk)|+ (n−1 + ε2)
)

= O(ε2)
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where the last equality follows from n−1 ≤ ε2, the definitions of ỹLmk, ỹ
U
mk and the following

consideration,

sup
y∈R
|FU
m(y)− FL

m(y)| ≤ sup
y∈R

n−1
n∑

i=1

|F (y + dUm(xni))− F (y + dLm(xni))|

≤ sup
y∈R

f(y) sup
x∈[0,1]

|dUm(x)− dLm(x)| = O(ε2).

In the second case, i. e. ε2 < n−1 we consider brackets [s̃j, s̃j+1) where s̃j < s̃j+1 and {s̃j | j =

1, . . . , J̃} = {s̃j | j = 1, . . . , J̃} ∪ { k
n
| k = 1, . . . , n}. In this case we have J̃ = O(ε−2 + n) =

O(ε−2) subintervals and

n−1

n∑

i=1

I{ i
n
< sj+1} − I{

i

n
≤ sj} = 0

always. The rest of the derivation for (A.7) is as above. In either case the bracketing number

MKJ resp. MKJ̃ does not depend on n and is of the order O(ε−4 exp(κε−2/(1+δ))). Therefore,

(A.6) is fulfilled.

The convergence of the marginal distribution can be shown easily using Cramér-Wold’s device

and Lindeberg’s condition. From the proof of Theorem 2.11.9 in van der Vaart and Wellner

(1996, p. 220) follows asymptotic equicontinuity, that is

P
(

sup
ρ(ϕ,ϕ′)<δn

∣∣∣
n∑

i=1

(Zo
ni(ϕ)− Zo

ni(ϕ
′))
∣∣∣ > ε

)
−→ 0

for all δn ↘ 0. Our assertion can be deduced for ϕ = (y, m̂−m, s), ϕ′ = (y, 0, s).

It remains to show that (F , ρ) is a totally bounded semimetric space. It is easy to see that ρ

defined in (A.5) is a semimetric. To prove that F is totally bounded we show that for all ε > 0

the bracketing number N[ ](ε,F , ρ) is finite (see van der Vaart and Wellner, 1996, p. 84). To

this end we choose similar as before subintervals [sj, sj+1], j = 1, . . . , J = O(ε−1), of length less

or equal to ε for [0, 1] and brackets dLm ≤ dUm, m = 1, . . . ,M = O(exp(κε−1/(1+δ))), of length ε

with respect to the supremum norm. Then, for fixed j and m let yjmk, k = 1, . . . , K = O(ε−1),

partition the line in intervals of probability less or equal to ε with respect to the probability

measure Fjm(y) = P (ε1 ≤ y + dLm(sj)). Now, let y0, y1, . . . , yL, L = O(ε−2 exp(κε−1/(1+δ))),

denote all ordered yjmk values with y0 = −∞, yL =∞. Then, for all ` = 0, . . . , L− 1,

D(y`, y`+1) = sup
x∈[0,1]

sup
d∈C1+δ

1 [0,1]

|F (y`+1 + d(x))− F (y` + d(x))|

≤ max
j=1,...,J−1

sup
x∈[sj ,sj+1]

max
m=1,...,M−1

sup
dLm≤d≤dUm

{
|F (y`+1 + d(x))− F (y`+1 + d(sj))|

+ |F (y`+1 + d(sj))− F (y`+1 + dLm(sj))|+ |F (y`+1 + dLm(sj))− F (y` + dLm(sj))|
+ |F (y` + dLm(sj))− F (y` + d(sj))|+ |F (y` + d(sj))− F (y` + d(x))|

}
.
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For some k, y` and y`+1 belong to the same interval [yjmk, yjm,k+1] and therefore, |F (y`+1 +

dLm(sj)) − F (y` + dLm(sj))| ≤ ε. Further, supx∈[0,1] |d′(x)| ≤ 1 by definition of C1+δ
1 [0, 1]. We

obtain

D(y`, y`+1) ≤ max
j=1,...,J−1

sup
x∈[sj ,sj+1]

max
m=1,...,M−1

sup
dLm≤d≤dUm

{
2 sup
y∈R

f(y)|x− sj|

+ 2 sup
y∈R

f(y) sup
x∈[0,1]

|d(x)− dLm(x)|+ ε
}

≤ cε

for some constant c. This proves the bracketing number to be bounded. 2

From the expansion in Lemma A.3 we obtain by a Taylor expansion and the definition of m̂

similar to the proof of Proposition 2.6,

bnsc
n

(
F̂bnsc(y)− F (y)

)
=

1

n

bnsc∑

i=1

(I{εi ≤ y} − F (y)) +
1

n

bnsc∑

i=1

(F (y + m̂(xni)−m(xni))− F (y))

+ op(
1√
n

)

=
bnsc
n

(
Fbnsc(y)− F (y)

)
+ f(y)

1

n

n∑

j=1

εj

( 1

n

bnsc∑

i=1

1

h
K(

xni − xnj
h

)
1

fX(xni)

)

+ op(
1√
n

)

uniformly in y ∈ R and s ∈ [0, 1]. For the deterministic sum we obtain via a Riemann-sum-

approximation

1

n

bnsc∑

i=1

1

h
K(

xni − x
h

)
1

fX(xni)
=

1

n

n∑

i=1

1

h
K
(F−1

X (g( i
n
))− x

h

) 1

fX(F−1
X (g( i

n
)))
I{ i
n
≤ s}

=

∫ 1

0

1

h
K
(F−1

X (g(t))− x
h

) 1

fX(F−1
X (g(t)))

I{t ≤ s} dt (1 + o(1))

=

∫

S(s)

1

h
K
(u− x

h

)
du (1 + o(1)),

uniformly with respect to s ∈ [0, 1] and the assertion of Proposition 3.1 follows. 2

Proof of Theorem 3.2

The expansion of T̂n3 follows from Proposition 3.1 and the analogous result for F̂ ∗n−bnsc. To

show weak convergence we write the process as T̂n3(s, y) =
∑n

i=1 Zni(s, y) where

Zni(s, y) =
1√
n

(
I{εi ≤ y}

[
I{ i
n
≤ s} − bnsc

n

]
+ f(y)εi

[ ∫

S(s)

1

h
K(

xni − x
h

)dx− bnsc
n

])
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but similar to the proof of Theorem 2.7 we first consider the process
∑n

i=1 Z
∗
ni(s, y, z) where

Z∗ni(s, y, z) =
1√
n

(
I{εi ≤ y}

[
I{ i
n
≤ s} − bnsc

n

]
+ zεi

[ ∫

S(s)

1

h
K(

xni − x
h

)dx− bnsc
n

])

and (s, y, z) ∈ T = [0, 1]× R× [0, B]. T is a totally bounded semimetric space with respect to

the semimetric ρ defined by

ρ((s, y, z), (s′, y′, z′)) = max(|s− s′|, |g(s)− g(s′)|) + |F (y)− F (y′)|+ |z − z′|.(A.9)

We apply Theorem 2.11.9 in van der Vaart and Wellner (1996, p. 211). Because we have the

bound

|Z∗ni(s, y, z)| ≤ n−1/2(1 + cεi)

(uniformly in n, s, y, z) the first condition of this theorem, that is

n∑

i=1

E
[

sup
(s,y,z)∈T

|Z∗ni(s, y, z)|I{ sup
(s,y,z)∈T

|Z∗ni(s, y, z)| > η}
]
−→ 0 for every η > 0,

follows from

n1/2E
[
|ε1|I{|ε1| > ηn1/2}

]
=

1

η
E
[
ηn1/2|ε1|I{|ε1| > ηn1/2}

]

≤ 1

η
E
[
ε2

1I{|ε1| > ηn1/2}
]
.

The last term converges to zero for n → ∞ for all η > 0 because E[ε2
1] < ∞. For the second

condition in the aforementioned theorem we bound for some constant C > 0

sup
δn

n∑

i=1

E
[
(Z∗ni(s, y, z)− Z∗ni(s′, y′, z′))2

]

≤ C sup
δn,s>s′

[
|F (y)− F (y′)|+ 1

n

n∑

i=1

∣∣∣I{ i
n
≤ s} − I{ i

n
≤ s′}

∣∣∣

+
(bnsc

n
− bns

′c
n

)2

+ (z − z′)2 +
1

n

n∑

i=1

(∫

U(s,s′)

1

h
K(

xni − x
h

) dx
)2]

≤ O(δn) + C sup
δn,s>s′

[ |bnsc − bns′c|
n

+
1

n

n∑

i=1

( ∫

U(s,s′)

1

h
K(

xni − x
h

) dx
)2]

where U(s, s′) = {F−1
X (g(t)) : s′ ≤ t ≤ s} for s > s′, δn ↘ 0 and we used the notation

supδn = supρ((s,y,z),(s′,y′,z′))<δn . Take δn small enough, namely smaller than one half of the

smallest jump size of the function g, to make sure that the function g does not make any jump

in between s and s′. Restrict attention for simplicity to the cases where s and s′ belong to a

line segment with slope 1 (the case of slope −1 can be considered analogously). In that case
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s > s′ implies g(s) > g(s′). We further have sup|s−s′|<δn |bnsc − bns′c|/n = O(max(δn, n
−1))

and by a change of variable in the integral,

sup
δn,s>s′

1

n

n∑

i=1

(∫

U(s,s′)

1

h
K(

xni − x
h

) dx
)2

≤ sup
δn,s>s′

1

n

n∑

i=1

(
sup

u∈[−1,1]

|K(u)|
[{F−1

X (g(s))− xni
h

∧ 1
}
−
{F−1

X (g(s′))− xni
h

∨ (−1)
}]

×I{F−1
X (g(s))− xni > −h}I{F−1

X (g(s′))− xni < h}
)2

= O(1) sup
δn,s>s′

1

n

n∑

i=1

[F−1
X (g(s))− F−1

X (g(s′))

h
∧ 2
]2

×I{FX(F−1
X (g(s′))− h) < g(

i

n
) < FX(F−1

X (g(s)) + h)}

= O(min(
δn
h
, 1)2 max(δn, h, n

−1)) = O(min(
δn
h
, 1) max(δn, h)) = O(δn),

where the last line follows from a first order Taylor expansion and our assumption that the

density fX is bounded and bounded away from zero. All in all the second condition in Theorem

2.11.9, van der Vaart and Wellner (1996, p. 211), that is

sup
δn

n∑

i=1

E
[
(Z∗ni(s, y, z)− Z∗ni(s′, y′, z′))2

]
−→ 0 for all δn ↘ 0,

is satisfied. It remains to show the third condition, that is,

∫ δn

0

(logN[ ](ε,T, Ln2 ))1/2dε −→ 0 for all δn ↘ 0.(A.10)

In order to calculate the bracketing number N[ ](ε,T, Ln2 ) for a fixed ε > 0 we partition T in the

following way into subregions Tjkl = [sj, sj+1)× [yk, yk+1)× [zl, zl+1) such that

n∑

i=1

E
[

sup
(s,y,z),

(s′,y′,z′)∈Tjkl

|Z∗ni(s, y, z)− Z∗ni(s′, y′, z′)|2
]
≤ ε2.

To this end we have to consider two cases. First let ε2 ≥ n−1. Then we divide [0, 1] into J =

O(ε−2) subintervals [sj, sj+1) such that max(|sj−sj+1|, |g(sj)−g(sj+1−)|) ≤ ε2, divide [0, B] into

O(ε−2) subintervals [zl, zl+1) of length less or equal to ε2 and divide R into O(ε−2) subintervals

[yk, yk+1) such that |F (yk)−F (yk+1)| ≤ ε2. With this definition we have ρ((s, y, z), (s′, y′, z′)) ≤
ε2 for all (s, y, z), (s′, y′, z′) ∈ Tjkl. It is then possible to use the monotonicity of each term, for

instance,

1

n

n∑

i=1

E
[

sup
yk≤y,y′≤yk+1

|I{εi ≤ y} − I{εi ≤ y′}|
]

=
1

n

n∑

i=1

E[I{εi ≤ yk+1} − I{εi ≤ yk}]

= F (yk+1)− F (yk) ≤ ε2,
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to yield with analogous calculations as above (for the verification of the second condition)

n∑

i=1

E
[

sup
(s,y,z),

(s′,y′,z′)∈Tjkl

|Z∗ni(s, y, z)− Z∗ni(s′, y′, z′)|2
]

= O(ε2) +O(ε2 + n−1) = O(ε2).

For the second case, that is ε2 < n−1, we choose subintervals [zl, zl+1) of [0, B] and [yk, yk+1)

of R as before, but divide [0, 1] into J̃ = O(ε−2) + n = O(ε−2) subintervals [s̃j, s̃j+1), where

{s̃j | 0 ≤ j ≤ J̃} = {sj | 0 ≤ j ≤ J} ∪ { k
n
| 1 ≤ k ≤ n}. With this definition we obtain, for

instance,

1

n

n∑

i=1

E
[

sup
s̃j≤s,s′<s̃j+1

|I{ i
n
≤ s} − I{ i

n
≤ s′}|2

]
≤ 1

n

n∑

i=1

I{i < ns̃j+1} − I{i ≤ ns̃j}

= O(ε2).

In both cases the bracketing number N[ ](ε,T, Ln2 ) = O(ε−6) does not depend on n and condition

(A.10) is valid. To obtain the weak convergence of the process by Theorem 2.11.9, van der Vaart

and Wellner (1996, p. 211), it remains to verify the convergence of the marginals. Applying

Cramér Wold’s device we consider the random sequence Zi =
∑k

j=1 ajZni(sj, yj) for constants

aj ∈ R, sj ∈ [0, 1], yj ∈ R (j = 1, . . . , k) and show Lindeberg’s condition, that is

n∑

i=1

E
[
Z2
i I{|Zi| > δ}

]
≤ (

k∑

j=1

|aj|)2E
[
(1 + cε1)2I

{
|1 + cε1| >

√
nδ/

k∑

j=1

|aj|
}]

= o(1).

The proof is finished by a straightforward calculation of the covariances by using Riemann-

sum-approximations like in the proof of Proposition 3.1, and by noting that
∫

S(s)

1

h
K(

xni − x
h

) dx = I(xni ∈ S(s)) + o(1)

= I
(
g(
i

n
) = g(t) for some t ≤ s

)
+ o(1) = I

( i
n
≤ s
)

+ o(1).

2
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M. Csörgö, B. Szyszkowicz (2000). Weighted quantile processes and their applications to

change-point analysis. Stochastic models (Ottawa, ON, 1998), 67–84, CMS Conf. Proc.,

26, Amer. Math. Soc., Providence, RI.
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