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Summary Motivated by the problem of the detection of a change point in the mean structure

of yield curves, we introduce several methods to test the null hypothesis that the mean structure

of a time series of curves does not change. The mean structure does not refer merely to the

level of the curves, but also to their range and other aspects of their shape, most prominently

concavity. The performance of the tests depends on whether possible break points in the error

structure, which refers to the random variability in the aspects of the curves listed above, are

taken into account or not. If they are not taken into account, then an existing change point

in the mean structure may fail to be detected with a large probability. The paper contains

a complete asymptotic theory, a simulation study and illustrative data examples, as well as

details of the numerical implementation of the testing procedures.

Keywords: Change point, Functional time series, Yield curve.

1. INTRODUCTION

Recent advances in yield curve modelling have brought to the fore a class of functional data

models, which we call functional factor models. In this paper, we propose several methods for

testing the hypothesis of the existence of change points in such models. While there has been

extensive research on yield curve prediction, modelling via regime switching processes and even

change point estimation, we are not aware of any previous research concerned with a change

point testing problem.

Yield curve modelling has been an important direction of economic research over many

decades. A solid account of the classical theory related to the so-called affine models is presented

in Chapter 8 of Campbell et al. (1997); Filipović (2009) presents a continuous finance theory

perspective. An approach that has gained wide acceptance in recent years is the Nelson–Siegel

C© 2016 Royal Economic Society. Published by John Wiley & Sons Ltd, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main
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Change point tests in functional factor models 87

Figure 1. US yield curves: 8 July 2008 to 28 November 2008.

model and its dynamic modification; see Diebold and Rudebusch (2013). This paper is concerned

with the detection of change points in models that generalize the dynamic Nelson–Siegel model.

The most direct motivation for our research comes from the recent work of Chen and Niu (2014)

who show that accounting for possible change points in the term structure improves yield curve

predictions. The purpose of this work is to develop formal tests of significance for the existence

of change points in a general class of functional models for yield curves. We now elaborate on

our contribution.

Denote by tj , 1 ≤ j ≤ J , the maturities ordered from the shortest (one month) to the longest

(10 years). The general form of the dynamic Nelson–Siegel model can be written as

Xi(tj ) =
K∑

k=1

βi,kfk(tj ) + εi(tj ). (1.1)

The index i refers to time periods at which the curves are available; it typically indexes days

or months. The functions fk are postulated to have a specific parametric form; in the standard

model, K = 3 functions are used. The function f1 is equal to one, and its weight βi,1 represents

the general level of yields in period i. The function f2 is decreasing, and for negative βi,2 models

the increase of yields with maturity. The function f3 has a hump at maturities of two to three

years, and models the curvature of the yield curve over such maturities; detailed formulae are

presented in Section 5. The attribute ‘dynamic’ stems from the fact that the weights βi,k are time

series; in a static model, βi,k = βk does not depend on period i. The objective of this work is to

develop significance tests whose null hypothesis is that the mean structure of the K series {βi,k} is

constant over a time period under consideration against the alternative that it changes at unknown

change points. Our approach allows the error structure to change at pre-specified points. Precise

definitions of the mean and error structures are given in Section 2. Before proceeding further,

we give an illustrative example. Figure 1 shows 100 yield curves centred at the height of the

financial crisis of 2008; the central time point corresponds to the collapse of Lehman Brothers.

Visual inspection shows the typical shape of the curves, which we quantify as the mean structure,

changed in mid-September. If we apply our test assuming that the error structure is the same over

the sample period, then the test does not reject the null hypothesis that the mean structure has

not changed. If, however, the error structure is allowed to change on 16 September, then the test

rejects the null hypothesis with a very high significance.

C© 2016 Royal Economic Society.
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88 P. Bardsley et al.

This example illustrates the need for flexibility in modelling the error structure when testing

for change points in the mean structure. The pre-specified break points in the error structure

reflect exogenous information. In Figure 1, the mean structure is reflected by the general level

and range of the curves, and the error structure by the ‘wiggliness’ in the top, middle and bottom

parts of the curves. The errors, volatility, of the curves increased after the middle of the sample.

The change in mean structure is fairly obvious in Figure 1; this period is used to emphasize a

main message of this paper that without taking instability in the error structure into account, the

decision on the existence of change points in the mean structure can be incorrect.

Similar observations have been made and suitably quantified in the context of scalar time

series. Zhou (2013) investigates properties of the CUSUM test when there are changes in the

structure of the innovations. Our Assumptions 2.1 and 2.2 can be considered functional versions

of the main conditions in Zhou (2013). A similar approach is taken by Dette et al. (2015) to

detect a change in the correlation structure. Dalla et al. (2015) study the change point in the

mean problem under heteroscedastic errors, but use the statistic of Giraitis et al. (2003). As in

Zhou (2013), in our approach, the nonstationarity (or errors) is modelled by assuming stationarity

on some segments. In Busetti and Taylor (2004), Cavaliere and Taylor (2008) and Cavaliere et al.

(2011), the source of nonstationarity is a unit root in the error sequence. These papers are not

concerned with testing the change in the mean structure; different types of changes are studied.

We are not aware of research on change point inference in regression or factor models with

heteroscedastic errors.

The fact that the stochastic structure of the yield curve changes has been recognized for some

two decades. Using eigenvalue analysis, akin to the factor models we study, Rogers and Stummer

(2000) provide evidence that there are periods of over which parameters remain constant. A

currently established approach is to use hidden Markov chains to estimate the structural changes

together with the parameters of the affine structure; see Nieh et al. (2010). In addition to the

aforementioned paper of Chen and Niu (2014), the only other paper concerned with change

point estimation is Chib and Kang (2013). The main difference between hidden Markov models

and change point models is that in the former only a few (typically two) states are assumed and

the system moves between them. In a change point model, no such assumption is made; the

parameters can take any values between the change points. This is the paradigm advocated by

Chib and Kang (2013) who use a Bayesian approach to estimate the change points. This paper

is concerned with testing for the presence of change points. We propose frequentist procedures

based on asymptotic distributions of test statistics.

The methodology and theory we develop does not depend on the specific form of the curves

fk , which we call factor curves, extending the usual terminology of multivariate statistics.

Lengwiler and Lenz (2010), Hays et al. (2012) and Sen and Klüppelberg (2015), among others,

argue that the standard Nelson–Siegel factor curves are not optimal in some respects. In our

methodological and theoretical exposition, we merely assume that the fk are square integrable

and linearly independent. We then go a step further, and assume that the yield curves follow the

model Xi(tj ) = τi(tj ) + ηi(tj ), where the curves τi describe the mean structure and ηi are error

curves. We will derive tests that allow to test for the presence of change points in the form of the

functions τi without any parametric assumptions.

The remainder of the paper is organized as follows. In Section 2, we specify the general

functional factor model. Testing for the presence of change point in this model is addressed in

Section 3. In Section 4, we extend our approach to the nonparametric setting. Finite sample

performance of the proposed methods is studied by a simulation study in Section 5. The main

conclusions are summarized in Section 6. The Appendix contains proofs of the asymptotic results

C© 2016 Royal Economic Society.
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Change point tests in functional factor models 89

on which the tests are based. An algorithmic description of the procedures and details of their

numerical implementation are presented in the online Appendix.

2. FUNCTIONAL FACTOR MODEL

In this section, we introduce the general functional factor model. In Section 4, we introduce the

fully functional model, which does not assume a factor structure.

We consider the functional term structure model

Xi(t) =
K∑

k=1

βi,kfk(t) + εi(t), 1 ≤ i ≤ N. (2.1)

This is the same model as (1.1), but the maturity t is modelled as a continuous variable, following

the Nelson–Siegel paradigm. An empirical justification is that fractions of bonds with standard

maturities can be traded at any time. However, reconciling the continuous time formulation (2.1)

with the actual data model (1.1) requires some attention. The factor curves fk are fundamentally

continuous time functions. For example, the most commonly used Nelson–Siegel factors are built

of exponential and rational functions. However, the data Xi(tj ) are observed only at discrete times

tj , typically not more than 10 for yield curves, and up to 30 for FX forward rates. Lebesgue’s L2

Hilbert space provides a convenient mathematical framework in which theory can be developed,

which covers both discretely observed data and continuous factor curves. Denoting �j = tj −
tj−1, the inner product in this space is

〈f, g〉 =
J∑

j=1

f (tj )g(tj )�j =
∫

f (t)g(t)νJ (dt),

where νJ is a counting measure. The norm generated by this inner product will be denoted by

‖ · ‖2. The norm in the Euclidean space will be denoted by ‖ · ‖. We emphasize that our results

remain valid if the counting measure νJ is replaced by any other positive measure with respect to

which all functions are square integrable and norms of random functions have sufficiently high

moments, as specified in the statements that follow. In particular, the countable measure νJ could

be replaced by the Lebesgue measure, if a purely continuous time framework is desired.

We assume that the functions fk are known. This corresponds to the currently accepted

practice of using fixed Nelson–Siegel factors. In Section A.3 in the Appendix, we show that our

results remain valid if only a parametric form is assumed, and the parameters are consistently

estimated. We assume that the factors fk are linearly independent, i.e.
∑K

k=1 akfk = 0 in L2

implies a1 = a2 = . . . = aK = 0. The assumption of linear independence is satisfied by any

practically used system of factors, but is actually not needed to establish the asymptotic results

of Section 3. It is used to justify our testing approach and to claim the consistency of the tests

under arbitrary changes.

The random coefficients βi,k can be decomposed as

βi,k = µi,k + bi,k, E[bi,k] = 0.

We want to test the change point hypothesis

H0 : µ1 = µ2 = . . . = µN , (2.2)

C© 2016 Royal Economic Society.
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90 P. Bardsley et al.

where

µi = [µi,1, µi,2, . . . , µi,K ]⊤.

Thus, we want to test if the first-order structure of the process (2.1) changes at some unknown

points. Under the alternative, there are at most R possible changes in the mean structure at times

1 = r0 < r1 < r2 < . . . < rR < rR+1 = N.

When testing for a change in the mean, it is generally assumed in change point analysis – see,

e.g. Csörgő and Horváth (1997) and Horváth and Rice (2014) – that the second-order properties

do not change. Even in the simplest case of independent normal observations, allowing for a

change in both mean and variance leads to quite complex asymptotic theory; see Horváth (1993).

In the setting of model (2.1), the error structure is captured by the terms
∑K

k=1 bi,kfk(t) + εi(t).

We allow their stochastic structure to change at specific points

1 = i0 < i1 < i2 < . . . < iM < iM+1 = N.

In application to yield curves, im can be determined as dates of central bank intervention or

times of events of economic impact. The dates im reflect available exogenous information and

are treated as known. We refer to them as break points. By contrast, the change points rℓ are

unknown, and their existence is to be tested. In Figure 1, the break point visually practically

coincides with the change point. The break point is reflected by the higher variability of the yield

curves in the second half of the sample. The top and bottom parts of the graph are more variable,

and have larger errors. The change point is reflected by the wider range of the curves. In the

Nelson–Siegel model, the decreasing curve f2 describes the spread of yields between short and

long maturities. For µ∗
2 < µ2 < 0, the yield curves containing µ∗

2f2 will have a larger spread

that the curves containing µ2f2. This paper focuses on the formal testing framework in which

the break points play a crucial role. It is hoped that it will stimulate empirical research on the

selection of break points among the events that may potentially affect interest rate volatility.

We now formulate model assumptions. Introduce the error vectors

ai(t) = [bi,1, . . . , bi,K , εi(t)]
⊤, 1 ≤ i ≤ N. (2.3)

The vectors ai are stationary on each interval (im, im+1], and have mean zero. Their dependence

structure is described by the following assumption.

ASSUMPTION 2.1. Assume that the vectors ai defined by (2.3) admit the representation

ai = gm(δi, δi−1, . . .), im < i ≤ im+1, m = 0, 1, . . . , M,

where g0, g1, . . . , gM : S∞ 
→ L2 are unknown deterministic measurable functions. The random

elements {δi,−∞ < i < ∞} are i.i.d. with values in a measurable space S.

Broadly speaking, Assumption 2.1 requires that on the segments of stationarity are some

abstract (nonlinear) moving averages of abstract errors. Representations of this type impose a

very flexible dependence structure and have become popular over the last decade; see, e.g. Wu

(2005), Shao and Wu (2007), Aue et al. (2009), Hörmann and Kokoszka (2010), Hörmann et al.

(2013) and Kokoszka and Reimherr (2013). Observe that the same sequence {δi} is used in all

functions gm. This reflects the intuition that even though the stochastic structure can change from

segment to segment, there is a dependence between the segments; Kokoszka and Leipus (2000),

among others, used this paradigm in a change point problem for scalar ARCH models.

C© 2016 Royal Economic Society.
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Change point tests in functional factor models 91

Next, we formalize the assumption that on each subinterval (im, im+1] the sequence {ai, 1 ≤
i ≤ N} is weakly dependent. We use the notion of approximability, which has been recently used

in the analysis of time series of functions. Chapter 16 of Horváth and Kokoszka (2012) puts this

notion in a historical context and provides a number of its applications. To formulate it in our

context of segment-stationarity, we must extend the part-sequences {ai, im < i ≤ im+1} to the

full domain of all integers. We thus denote by {a(m)
i } the above sequence extended to all integers,

i.e.

a
(m)
i = gm(δi, δi−1, . . .), −∞ < i < ∞. (2.4)

ASSUMPTION 2.2. For some δ > 0 and κ > 2 + δ,

max
1≤m≤M+1

∞∑

ℓ=1

(
E[‖a

(m)
i,ℓ − a

(m)
i ‖2+δ]

)1/κ
< ∞, (2.5)

where a
(m)
i,ℓ is defined by a

(m)
i,ℓ = gm(δi, δi−1, . . . , δi−ℓ+1, δ

∗
i−ℓ, δ

∗
i−ℓ−1, . . .) and δ∗

k are independent

copies of δi , independent of {δi,−∞ < i < ∞}.

The essence of Assumption 2.2 is that the impact of innovations δi far back in the past

becomes negligible; replacing them by independent copies does not affect the distribution of a
(m)
i

much. Condition (2.5) quantifies the magnitude of the effect of such a replacement. It allows us

to control the remainder terms arising by replacing the sequence a
(m)
i by sequences consisting of

variables that are independent for sufficiently large lags (m-dependent sequences). The arbitrary

constants δ and κ in (2.5) are needed to guarantee that a weak approximation theorem of Berkes

et al. (2013), which we use in our proofs, holds for every segment.

Our last assumption states that the segments of stationarity have asymptotically comparable

lengths.

ASSUMPTION 2.3. We assume that im = im(N ) and

lim
N→∞

N−1im(N ) = θm, 1 ≤ m ≤ M, (2.6)

with 0 = θ0 < θ1 < θ2 < . . . θM < θM+1 = 1.

3. DETECTION THROUGH PROJECTIONS ONTO FACTORS

The method presented in this section directly exploits representation (2.1). A method that does

not use the factor structure is presented in Section 4.

Test statistics can be derived either using the vector of projections

zi = [〈Xi, f1〉, . . . , 〈Xi, fK〉]⊤ (3.1)

or cumulative estimates µ̂k computed using the first k observations. These two approaches are

equivalent, as we now explain. We begin with the CUSUM process of the vectors (3.1). Introduce

the matrix

C = [〈fk, fj 〉, 1 ≤ k, j ≤ K].

C© 2016 Royal Economic Society.
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92 P. Bardsley et al.

The matrix C is deterministic and known. As fk are linearly independent, the columns of C are

linearly independent, so C−1 exists. By (2.1),

zi = Cµi + γ i, (3.2)

where

γ i = Cbi + εi,

and where

bi = [bi,1, bi,2, . . . , bi,K ]⊤, εi = [〈εi, f1〉, 〈εi, f2〉, . . . , 〈εi, fK〉]⊤.

Because the matrix C is deterministic and invertible, the relation (3.2) implies that a change in

the vectors µi is equivalent to a change in zi at the same change points. Test statistics will thus

be based on the CUSUM process:

αN (x) = N−1/2
( [Nx]∑

i=1

zi −
[Nx]

N

N∑

i=1

zi

)
, 0 ≤ x ≤ 1. (3.3)

Another route that leads to the process (3.3) is through cumulative least-squares estimators of

the vector µ = [µ1, µ2, . . . , µK ]⊤, which does not depend on i under H0. The estimator based

on the whole sample minimizes the least-squares criterion

UN (µ) = UN (µ1, µ2, . . . , µK ) =
N∑

i=1

‖Xi −
K∑

k=1

µkfk‖2
2.

It is given by µ̂N = N−1C−1
∑N

i=1 zi . Denote by µ̂k the estimator based on the first k functions,

i.e. µ̂k = k−1C−1
∑k

i=1 zi . Then

N−1/2k(µ̂k − µ̂N ) = C−1αN (kN−1).

Thus, functionals of the process N1/2x(µ̂[Nx] − µ̂N ), 0 ≤ x ≤ 1, are the same as those of the

process (3.3), up to the multiplication by a known deterministic matrix.

Our next goal is to specify the limit distribution of the process αN . Notice that γ i = w(ai),

where w is a known function and ai is defined in (2.3). This allows us to introduce the M + 1

infinite domain stationary sequences

γ
(m)
i = w(a

(m)
i ), −∞ < i < ∞,

and to define their long-run covariance matrices

Vm =
∞∑

ℓ=−∞

Cov(γ
(m)
i , γ

(m)
i+ℓ).

THEOREM 3.1. If H0 (2.2) and Assumptions 2.1, 2.2 and 2.3 hold, then

αN
d→ G0, in DK ([0, 1]),

where the process G0 is defined by

G0(x) = G(x) − xG(1), (3.4)

C© 2016 Royal Economic Society.
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Change point tests in functional factor models 93

and G(x), x ∈ [0, 1], is a mean zero R
K -valued Gaussian process with covariances

E[G(x)G⊤(y)] =
m∑

j=1

(θj − θj−1)Vj + (x − θm)Vm+1, θm ≤ x ≤ θm+1, y ≥ x.

The covariances of the process G0(x) can be computed explicitly. They are given by

Q(x, y) := E[G0(x)G0(y)⊤]

= (1 − y)
( m∑

j=1

(θj − θj−1)Vj + (x − θm)Vm+1

)

−x
( m′∑

j=1

(θj − θj−1)Vj + (y − θm′)Vm′+1(t, s)
)

+xy

M+1∑

j=1

(θj − θj−1)Vj , (3.5)

where 0 ≤ x ≤ y ≤ 1, θm ≤ x ≤ θm+1 and θm′ ≤ y ≤ θm′+1.

Tests can be based on the Cramér–von-Mises functional

CN =
∫ 1

0

‖αN (x)‖2dx, (3.6)

where ‖ · ‖ is the Euclidean norm in R
K , or the Kolmogorov–Smirnov functional

KN = sup
0≤x≤1

‖αN (x)‖, (3.7)

or their weighted versions. In finite samples, Cramér–von-Mises tests generally perform better,

and we therefore focus on the statistic CN . By Theorem 3.1,

CN
d→

∫ 1

0

‖G0(x)‖2dx. (3.8)

To perform the test, we must simulate the distribution of the right-hand side of (3.8). We

propose two methods. The first is based on the following general result.

PROPOSITION 3.1. Let Ŵ(x), x ∈ [0, 1], be a mean zero R
K -valued Gaussian processes with

covariances R(x, y) = E[Ŵ(x)Ŵ(y)⊤]. Then,

∫ 1

0

‖Ŵ(x)‖2dx
d=

∞∑

j=1

λjZ
2
j , (3.9)

where Zj are independent standard normal random variables and λj are the eigenvalues of

covariance kernel R(·, ·), i.e.

∫ 1

0

R(x, y)φj (y)dy = λjφj (x), (3.10)

where φj (x) are orthonormal eigenfunctions defined on the unit interval and taking values in

R
K .

C© 2016 Royal Economic Society.
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94 P. Bardsley et al.

Proposition 3.1 follows from the Karhunen–Loéve decomposition of a Gaussian element in

a separable Hilbert space. To enhance the understanding of this result, we present a proof in

the Appendix. It shows that to approximate the distribution of
∫ 1

0
‖G0(x)‖2dx, it is enough to

compute the eigenvalues λj in (3.10), with Q given by (3.5) in place of R. To this end, we must

estimate the long-run covariance matrices Vm. These estimates are also needed in the second

method of approximating the limit in (3.8), which we now discuss.

The second method is based on generating replications of the process G0. By (3.4), this

reduces to generating replications of the process G. In the course of the proof of Theorem 3.1, it

is shown that

G(x) =
m∑

j=1

(θj − θj−1)1/2Gj (1) + (θm+1 − θm)1/2Gm+1

( x − θm

θm+1 − θm

)
, x ∈ (θm, θm+1].

(3.11)

Each process Gj is a mean zero Gaussian process with E[Gj (x)Gj (y)⊤] = min(x, y)Vj .

It can be simulated as Gj (x) = Lj W(x), where Lj L⊤
j = Vj and W = [W1,W2, . . . ,WK ]⊤

consists of K independent standard Wiener processes. The decomposition of the long-run

variance matrix uses either the upper or lower Cholesky decomposition. This representation

always exists because Vj is non-negative definite. In order to simulate the Gaussian

processes Gj , we must compute the estimated long-run covariance matrices V̂j , for which

computationally efficient R implementations exist; details are described in Section 2 of the online

Appendix.

We summarize the above discussion in the following corollary.

COROLLARY 3.1. Denote by ĉN (α) the level α critical value obtained by any of the two methods

proposed above. Under the assumptions of Theorem 3.1,

lim
N→∞

P {CN ≥ ĉN (α)} = α.

We conclude this section by stating the consistency of the test based on convergence (3.8). To

keep the statement simple, we consider only one change point, but it can be shown by the same

technique, merely with a more complex notation, that the statistic CN diverges if there are more

than one change points. Thus, we assume that for some r ∈ (0, 1),

µ = µ1 = . . . = µ[Nr], µ∗ = µ[Nr]+1 = . . . = µN . (3.12)

We allow the size of the change to depend on the sample size N , and we assume that for some

sequence {aN } and a vector u �= 0,

µ∗ = µ + aNu. (3.13)

THEOREM 3.2. Suppose Assumptions 2.1, 2.2 and 2.3 and relations (3.12) and (3.13) hold:

(a) if

lim
N→∞

N1/2aN = ∞, (3.14)

then

( 1

N1/2aN

)2

CN

p→ ‖Cu‖2

∫ 1

0

{g∗(x, r)}2dx, (3.15)

C© 2016 Royal Economic Society.
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Change point tests in functional factor models 95

with the function g∗ defined in (A.6); (b) if aN = N−1/2, then with Ḡ0(x) = G0(x) − g∗(x, r)Cu,

0 ≤ x ≤ 1, we have αN
d→ Ḡ0 in DK ([0, 1]). Hence

CN
d→

∫ 1

0

‖Ḡ0(x)‖2dx.

Relations (3.14) and (3.15) imply that CN

p→ ∞, provided Cu is not a zero vector. This is

the case if C−1 exists, i.e. if fk are linearly independent. Because the limit distribution in (3.8)

does not depend on the vectors µi , it follows that at any fixed significance level the probability

of rejection approaches one, as N → ∞. It follows from Anderson (1955) that

P
{ ∫ 1

0

‖Ḡ0(x)‖2dx ≥ t
}

≥ P
{ ∫ 1

0

‖Ḡ(x)‖2dx ≥ t
}

for all t,

and therefore the level of rejection is at least α when aN = N−1/2.

We summarize this discussion in the following corollary.

COROLLARY 3.2. Denote by ĉN (α) the level α critical value obtained by any of the two methods

proposed in this section. Under the assumptions of part (a) of Theorem 3.2,

lim
N→∞

P {CN ≥ ĉN (α)} = 1.

Under the assumptions of part (b) of Theorem 3.2

lim
N→∞

P {CN ≥ ĉN (α)} ≥ α.

4. A NONPARAMETRIC FUNCTIONAL APPROACH

In this section, we consider a testing procedure that does not assume model (2.1). To motivate it,

we rewrite model (2.1) as

Xi(t) = τi(t) + ηi(t), 1 ≤ i ≤ N, (4.1)

where

τi(t) =
K∑

k=1

µi,kfk(t), ηi(t) =
K∑

k=1

bikfk(t) + εi(t). (4.2)

In (4.2), the mean functions τi and the error functions ηi are expressed in terms of the components

of model (2.1). However, such a specific form is not assumed in (4.1). Functional factor models,

and earlier affine models, postulate some form of parametric dependence of the yield curve

on a small number of parameters. Formulation (4.1) can be viewed as a nonparametric model

emphasizing the main first-order structure described by the functions τi , which are all equal

to a function τ under H0. The form of the function τ can be arbitrary. It can be estimated by

nonparametric methods, but our focus here is on testing if it does not change. In this setting, the

null hypothesis becomes

H0 : τ1 = τ2 = . . . = τN , (4.3)

C© 2016 Royal Economic Society.
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96 P. Bardsley et al.

with an alternative formulated analogously as in Section 2. Observe that under model (2.1), in

light of (4.2), the null hypothesis (4.3) is equivalent to the null hypothesis (2.2).

The problem of testing for a change point in the functional means τi , without any reference

to yield curves, was addressed by Berkes et al. (2009) who assumed that the error curves ηi are

i.i.d. Hörmann and Kokoszka (2010) extended that test by allowing to ηi to be stationary and

weakly dependent. In both cases, the tests are based on projections of the data on the estimated

functional principal components of the errors ηi .
1 In our setting, ηi are not stationary; the

functional principal components and, hence, the corresponding projections cannot be defined.

It is however possible to derive tests based directly on the functional CUSUM process:

αN (x, t) =
1

√
N

( [Nx]∑

1=1

Xi(t) −
[Nx]

N

N∑

i=1

Xi(t)
)
, 0 ≤ x ≤ 1, (t ∈ [0, 1]). (4.4)

In the remainder of this section, we develop the required theory and derive the tests.

We begin by stating assumptions analogous to Assumptions 2.1 and 2.2. The error functions

ηi are mean zero and form stationary sequences on the intervals (im, im+1]. By η
(m)
i we denote

their extensions to the infinite domain consisting of all integers.

ASSUMPTION 4.1. The functions ηi in (4.1) have mean zero and admit the representation

ηi = gm(δi, δi−1, . . .), im < i ≤ im+1, m = 0, 1, . . . ,M,

where the functions gm and the errors δi satisfy conditions of Assumption 2.1.

ASSUMPTION 4.2. For some δ > 0 and κ > 2 + δ,

max
1≤m≤M+1

∞∑

ℓ=1

(
E[‖η(m)

i,ℓ − η
(m)
i ‖2+δ

2 ]
)1/κ

< ∞, (4.5)

where η
(m)
i,ℓ is defined by η

(m)
i,ℓ = gm(δi, δi−1, . . . , δi−ℓ+1, δ

∗
i−ℓ, δ

∗
i−ℓ−1, . . .) and δ∗

k are independent

copies of δi , independent of {δi,−∞ < i < ∞}.

Consider the long-run covariance kernels defined by

Dm(t, s) =
∞∑

ℓ=−∞

E[η
(m)
0 (t)η

(m)
ℓ (s)], 0 ≤ t, s ≤ 1. (4.6)

The existence of the L2-limit Dm(·, ·) was established by Horváth et al. (2013). The following

theorem is an analogue of Theorem 3.1.

THEOREM 4.1. Under H0 (4.3) and Assumptions 4.1, 4.2 and 2.3, we can define Gaussian

processes Ŵ0
N (x, t), 0 ≤ x, t ≤ 1, such that

sup
0≤x≤1

‖αN (x, ·) − Ŵ0
N (x, ·)‖2

p→ 0.

Each process Ŵ0
N is defined by

Ŵ0
N (x, t) = ŴN (x, t) − xŴN (1, t),

1 Both tests are described, respectively, in Chapters 6 and 16 of Horváth and Kokoszka (2012).
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Change point tests in functional factor models 97

where ŴN is mean zero Gaussian with covariances

E[ŴN (x, t)ŴN (y, s)] =
m∑

j=1

(θj − θj−1)Dj (t, s) + (x − θm)Dm+1(t, s), θm ≤ x ≤ θm+1, x ≤ y.

The covariances E[Ŵ0
N (x, t)Ŵ0

N (y, s)] can be computed explicitly. Assuming

0 ≤ x ≤ y ≤ 1, θm ≤ x ≤ θm+1, θm′ ≤ y ≤ θm′+1,

E[ŴN (x, t)ŴN (1, s)] =
m∑

j=1

(θj − θj−1)Dj (t, s) + (x − θm)Dm+1(t, s),

E[ŴN (y, s)ŴN (1, t)] =
m′∑

j=1

(θj − θj−1)Dj (t, s) + (y − θm′ )Dm′+1(t, s),

E[ŴN (1, s)ŴN (1, t)] =
M+1∑

j=1

(θj − θj−1)Dj (t, s). (4.7)

Assuming (4.7), we thus obtain

U 0(x, y; t, s) := E[Ŵ0
N (x, t)Ŵ0

N (y, s)]

= E[(ŴN (x, t) − xŴN (1, t))(ŴN (y, s) − yŴN (1, s))]

= (1 − y)
( m∑

j=1

(θj − θj−1)Dj (t, s) + (x − θm)Dm+1(t, s)
)

−x
( m′∑

j=1

(θj − θj−1)Dj (t, s) + (y − θm′)Dm′+1(t, s)
)

+xy

M+1∑

j=1

(θj − θj−1)Dj (t, s). (4.8)

The complex structure of U 0 is what distinguishes the present research from the

methods developed by Berkes et al. (2009) and Hörmann and Kokoszka (2010). The later

work can be considered as a special case, in which D1 = D2 = . . . = DM+1(= D). In that

case, U 0(x, y; t, s) = (min(x, y) − xy)D(t, s). Consequently, new approaches are needed to

implement tests based on Theorem 4.1, even though they use the usual functionals. Denote by

{Ŵ0(x, t), 0 ≤ x, t ≤ 1} a process with the same distribution as each Ŵ0
N . As in Section 3, we

focus on the Cramér–von-Mises functional

VN =
∫ 1

0

∫
α2

N (x, t)νJ (dt) dx, (4.9)

C© 2016 Royal Economic Society.
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98 P. Bardsley et al.

and the convergence

VN
d→

∫ 1

0

∫
(Ŵ0(x, t))2νJ (dt) dx. (4.10)

There is no explicit formula for the distribution of the limit in (4.10). It depends on the unknown

long-run covariance kernels Dj , 1 ≤ j ≤ M + 1, whose estimation is discussed below. Once

these estimates are computed, the approximation of the right-hand side of (4.10) is based on the

relation

∫ 1

0

∫
(Ŵ0(x, t))2νJ (dt) dx =

∞∑

j=1

λjZ
2
j , (4.11)

where Zj are i.i.d. standard normal and λj are the eigenvalues of U 0 given by (4.8). If Û 0 is an

estimator of U 0, then λj are approximated by the eigenvalues λ̂j defined by

∫ 1

0

∫
Û 0(x, y; t, s)ϕ̂j (y, s)νJ (ds) dy = λ̂j ϕ̂j (x, t),

and
∑∞

j=1 λjZ
2
j by

∑N
j=1 λ̂jZ

2
j . The numerical computation of λ̂j is not trivial; details are

described in Section 2 of the online Appendix.

We now turn to the estimation of the covariance kernels Dj . We describe the method proposed

by Horváth et al. (2013). Set Nj = ij − ij−1. Before defining the sample covariance kernel

D̂j,Nj
, we need to introduce more notation. Let Xij−1+1, Xij−1+2, . . . , Xij denote the j th subset

of observations. Define the nth residual of the j th subset by

ej,n(t) = Xij−1+n(t) − X̄Nj
(t), 1 ≤ n ≤ Nj , 1 ≤ j ≤ M,

where X̄Nj
(t) is the subset’s sample mean defined by

X̄Nj
(t) =

1

Nj

(Xij−1+1 + Xij−1+2 + . . . + Xij ).

The j th subset’s autocovariances are defined by

γ̂j,ℓ,Nj
(t, s) =

1

Nj

Nj∑

i=ℓ+1

ej,i(t)ej,i−ℓ(s), 1 ≤ j ≤ M.

We then define the j th subset’s long-run kernel estimator by

D̂j,Nj
(t, s) = γ̂j,0,Nj

(t, s) +
Nj −1∑

ℓ=1

K
( ℓ

h

)
(γ̂j,ℓ,Nj

(t, s) + γ̂i,ℓ,Nj
(s, t)). (4.12)

Using Theorem 2 of Horváth et al. (2013), it is easy to verify that ‖Û 0
N − U 0‖ p→ 0, where Û 0

N is

defined analogously to U 0 (4.8) with Dj replaced by D̂j,Nj
and θj by N−1ij . The kernel K must

satisfy the following assumption.

ASSUMPTION 4.3. The function K is continuous, bounded, K(0) = 1 and K(u) = 0 if |u| > c,

for some c > 0. The smoothing bandwidth h = h(N ) satisfies h(N ) → ∞, N−1h(N ) → 0, as

N → ∞.
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Change point tests in functional factor models 99

Table 1. Testing procedures.

Method Description

ProjSim Projections onto factors approach of Section 3;

limit approximated by simulating process (3.11)

ProjEigen Projections onto factors approach of Section 3;

limit approximated by simulating the right-hand side of (3.9)

NFEigen Nonparametric functional approach of Section 4;

limit approximated by simulating the right-hand side of (4.11)

We conclude this section with a consistency result proven in Section A.2. We assume that

there is a change point r ∈ (0, 1) such that τ �= τ ∗, where τ = τ1 = . . . = τ[Nr], τ ∗ = τ[Nr]+1 =
. . . = τN and

τ ∗(t) = τ (t) + aNu(t), (4.13)

with some nonzero function u.

THEOREM 4.2. Suppose Assumptions 2.3, 4.1 and 4.2, and relation (4.13), hold: (a) if (3.14)

holds, then

( 1

N1/2aN

)2

VN

p→ ‖u‖2
2

∫ 1

0

(g∗(x, r))2dx, (4.14)

with the function g∗ defined in (A.6); (b) if aN = N−1/2, then with Ḡ0
N (x, t) = G0

N (x) −
g∗(x, r)u(t),

sup
0≤x≤1

‖αN (x, ·) − Ḡ0
N (x, ·)‖2

p→ 0,

and hence

VN
d→

∫ 1

0

‖Ḡ0
N (x)‖2

2dx.

It is interesting to compare Theorems 3.2 and 4.2. Writing the jump vector u in (3.13)

as u = [u1, u2, . . . , uK ]⊤, assume that u(t) =
∑K

k=1 ukfk(t). Under this assumption, ‖u‖2
2 =

u⊤Cu. Because ‖Cu‖2 = u⊤C2u, the limits in Theorems 3.2 and 4.2 are the same, if C is the

identity matrix (i.e. if f1, f2, . . . , fK are orthonormal).

Analogues of Corollaries 3.1 and 3.2 can be stated for the test of this section.

For ease of reference, we list in Table 1 the procedures we implemented numerically.

5. FINITE SAMPLE PERFORMANCE

In this section, we assess the empirical size and power of the procedures introduced in

Sections 3 and 4. We emphasize the importance of incorporating a break point in the error

structure. This section is not meant to be an extensive empirical study of yield curves, but rather

a study of the proposed statistical methods. However, we take care to use simulated data that

closely resemble actual yield curves. We work with zero coupon US yield curves defined at

C© 2016 Royal Economic Society.
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100 P. Bardsley et al.

Figure 2. US yield curves around the bankruptcy of Lehman Brothers.

maturities of 1, 3, 6, 12, 24, 36, 60, 84, 120 and 360 months. The data set has been obtained from

a Federal Reserve web site.2 Figure 2 shows five consecutive yield curves on five business days

around the bankruptcy of Lehman Brothers on 15 September 2008.

We begin by illustrating the behaviour of the methods using three sampling periods listed

in the first column of Table 2. In the first two periods, whose central 100 days are shown in

Figures 1 and 3, respectively, we expect a change point in the mean structure. In the third period

(see Figure 4), we do not expect such a change point. The periods were chosen in such a way

that the potential break point in the error structure is in the middle of the sampling period. To

perform the tests, we assume either no break point (designation ‘no’ in the ‘Break point’ column

of Table 2) or one break point in the middle of the sample (θ1 = 1/2, designation ‘yes’). We

emphasize that a break point in the error structure should be viewed as an option in the application

of the tests; we test for change points in the ‘main’ mean structure.

Table 2 shows that a likely change point in the mean structure may not be detected if a break

point in the error structure is not taken into account. We cannot be sure which dates correspond to

actual change points, but this finding is confirmed by the simulation study that we now describe.

As simulated data we use realizations of the dynamic Nelson–Siegel model

Xn(t) = βi,1f1(t, λ) + βi,2f2(t, λ) + βi,3f3(t, λ) + εi(t), (5.1)

where

f1(t, λ) = 1, f2(t, λ) =
1 − e−λt

λt
, f3(t, λ) =

1 − e−λt

λt
− e−λt . (5.2)

Curves (5.2) are shown in Figure 5. The left panel shows curves with λ = 0.0609 corresponding

to the domain of real yield curves, and the right panel shows curves with λ = 21.52

corresponding to the unit interval. The value of the parameter λ is chosen to maximize f3(t, λ)

2 See https://www.federalreserve.gov/releases/h15/data.htm.
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Change point tests in functional factor models 101

Table 2. Yield curve P -values.

Sampling period Method Break point P -value

(1) 20/03/2008–19/03/2009 ProjSim Yes 1.5%

ProjEigen Yes 1.7%

NFEigen Yes 0.1%

ProjSim No 87.9%

ProjEigen No 85.2%

NFEigen No 26.2%

(2) 30/06/2005–29/06/2006 ProjSim Yes 0.1%

ProjEigen Yes 0.0%

NFEigen Yes 0.2%

ProjSim No 56.7%

ProjEigen No 50.5%

NFEigen No 57.2%

(3) 16/02/2012–14/02/2013 ProjSim Yes 68.1%

ProjEigen Yes 66.9%

NFEigen Yes 55.8%

ProjSim No 80.4%

ProjEigen No 77.7%

NFEigen No 76.3%

Note: Application of the test procedures to yield curves over three sampling periods. We expect small P -values in periods

(1) and (2), and large P -values in period (3).

at the maturity of 30 months; see Diebold and Li (2003). Because we simulate data on the

rescaled interval [0, 1], we use λ = 21.5194, which maximizes f3(t, λ) at t = 30/360 = 0.0833.

To assess the sensitivity of the results to the specific form of the factors, we also performed

simulations using factor curves f1(t) = 1, f2(t) = t and f3(t) = t(1 − t). The properties of the

methods and the empirical rejection rates are very similar, so we do not include the additional

tables.

The coefficients βi,k are generated as AR(1) processes

βi,k = µk(1 − ϕk) + ϕkβi−1,k + ui,k, ui,k ∼ N (0, σ 2
k ), i = 1, . . . , N, k = 1, 2, 3.

Figure 3. Yield curves: 18 October 2005 to 14 March 2006.
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102 P. Bardsley et al.

Figure 4. Yield curves: 4 June 2012 to 24 October 2012.

To resemble real data, the values of model parameters used in simulations are obtained as follows.

For a specified sampling period, we compute least-squares estimates of βi,1, βi,2 and βi,3 for

each day i. This is the approach recommended by Diebold and Rudebusch (2013). Treating

these estimates as a realization of an AR(1) processes, we estimate µk , ϕk and σ 2
k by maximum

likelihood. Following Bech and Lengwiler (2012), the presence of a break point in the error

structure is simulated by using different AR(1) error variances σ 2
k before and after the break

point. Finally, the error curves εi are simulated as random curves

εi(t) =
2

25
ζi1 +

1

25
ζi2 sin(2πt), t ∈ [0, 1], (5.3)

chosen so that they are of the same size as the actual residuals; see Figure 6, where the left

panel shows the residuals of the dynamic Nelson–Siegel model estimated over N = 250 business

days from 20 March 2008 to 19 March 2008 and the right panel shows N = 100 error curves

simulated using (5.3). The series ζi,j are autoregressions defined by ζi,j = 0.9ζi−1,j + Zi,j ,

Figure 5. Nelson–Siegel factors f1(t, λ), f2(t, λ) and f3(t, λ).
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Change point tests in functional factor models 103

Figure 6. Dynamic Nelson–Siegel model residuals and simulated error curves.

Zi,j ∼ N (0, 1), j = 1, 2, i = 1, . . . , N . The parameters chosen above represent well the error

curves over periods where no break point in the error structure is visible.

Using the approach described above, it is possible to specify a large number of realistic data-

generating processes. We estimated several segments consisting of 250 and 125 consecutive yield

curves. The following values are fairly representative of values obtained for many time periods,

and we use them to simulate data.

AR(1) coefficients: ϕ1 = 0.90, ϕ2 = 0.90, ϕ3 = 0.90.

AR(1) error variances:

Var[ui,1] = 0.003, i ≤ i1, Var[ui,1] = 0.012, i > i1,

Var[ui,2] = 0.006, i ≤ i1, Var[ui,2] = 0.026, i > i1,

Var[ui,3] = 0.063, i ≤ i1, Var[ui,3] = 0.095, i > i1.

We use two different locations of the break point θ1, 1/2 and 2/3, and the following mean

structures.

Means under H0:

µ =
(

4.54 −2.82 −3.03
)⊤

. (5.4)

Means under HA(1):

µi =

⎛
⎝

4.54

−2.82

−3.03

⎞
⎠, i ≤ N/2; µi =

⎛
⎝

4.20

−3.00

−3.20

⎞
⎠, i > N/2. (5.5)
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104 P. Bardsley et al.

Table 3. Empirical size and power for ProjSim.

Break point Significance level Sample size H0 HA(1) HA(2) HA(3)

CP = BP

Yes 5% N = 250 7.8% 61.1% 97.3% 79.6%

Yes 5% N = 500 5.2% 84.6% 100.0% 97.4%

Yes 10% N = 250 11.6% 70.7% 98.1% 87.3%

Yes 10% N = 500 8.5% 90.3% 100.0% 99.0%

No 5% N = 250 1.6% 9.8 % 2.8% 8.1%

No 5% N = 500 2.8% 50.8% 39.9% 64.8%

No 10% N = 250 5.7% 25.6% 12.9% 27.8%

No 10% N = 500 6.3% 73.7% 77.1% 88.2%

CP �= BP

Yes 5% N = 250 6.8% 65.8% 98.0% 85.2%

Yes 5% N = 500 5.1% 87.5% 100.0% 98.6%

Yes 10% N = 250 12.4% 75.9% 98.9% 90.7%

Yes 10% N = 500 8.7% 91.5% 100% 99.6%

No 5% N = 250 0.9% 7.8% 0.8% 6.5%

No 5% N = 500 2.6% 48.7% 25.2% 59.7%

No 10% N = 250 4.3% 23.3% 7.3% 24.5%

No 10% N = 500 5.3% 72.5% 61.2% 87.3%

Means under HA(2):

µi =

⎛
⎝

4.54

−2.82

−3.03

⎞
⎠, i ≤ N/2; µi =

⎛
⎝

3.89

−3.32

−3.32

⎞
⎠, i > N/2. (5.6)

Means under HA(3):

µi =

⎛
⎝

4.54

−2.82

−3.03

⎞
⎠, i ≤ N/2; µi =

⎛
⎜⎝

4.2

−3.0

−3.2

⎞
⎟⎠, N/2 < i ≤ 3N/4;

µi =

⎛
⎝

4.2

−3.1

−3.0

⎞
⎠, 3N/4 < i ≤ N.

(5.7)

The alternative HA(2) is a larger departure from H0 than HA(1). Based on exploratory analysis

for several time periods, HA(2) somewhat exaggerates the change points that can be expected in

real data; HA(1) is very realistic. For the simulation study, we investigate how the power behaves

when the change point coincides with the break point (CP = BP ), and when the change point

is different from the break point (CP �= BP ). In the first scenario, we use CP = BP = N/2,

and in the second CP = N/2 and BP = 2N/3. Under HA(3), there are two change points, so

CP = BP means that the break point is at θ1 = 1/2 and CP �= BP means that θ1 = 2/3.

The empirical rejection rates, based on 1,000 replications are displayed in Tables 3, 4

and 5. For N = 500, if a break point is taken into account, all methods have the correct size,

within the chance error. For N = 250, the size is overinflated. As preliminary examples indicated,

C© 2016 Royal Economic Society.
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Change point tests in functional factor models 105

Table 4. Empirical size and power for ProjEigen.

Break point Significance level Sample size H0 HA(1) HA(2) HA(3)

CP = BP

Yes 5% N = 250 8.5% 68.7% 99.2% 85.2%

Yes 5% N = 500 5.1% 88.6% 100% 98.3%

Yes 10% N = 250 13.7% 76.7% 99.5% 90.4%

Yes 10% N = 500 9.4% 92.3% 100% 99.5%

No 5% N = 250 2.6% 19.3% 12.6% 25.7%

No 5% N = 500 3.4% 68.5% 81.5% 86.7%

No 10% N = 250 8.0% 43.3% 41.7% 53.0%

No 10% N = 500 7.3% 84.9% 97.6% 96.4%

CP �= BP

Yes 5% N = 250 8.7% 71.9% 97.2% 88.1%

Yes 5% N = 500 5.8% 89.2% 100% 98.3%

Yes 10% N = 250 14.9% 79.2% 98.9% 93.1%

Yes 10% N = 500 11.9% 94.7% 100% 99.1%

No 5% N = 250 3.2% 19.4% 10.5% 26.0%

No 5% N = 500 4.8% 70.2% 76.0% 87.6%

No 10% N = 250 8.9% 43.3% 36.6% 54.4%

No 10% N = 500 9.6% 86.6% 97.9% 97.4%

Table 5. Empirical size and power for NFEigen.

Break point Significance level Sample size H0 HA(1) HA(2) HA(3)

CP = BP

Yes 5% N = 250 7.9% 67.7% 98.3% 84.6%

Yes 5% N = 500 5.7% 90.7% 100% 98.2%

Yes 10% N = 250 12.3% 76.5% 99.7% 90.6%

Yes 10% N = 500 10.9% 94.2% 100% 99.2%

No 5% N = 250 2.2% 13.8% 3.8% 12.3%

No 5% N = 500 4.2% 64.8% 54.6% 75.9%

No 10% N = 250 7.4% 37.2% 22.4% 38.1%

No 10% N = 500 7.8% 83.6% 88.5% 93.0%

CP �= BP

Yes 5% N = 250 9.7% 71.8% 99.1% 86.7%

Yes 5% N = 500 6.1% 92.5% 100% 99.4%

Yes 10% N = 250 14.6% 79.4% 99.6% 92.5%

Yes 10% N = 500 12.6% 96.0% 100% 99.9%

No 5% N = 250 3.0% 13.1% 2.4% 10.0%

No 5% N = 500 5.1% 63.5% 34.1% 71.3%

No 10% N = 250 7.7% 38.3% 15.6% 33.5%

No 10% N = 500 10.1% 83.8% 80.1% 92.5%
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106 P. Bardsley et al.

Figure 7. Intelligible factor curves.

if the break point is not taken into account, all methods can fail to detect an existing change point

with a large probability. In that case, all procedures also suffer from nonmonotonic power (i.e.

power is smaller for the larger departure from H0). Taking the break point into account preserves

monotonicity, in addition to leading to tests of practically usable power and correct size for

sufficiently large sample size.

In the setting described so far, the projection methods ProjSim and ProjEigen have an

automatic advantage because they use projections on the same factor curves that are used to

generate the data. To further investigate the performance of these two approaches, we impose

a different factor structure on the data-generating process than the structure used to compute

test statistic (3.6). We use the same data-generating process as before, which imposes the factor

structure in the dynamic Nelson–Siegel model (5.1). However, the tests are applied using the

intelligible factors introduced by Lengwiler and Lenz (2010). Their factor curves have the form

f1(t, α1, α2, b1, b2, b3) = 1 +
(1/t)(b3 − log(α3)b1)(1 − αt

2) − (1/m)(b2 − log(α2)b1)(1 − αt
3)

log(α2)b3 − log(α3)b4

,

f2(t, α1, α2, b1, b2, b3) =
−(1/t)b3(1 − αt

2) − (1/m)b2(1 − αt
3)

log(α2)b3 − log(α3)b4

,

f3(t, α1, α2, b1, b2, b3) =
(1/t) log(α3)(1 − αt

2) − (1/t) log(α2)(1 − αt
3)

log(α2)b3 − log(α3)b4

.

Estimating the parameters α2, α3, b1, b2 and b3 requires a nested optimization. In our simulation,

we do not estimate them, but use the values obtained by Lengwiler and Lenz (2010), i.e.

α2 = 0.1133, α3 = 0.6798, b1 = 0.2674, b2 = −0.4343 and b3 = −0.2584. The resulting factor

curves are displayed in Figure 7: the left panel shows the curves corresponding to real yield

curves and the right panel shows those transformed to the unit interval. To make the intelligible

factors conform to the simulated yield curves generated on the unit interval, we transformed

them in a similar manner as the Nelson–Siegel factors. The parameters of the transformed

C© 2016 Royal Economic Society.
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Change point tests in functional factor models 107

Table 6. Empirical size and power for ProjSim with misspecified factors.

Break point Significance level Sample size H0 HA(1) HA(2)

CP = BP

Yes 5% N = 250 6.3% 62.3% 97.7%

Yes 5% N = 500 6.2% 85.7% 100.0%

Yes 10% N = 250 11.4% 71.6% 99.2%

Yes 10% N = 500 10.8% 91.2% 100.0%

No 5% N = 250 0.7% 10.3% 0.3%

No 5% N = 500 3.1% 53.6% 41.1%

No 10% N = 250 3.1% 26.6% 13.6%

No 10% N = 500 7.2% 73.6% 77.5%

CP �= BP

Yes 5% N = 250 6.3% 62.1% 97.45%

Yes 5% N = 500 4.5% 87.8% 100.0%

Yes 10% N = 250 11.3% 72.4% 98.9%

Yes 10% N = 500 8.2% 92.4% 100.0%

No 5% N = 250 1.2% 8.7% 0.9%

No 5% N = 500 2.2% 51.9% 23.0%

No 10% N = 250 4.4% 24.7% 6.5%

No 10% N = 500 5.4% 73.9% 65.7%

intelligible factors are α2 = 0.113330, α3 = 0.679830, b1 = 0.2674, b2 = −0.4343 ∗ 30 and

b3 = −0.2584 ∗ 30. These transformed intelligible factors are displayed in the right panel of

Figure 7.

Tables 6 and 7 show the rejection rates in the case of a misspecified factor structure.

Compared to the correctly specified structure, the sizes become somewhat overinflated,

especially in the case of the ProjEigen method. However, employing the intelligible factors in

the ProjSim test improves the empirical size for N = 250.

Following queries raised by the referees, we studied several additional issues. We discuss the

findings. Suppose a researcher implements a test assuming a break point when in truth there is

no break point. Generally, in finite samples, we see a slight overrejection under H0. However,

if no break point is correctly assumed, the methods may fail to detect an existing change point

with a large probability. This may be due to the spurious change in variance which a break point

may capture. Related to this, the break point may be misplaced without affecting the size and

power of the tests much. If N = 500, placing a break point even 200 days away from a true

break point, leads to acceptable performance. Finally, how many breaks points can one assume

before the method breaks down? Since the methods are based on asymptotic approximations, one

can expect that each segment between the break points should be sufficiently long. If N = 500,

the methods have acceptable size and power if not more than three break points are assumed. A

general conclusion is that methods work best if about one break point per year is assumed, and

it does not matter much where it is placed. However, the size is controlled more precisely if it is

placed closer to the actual break point.

We conclude this section by displaying examples of densities used to obtain the critical values

or to compute the P-values. The simulated data follow the alternative HA(1). Figure 8 shows the

impact of not assuming a break point. The distributions in the figure are computed under the

C© 2016 Royal Economic Society.
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108 P. Bardsley et al.

Table 7. Empirical size and power for ProjEigen with misspecified factors.

Break point Significance level Sample size H0 HA(1) HA(2)

CP = BP

Yes 5% N = 250 8.4% 66.7% 98.1%

Yes 5% N = 500 6.9% 89.1% 100%

Yes 10% N = 250 13.5% 75.1% 99.1%

Yes 10% N = 500 10.5% 93.1% 100%

No 5% N = 250 1.9% 21.2% 13.2%

No 5% N = 500 3.3% 65.7% 82%

No 10% N = 250 7.1% 43.4% 39.4%

No 10% N = 500 9.5% 84.9% 97.3%

CP �= BP

Yes 5% N = 250 8.6% 69.9% 98.9%

Yes 5% N = 500 7.4% 91.9% 100%

Yes 10% N = 250 14.5% 77.6% 99.5%

Yes 10% N = 500 11.7% 95.5% 100%

No 5% N = 250 3.5% 20% 8.8%

No 5% N = 500 6.2% 70.9% 77.6%

No 10% N = 250 9.6% 42.9% 34.6%

No 10% N = 500 9.6% 86.2% 97.2%

Figure 8. Approximate asymptotic densities to test the significance of VN .

alternative (change point in mean exists), but they play the role of distributions from which

critical values are obtained. (These are not sampling distributions of VN under the alternative.)

The distributions were computed in two cases: with and without assuming a break point. For

example, we use the 95th percentile of the asymptotic distribution of VN as the critical value. If

we assume a break point (solid line), then this percentile is near 1, while if we do not assume a

C© 2016 Royal Economic Society.
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Change point tests in functional factor models 109

break point (dotted line), then this percentile is closer to 1.5. Thus, the critical value assuming a

break point will be smaller than the critical value assuming no break point, i.e. we reject more

often by assuming a break point. This heuristically explains the higher power if the break point

is assumed.

6. SUMMARY

We derived several asymptotic methods to test the null hypothesis that the mean structure of a

sequence of curves does not change. The tests are motivated by application to yield curves. In this

context, the mean structure does not refer merely to the level of the curves, but also to their range

and other aspects of their shape, most prominently concavity. We have observed the importance

of the error structure, which refers to the random variability in the aspects of the curves listed

above.

Two tests, called ProjSim and ProjEigen, are based on projections of the factor curves, for

example on the Nelson–Siegel curves or the intelligible factors of Lengwiler and Lenz (2010).

The difference between them is that ProjSim is based on simulating data that approximately

satisfy H0 (no change point), while ProjEigen is based on approximating suitable eigenvalues

(it also requires generating a Monte Carlo distribution). These two tests require a specification

of a factor structure. The third approach, NFEigen, does not require any factor structure; it is a

nonparametric version of the method ProjEigen.

Based on our data analysis and simulation study, the following conclusions can be drawn.

(a) If a possible break point in the error structure is not taken into account in any of the testing

procedures, an existing change point in the mean structure can fail to be detected with a

large probability.

(b) The tests are generally well calibrated if N = 500.

(c) The location and the number of break points can be misspecified within certain limits.

Using one or two break points per year, even about half a year away from a true break

point, leads to better performance than using no break points at all.

(d) If N = 250, all tests have a tendency to overreject at the 5% level, i.e. the empirical type I

error tends to be larger than 5%.

(e) If the intelligible factors are used, the empirical size of the ProjSim test improves at the

5% nominal level, but the size of the ProjEigen test deteriorates.
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APPENDIX: PROOFS OF THE ASYMPTOTIC RESULTS

A.1. Proofs of the results of Section 3

The main result of Section 3 is Theorem 3.1, which follows from Lemmata A.1 and A.2. We use the

following notation:

Nm = im − im−1 and Jm(x) = {j : im−1 < j ≤ ⌊im−1 + Nmx⌋}.

LEMMA A.1. Suppose Assumptions 2.1, 2.2 and 2.3 are satisfied. Then, for each N , we can define M + 1

independent Gaussian R
K -valued processes GN,m, 1 ≤ m ≤ M + 1, such that

E[GN,m(x)] = 0 and E[GN,m(x)GN,m(y)⊤] = min(x, y)Vm,

and for all 1 ≤ m ≤ M + 1,

max
0≤x≤1

‖N−1/2
m

∑

j∈Jm(x)

γ j − GN,m‖ p→ 0. (A.1)

Proof: Lemma A.1 is a consequence of Theorem 1.1 of Berkes et al. (2013). Their approximation

principle is applied to each segment of stationarity of γ i . The only difference is that Berkes et al. (2013)

consider L2-valued processes, whereas (A.1) involves R
K -valued processes. All arguments used by Berkes

et al. (2013) remain valid; the inner product must be interpreted as the inner product in R
K rather than

in L2.

The processes N−1/2
m

∑
j∈Jm(x) γ j , 1 ≤ M ≤ M + 1, are not independent under our assumptions. The

proof of Berkes et al. (2013) shows that it is enough to consider ℓ-dependent sequences (cf. Assumption 2.2).

These ℓ-dependent sequences are asymptotically independent for any ℓ ≥ 1. Therefore, we obtain the

independence of the approximating sequences GN,m. �

LEMMA A.2. Suppose Assumptions 2.1, 2.2 and 2.3 are satisfied. Then

max
0≤x≤1

‖N−1/2
∑

1≤j≤Nx

γ j − GN (x)‖ p→ 0,
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where GN is a mean zero Gaussian process with covariances

E[GN (x)G⊤
N (y)] =

m∑

j=1

(θj − θj−1)Vj + (x − θm)Vm+1, θm < x ≤ θm+1, x ≤ y ≤ 1. (A.2)

Proof: For θm < x ≤ θm+1, we can write the partial sum process as

∑

1≤j≤Nx

γ j =
m∑

j=1

∑

ij−1<i≤ij

γ i +
∑

im<i≤Nx

γ i . (A.3)

Therefore, by Lemma A.1,

N−1/2
∑

1≤j≤Nx

γ j =
m∑

j=1

(
Nj

N

)1/2

N
−1/2

j

∑

ij−1<i≤ij

γ i +
(

Nm+1

N

)1/2

N
−1/2

m+1

∑

im<i≤Nx

γ i

can be approximated by

GN (x) =
m∑

j=1

(θj − θj−1)1/2GN,j (1) + (θm+1 − θm)1/2GN,m+1

(
x − θm

θm+1 − θm

)
.

The process GN (x) is a linear combination of Gaussian processes and hence is Gaussian. The covariance

structure (A.2) follows from the independence of GN,1, GN,2, . . . , GN,M+1 and their covariances established

in Lemma A.1. �

Proof of Theorem 3.1: By the triangle inequality,

‖αN (x) − G0
N (x)‖ =

∥∥∥∥
1

√
N

( ∑

1≤i≤Nx

γ j −
[Nx]

N

N∑

i=1

γ j

)
− (GN (x) − xGN (1))

∥∥∥∥

≤
∥∥∥∥

1
√

N

∑

1≤i≤Nx

γ j − GN (x)

∥∥∥∥ +
∥∥∥∥

[Nx]

N

1
√

N

N∑

i=1

γ j − xGN (1)

∥∥∥∥.

Thus, by Lemma A.2, max0≤x≤1 ‖αN (x) − G0
N (x)‖ p→ 0, and the claim follows. �

Proof of Proposition 3.1: Suppose Ŵ is a zero mean random element in a separable Hilbert space, which

satisfies E[‖Ŵ‖2
H ] < ∞. Then, Ŵ admits the Karhunen–Loéve decomposition, Ŵ =

∑∞
j=1 ξjϕj , where ϕj

are (deterministic) orthonormal eigenvectors of the covariance operator of Ŵ, and ξj are random variables,

ξj = 〈X, ϕj 〉. The covariance operator of Ŵ is defined by f 
→ E[〈Ŵ, f 〉Ŵ], so ϕj satisfy E[〈Ŵ, ϕj 〉Ŵ] =
λjϕj . If Ŵ is Gaussian, then ξj are independent and normal with means zero and variances λj .

In the setting of Proposition 3.1, we consider the Hilbert space of RK -valued functions

f(x) = (f1(x), f2(x), . . . , fK (x))⊤, x ∈ [0, 1],

with the inner product

〈f, g〉 =
K∑

k=1

∫ 1

0

fk(x)gk(x)dx.

Direct verification shows that

E[〈Ŵ, f〉Ŵ](x) =
∫ 1

0

R(x, y)f(y)dy.
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Therefore, the Karhunen–Loéve decomposition with the eigenelements in (3.10) is

Ŵ(x) =
∞∑

j=1

√
λjZjφj (x).

By the orthonormality of φj , we obtain

∫ 1

0

‖Ŵ(x)‖2dx = 〈Ŵ, Ŵ〉 =
∞∑

j=1

λjZ
2
j .

�

Proof of Theorem 3.2: Under the change point alternative,

zi =
{

Cµ + γ i, 1 ≤ i ≤ ℓ∗,

Cµ∗ + γ i, ℓ∗ < i ≤ N,

with ℓ∗ = [Nr]. Therefore, the CUSUM process can be expressed as

αN (x) = βN (x) + N−1/2gN (x, r)C(µ − µ∗), (A.4)

where

βN (x) = N−1/2

( ∑

1≤i≤Nx

γ i −
[Nx]

N

N∑

i=1

γ i

)
,

gN (x, r) =
[Nx]

N
(N − [Nr])I ({x ≤ r}) +

[Nr]

N
(N − [Nx])I ({x > r}), (A.5)

and I (A) is the indicator function of set A. The Cramér–von-Mises test statistic can therefore be expressed

as

CN =
∫ 1

0

‖αN (x)‖2dx

=
∫ 1

0

‖βN (x)‖2dx +
∫ 1

0

‖N−1/2gN (x, r)C(µ − µ∗)‖2dx

+2

∫ 1

0

N−1/2gN (x, r)β⊤
N (x)C(µ − µ∗)dx.

We first establish (3.15). Recall the Gaussian limit process defined in Theorem 3.1. It follows that

∫ 1

0

‖βN (x)‖2dx
d→

∫ 1

0

‖G0(x)‖2dx = OP (1).

So, by (3.14), the first term in the expansion of CN does not contribute to the limit in (3.15).

Next we examine the third term. Observe that (3.13) can be written as (µ − µ∗)/aN = −u. We also

define the function

g∗(x, r) = x(1 − r)I ({x ≤ r}) + r(1 − x)I ({x > r}), (A.6)

and notice that for fixed x, r ∈ [0, 1],

N−1gN (x, r) → g∗(x, r), as N → ∞. (A.7)
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Observe that

(
1

N 1/2aN

)2 ∫ 1

0

N−1/2gN (x, r)β⊤
N (x)C(µ − µ∗)dx

= −
1

N 1/2aN

∫ 1

0

N−1gN (x, r)β⊤
N (x)Cu dx.

By (A.7) and the continuous mapping theorem,

∫ 1

0

N−1gN (x, r)β⊤
N (x)dx

d→
∫ 1

0

g∗(x, r)[G0(x)]⊤dx = OP (1).

So, by (3.14), the third term does not contribute to the limit in (3.15) either.

The second term is deterministic and dominates the other two terms. Relation (3.15) follows by

observing that

(
1

N 1/2aN

)2 ∫ 1

0

‖N−1/2gN (x, r)C(µ − µ∗)‖2dx = ‖Cu‖2

∫ 1

0

‖N−1gN (x, r)‖2dx

and applying (A.7).

The argument that establishes part (b) of the theorem is similar. If aN = N−1/2, then (3.13) implies that

N−1/2gN (x, r)C(µ − µ∗) → −g∗(x, r)Cu.

Part (b) thus follows from Theorem 3.1 and (A.4). �

A.2. Proofs of the results of Section 4

The proof of Theorem 4.1 is analogous to the proof of Theorem 3.1. Recall the notation Nj and Jm(x)

introduced at the beginning of Section A.1. Throughout this section, we assume that the Assumptions of

Theorem 4.1 hold.

Lemma A.3 follows from Theorem 1.1 of Berkes et al. (2013); the argument for the independence of

the M + 1 processes ŴN,m is presented in the proof of Lemma A.1.

LEMMA A.3. For each N , we can define we can define M + 1 independent Gaussian processes

ŴN,1, ŴN,2, . . . , ŴN,M+1 such that for all 1 ≤ m ≤ M + 1,

E[ŴN,m(x, t)] = 0, E[ŴN,m(x, t)ŴN,m(y, s)] = min(x, y)Dm(t, s)

and

max
0≤x≤1

‖N−1/2
m

∑

j∈Jm(x)

ηj (·) − ŴN,m(x, ·)‖2

p→ 0.

The proof of Lemma A.4 is analogous to the proof of Lemma A.2, so it is omitted.

LEMMA A.4. Define the process

ŴN (x, t) =
m∑

l=1

(θj − θj−1)1/2ŴN,j (1, t) + (θm+1 − θm)1/2ŴN,m+1

(
x − θm

θm+1 − θm

, t

)
,

θm ≤ x ≤ θm+1, 0 ≤ m ≤ M + 1. Then

max
0≤x≤1

‖N−1/2

⌊Nx⌋∑

j=1

ηj (·) − ŴN (x, ·)‖2

p→ 0.
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Proof of Theorem 4.1: Under H0 : τ1 = τ2 = · · · τN = τ , so

∑

1≤i≤Nx

Xi(t) −
[Nx]

N

N∑

i=1

Xi(t) =
∑

1≤i≤Nx

ηi(t) −
[Nx]

N

N∑

i=1

ηi(t).

It remains to apply Lemma A.4 and the triangle inequality, analogously as in the proof of Theorem 3.1. �

Proof of Theorem 4.2: The following proof is similar to the proof of Theorem 3.2. Under the change point

alternative,

Xi(t) =
{
τ (t) + ηi(t), 1 ≤ i ≤ ℓ∗,

τ ∗(t) + ηi(t), ℓ∗ < i ≤ N,

with ℓ∗ = [Nr]. The CUSUM process can then be expressed as

αN (x, t) = βN (x, t) + N−1/2gN (x, r)(τ (t) − τ ∗(t)),

where

βN (x, t) = N−1/2

( ∑

1≤i≤Nx

ηi(t) −
[Nx]

N

N∑

i=1

ηi(t)

)
,

and gN (x, r) is the function defined in (A.5). Under HA, the Cramér–von-Mises test statistic can be

expressed as

VN =
∫ 1

0

∫
α2

N (x, t)νJ (dt) dx

=
∫ 1

0

∫
β2

N (x, t)νJ (dt) dx + ‖τ − τ ∗‖2
2

∫ 1

0

N−1g2
N (x, r) dx

+2

∫ 1

0

∫
N−1/2gN (x, r)βN (x, t)(τ (t) − τ ∗(t))νJ (dt) dx.

By the Gaussian limit process defined in Theorem 4.1,

∫ 1

0

∫
β2

N (x, t)νJ (dt) dx
d→

∫ 1

0

∫
(Ŵ0(x, t))2νJ (dt) dx = OP (1).

By (A.7) and the continuous mapping theorem,

1

N 1/2aN

∫ 1

0

∫
N−1/2gN (x, r)βN (x, t)(τ (t) − τ ∗(t))νJ (dt) dx

d→ −
∫ 1

0

∫
g∗(x, r)Ŵ0(x, t)u(t)νJ (dt) dx = OP (1).

The second term is deterministic and dominates the other two terms. By (A.7),

(
1

N 1/2aN

)2

‖τ − τ ∗‖2
2

∫ 1

0

N−1g2
N (x, r)dx → ‖u‖2

2

∫ 1

0

{g∗(x, r)}2dx.

Combining the above limits, we obtain relation (4.14).

Part (b) follows analogously from the above decomposition, Theorem 4.1 and (A.7). �

C© 2016 Royal Economic Society.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/e
c
tj/a

rtic
le

/2
0
/1

/8
6
/5

0
5
6
4
1
3
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2
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A.3. Effect of parameter estimation

In Section 3, following the established current practice, we assumed that the factors fk(t), 1 ≤ k ≤ K , are

fully specified functions. To expand the scope of the applicability of our methodology, we show in this

section that it remains valid if only a parametric form of the factors is known, and the parameters are

estimated. We thus assume that fk(t) = fk(t,λ) and the true value of the parameter, λ0, is estimated by a

consistent estimator λ̂N . We also assume that each fk(t,λ) is a smooth function of the parameter λ. To state

the latter assumption, we denote by ∇λfk(·, λ) the functional vector of the partial derivatives of fk(·,λ) with

respect to λ.

ASSUMPTION A.1. The estimator λ̂N satisfies ‖λ̂N − λ0‖ = oP (1) and there is U, a neighbourhood of λ0,

such that

max
1≤k≤K

∥∥∥ sup
λ∈U

‖∇λfk(·, λ)‖
∥∥∥

2
< ∞.

In this setting, the vector of projections is defined by

ẑi = (ẑi,1, ẑi,2, . . . , ẑi,K )⊤

= (〈Xi, f1(·, λ̂N )〉, 〈Xi, f2(·, λ̂N )〉, . . . , 〈Xi, fK (·, λ̂N )〉)⊤

and the CUSUM process as

α̂N (x) = N−1/2

( ⌊Nx⌋∑

i=1

ẑi −
⌊Nx⌋

N

N∑

i=1

ẑi

)
, 0 ≤ x ≤ 1.

The following proposition shows that the estimation of λ does not change the limit distribution of the test

statistics introduced in Section 3.

PROPOSITION A.1. If H0 and Assumptions 2.1, 2.2, 2.3 and A.1 hold, then

sup
0≤x≤1

‖α̂N (x) − αN (x)‖ = oP (1).

Before presenting a proof, we point out that in Proposition A.1 the model is correctly specified for the

true parameter, i.e. for some µ1, µ2, . . . , µK , E[Xi(t)] =
∑K

k=1 µkfk(t,λ0).

Proof: Observe that

∣∣∣∣
1

N 1/2

( ⌊Nx⌋∑

i=1

ẑi,k −
⌊Nx⌋

N

N∑

i=1

ẑi,k

)
−

1

N 1/2

( ⌊Nx⌋∑

i=1

zi,k −
⌊Nx⌋

N

N∑

i=1

zi,k

)∣∣∣∣

≤
∣∣∣∣

1

N 1/2

〈⌊Nx⌋∑

i=1

Xi(·) −
⌊Nx⌋

N

N∑

i=1

Xi(·), fk(·, λ̂N ) − fk(·,λ0)

〉 ∣∣∣∣

≤
∣∣∣∣

1

N 1/2

〈⌊Nx⌋∑

i=1

Xi(·) −
⌊Nx⌋

N

N∑

i=1

Xi(·),∇λfk(·, ξ )⊤(λ̂N − λ0)

〉 ∣∣∣∣

≤
∥∥∥∥

1

N 1/2

( ⌊Nx⌋∑

i=1

Xi −
⌊Nx⌋

N

N∑

i=1

Xi

)∥∥∥∥
2

∥∥∥∥∇λfk(·, ξ )⊤(λ̂N − λ0)

∥∥∥∥
2

≤
∥∥∥∥

1

N 1/2

( ⌊Nx⌋∑

i=1

Xi −
⌊Nx⌋

N

N∑

i=1

Xi

)∥∥∥∥
2

∥∥∥∥ sup
λ∈U

‖∇λfk(·, λ)‖
∥∥∥∥

2

I ({λ̂N ∈ U})‖λ̂N − λ0‖
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+
∥∥∥∥

1

N 1/2

( ⌊Nx⌋∑

i=1

Xi −
⌊Nx⌋

N

N∑

i=1

Xi

)∥∥∥∥
2

∥∥∥∥ sup
λ∈U

‖∇λfk(·,λ)‖
∥∥∥∥

2

‖λ̂N − λ0‖I ({λ̂N /∈ U})

= uN,1 + uN,2,

where ξ is a point satisfying ‖ξ − λ0‖ ≤ ‖λ̂N − λ‖. Using Theorem 3.1 and Assumption A.1, we find that

uN,1 = oP (1). According to Assumption A.1, limN→∞ P {λ̂N /∈ U} = 0, and therefore uN,2 = oP (1). Hence,

the proof of Proposition A.1 is complete. �

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article at the
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