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Abstract

Change detection is one of the most commonly encoun-

tered low-level tasks in computer vision and video process-

ing. A plethora of algorithms have been developed to date,

yet no widely accepted, realistic, large-scale video dataset

exists for benchmarking different methods. Presented here

is a unique change detection benchmark dataset consisting

of nearly 90,000 frames in 31 video sequences representing

6 categories selected to cover a wide range of challenges

in 2 modalities (color and thermal IR). A distinguishing

characteristic of this dataset is that each frame is meticu-

lously annotated for ground-truth foreground, background,

and shadow area boundaries – an effort that goes much be-

yond a simple binary label denoting the presence of change.

This enables objective and precise quantitative comparison

and ranking of change detection algorithms. This paper

presents and discusses various aspects of the new dataset,

quantitative performance metrics used, and comparative re-

sults for over a dozen previous and new change detection

algorithms. The dataset, evaluation tools, and algorithm

rankings are available to the public on a website1 and will

be updated with feedback from academia and industry in

the future.

1. Introduction

Detection of change, and in particular motion, is a fun-

damental low-level task in many computer vision and video

processing applications. Examples include visual surveil-

lance (people counting, crowd monitoring, action recogni-

tion, anomaly detection, forensic retrieval, etc.), smart en-

vironments (occupancy analysis, parking lot management,

etc.), and content retrieval (video annotation, event detec-

tion, object tracking). Change detection is closely coupled

with higher level inference tasks such as detection, local-

ization, tracking, and classification of moving objects, and

is often considered to be critical preprocessing step. Its im-

portance can be gauged by the large number of algorithms

that have been developed to-date and the even larger num-

ber of articles that have been published on this topic. A

1www.changedetection.net

quick search for ‘motion detection’ on IEEE Xplore c© re-

turns over 4,400 papers.

Among the many variants of change detection algo-

rithms, there seems to be no single algorithm that compe-

tently addresses all of the inherent real-life challenges in-

cluding sudden illumination variations, background move-

ments, shadows, camouflage effects (photometric similarity

of object and background) and ghosting artifacts (delayed

detection of a moving object after it has moved away). Fur-

thermore, due to the tremendous effort required to generate

a benchmark dataset that contains pixel precision ground-

truth labels and provides a balanced coverage of the range

of challenges representative of the real world, no compre-

hensive large-scale evaluation of change detection has been

conducted to date.

The lack of a comprehensive dataset has a number of

negative implications. Firstly, it makes it difficult to as-

certain with confidence which algorithms would perform

robustly when the assumptions they are built upon are vi-

olated. Moreover, many algorithms tend to overfit specific

scenarios. For example, a method may be tuned to be robust

to shadows but may not be as robust to background motion.

A dataset that includes many different scenarios and uses a

variety of performance measures would go a long way to-

wards providing an objective assessment. Secondly, not all

authors are willing to (or have the resources to) compare

their methods against the most advanced and promising ap-

proaches. As a consequence, an overwhelming importance

has been accorded to a small subset of easily implementable

methods such as [23, 9, 26] that were developed in the late

1990’s. The more recent and advanced methods have been

marginalized as a result. Besides, the implementation of the

same method varies significantly from one research group

to another in the choice of parameters and the use of other

pre- and post-processing steps. Thirdly, the fact that authors

often use their own data (that are not widely available to ev-

eryone) makes a fair comparison much more problematic if

not impossible.

Recognizing the importance of change detection to

the computer vision and video processing communities,

we have prepared a unique change detection benchmark

dataset: changedetection.net (CDnet) that consists of nearly

978-1-4673-1612-5/12/$31.00 ©2012 IEEE 1



90,000 frames in 31 video sequences representing 6 video

categories (including thermal). This new dataset is the foun-

dation of the 2012 IEEE Change Detection Workshop [1].

CDnet contains diverse motion and change detection chal-

lenges in addition to typical indoor and outdoor scenes that

are encountered in most surveillance, smart environments,

and video analytics applications. A distinguishing feature

of CDnet is the fact that each image is meticulously anno-

tated for ground-truth foreground, background, and shadow

region boundaries; an effort that goes much beyond a sim-

ple binary label denoting the presence of the change. The

existence of ground-truth masks permits a precise compar-

ison and ranking of change detection algorithms. CDnet

also supplies a selection of evaluation tools in MATLAB and

Python for quantitatively assessing the performance of dif-

ferent methods according to 7 distinct metrics.

The overarching objectives of CDnet and its associated

workshop can be listed as:

1. To provide the research community with a rigorous and

comprehensive scientific benchmarking facility, a rich

dataset of videos, a set of utilities, and an access to

author-approved algorithm implementations for testing

and ranking of existing and new algorithms for motion

and change detection. The already extensive dataset

will be regularly revised and expanded with feedback

from the academia and industry.

2. To establish, maintain, and update a rank list of the

most accurate motion and change detection algorithms

in the various categories for years to come.

3. To help identify the remaining challenges in order to

provide focus for future research.

Next, we provide an overview of the existing datasets

and then present the details of CDnet including its cate-

gories, ground-truth annotations, performance metrics, and

a summary of the comparative rankings of the methods that

we tested at the IEEE Change Detection Workshop held in

conjunction with CVPR 2012.

2. Overview of Prior Efforts

Several datasets and survey papers have been presented

for the evaluation of change detection algorithms in the past.

2.1. Previous Datasets

Without aiming to be exhaustive, we list below a few key

datasets and describe their characteristics:

• Wallflower [25]: This is a fairly well-known dataset

that continues to be used today. It contains 7 videos,

each representing a specific challenge such as illu-

mination change, background motion, etc. Only one

frame per video has been labeled.

• PETS [27]: The Performance Evaluation of Tracking

and Surveillance (PETS) program was launched with

the goal of evaluating visual tracking and surveillance

algorithms. The program has been collecting videos

for the scientific community since the year 2000 and

now contains several dozen videos. Many of these

videos have been manually labeled by bounding boxes

with the goal of evaluating the performance of tracking

algorithms.

• CAVIAR2: This dataset contains more than 80 staged

indoor videos representing all kinds of human behav-

ior such as walking, browsing, shopping, fighting, etc.

Like the PETS dataset, a bounding box is associated

with each moving character.

• i-LIDS3: This dataset contains 4 scenarios (parked ve-

hicle, abandoned object, people walking in a restricted

area, doorway). Due to the size of the videos (more

than 24 hours of footage) the videos are not fully la-

beled.

• ETISEO4: This dataset contains more than 80 video

clips of various indoor and outdoor scenes. Since the

ground truth consists mainly of high-level information

such as the bounding box, object class, event type, etc.,

this dataset is more suitable for tracking, classification

and event recognition than change detection.

• VSSN 20065: This dataset contains 9 semi-synthetic

videos composed of a real background and artificially-

moving objects. The videos contain animated back-

ground, illumination changes and shadows, however

include no frames void of activity.

• IBM6: This dataset contains 15 indoor and outdoor

videos taken from PETS 2001 plus additional videos.

For each video, 1 frame out of 30 is labeled with a

bounding box around each foreground moving object.

Further details about these datasets, and many others,

can be found on a web page of the European CANTATA

project7. With the exception of the Wallflower and VSSN

2006 datasets, all others have ground-truth information rep-

resented in terms of the bounding box for each foreground

object. Furthermore, the focus in the above datasets is

more on tracking as well as human behavior and interac-

tion recognition than change detection. As such, the above

datasets do not contain the diversity of video categories

present in the new dataset.

2http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1
3http://www.homeoffice.gov.uk/science-research/hosdb/i-lids
4http://www-sop.inria.fr/orion/ETISEO
5http://mmc36.informatik.uni-augsburg.de/VSSN06 OSAC
6http://www.research.ibm.com/peoplevision/performanceevaluation.html
7http://www.hitech-projects.com/euprojects/cantata/datasets cantata/
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2.2. Survey Papers

Below, we list key survey papers that are devoted to the

comparison and ranking of change and motion detection al-

gorithms. Each paper uses its own dataset.

• Benezeth et al., 2010 [4] use a collection of 29 videos

(15 camera-captured, 10 semi-synthetic, and 4 syn-

thetic) taken from PETS 2001, the IBM dataset, and

the VSSN 2006 dataset. The authors also use semi-

synthetic videos composed of synthetic foreground ob-

jects (people and cars) moving over a camera-captured

background.

• Bouwmans et al., 2008 [5] survey only GMM methods

and use the Wallflower dataset.

• Nascimento and Marques, 2006 [16] use a single PETS

2011 video sequence which they manually label at

pixel resolution using a graphical editor.

• Brutzer et al., 2011 [6] use a synthetic (computer-

generated) dataset produced from only one 3D scene

representing a street corner. The sequences include

illumination changes, dynamic background, shadows

and noise, while lacking frames with no activity.

• Prati et al., 2001 [19] use indoor sequences containing

one moving person that are manually segmented into

foreground (human), shadow, and background areas.

Only 112 frames have ground-truth labels.

• Rosin and Ioannidis, 2003 [21] use a labeling pro-

gram that automatically locates moving objects based

on their position in space and properties such as color,

size, shape, etc. These properties were not used by

the change detection algorithms tested. However, the

videos used are not realistic as they are limited to lab

scenes with balls rolling on the floor.

• Bashir and Porikli, 2006 [3] conduct a performance

evaluation of tracking algorithms using the PETS 2001

dataset by comparing the detected bounding box loca-

tions with the ground-truth.

At a high level, the existing surveys suffer from three

main limitations. First, the statistics reported in these papers

have not been computed on a well-balanced dataset com-

posed of real (camera-captured) videos. Typically, synthetic

videos, real videos with synthetic moving objects pasted in,

or real videos out of which only 1 frame has been manually

segmented for ground truth are used. Furthermore, very few

datasets contain more than 10 videos. Secondly, none of

the papers are accompanied by a fully-operational web site

that allows users to upload their results and compare them

against those of others. Thirdly, the survey papers often re-

port common, fairly simple motion detection methods, and

do not report the performance of more complex methods.

3. New Dataset: CDnet

CDnet, presented at the IEEE Change Detection Work-

shop [1], consists of 31 videos depicting indoor and out-

door scenes with boats, cars, trucks, and pedestrians that

have been captured in different scenarios and contain a

range of challenges. The videos have been obtained with

different cameras ranging from low-resolution IP cameras,

through mid-resolution camcorders and PTZ cameras, to

thermal cameras. As a consequence, spatial resolutions of

the videos in CDnet vary from 320 × 240 to 720 × 576.

Also, due to diverse lighting conditions present and com-

pression parameters used, the level of noise and compres-

sion artifacts varies from one video to another. The length

of the videos also varies from 1,000 to 8,000 frames and

the videos shot by low-end IP cameras suffer from notice-

able radial distortion. Different cameras may have differ-

ent hue bias (due to different white balancing algorithms

employed) and some cameras apply automatic exposure ad-

justment resulting in global brightness fluctuations in time.

We believe that the fact that our videos have been captured

under a range of settings will help prevent this dataset from

favoring a certain family of change detection methods over

others.

The videos are grouped into six categories according to

the type of challenge each represents. We selected videos so

that the challenge in one category is unique to that category.

For example, only videos in the “Shadows” category con-

tain strong shadows and only those in the “Dynamic Back-

ground” category contain strong parasitic background mo-

tion. Such a grouping is essential for a clear identification of

the strengths and weaknesses of different change detection

methods. With the exception of one video in the “Baseline”

category, that comes from the PETS 2006 dataset, all the

videos have been captured by the authors.

3.1. Video Categories

31 videos totaling nearly 90,000 frames are grouped into

the following 6 categories (Fig. 1) that have been selected

to cover a wide range of change detection challenges that

are representative of typical visual data captured today in

surveillance, smart environment, and video analytics appli-

cations:

1. Baseline: This category contains four videos, two in-

door and two outdoor. These videos represent a mix-

ture of mild challenges typical of the next 4 categories.

Some videos have subtle background motion, others

have isolated shadows, some have an abandoned object

and others have pedestrians that stop for a short while

and then move away. These videos are fairly easy, but

not trivial, to process, and are provided mainly as ref-

erence.
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“Baseline” “Dynamic Background” “Camera Jitter” “Shadows” “Interm. Object Motion” “Thermal”

Figure 1. Sample video frames from each of the 6 categories in the new dataset available at www.changedetection.net and typical

detection results obtained using basic background subtraction [4] reported in the last row of Table 1.

2. Dynamic Background: There are six videos in this

category depicting outdoor scenes with strong (para-

sitic) background motion. Two videos represent boats

on shimmering water, two videos show cars passing

next to a fountain, and the last two depict pedestrians,

cars and trucks passing in front of a tree shaken by the

wind (second column in Fig. 1).

3. Camera Jitter: This category contains one indoor and

three outdoor videos captured by unstable (e.g., vibrat-

ing) cameras. The jitter magnitude varies from one

video to another.

4. Shadows: This category consists of two indoor and

four outdoor videos exhibiting strong as well as faint

shadows. Some shadows are fairly narrow while others

occupy most of the scene. Also, some shadows are cast

by moving objects while others are cast by trees and

buildings.

5. Intermittent Object Motion: This category contains

six videos with scenarios known for causing “ghost-

ing” artifacts in the detected motion, i.e., objects move,

then stop for a short while, after which they start

moving again. Some videos include still objects that

suddenly start moving, e.g., a parked vehicle driving

away, and also abandoned objects. This category is

intended for testing how various algorithms adapt to

background changes. One example of such a challenge

is shown in the 5-th column of Fig. 1 where new ob-

jects are added to or existing objects are removed from

the scene.

6. Thermal: In this category, five videos (three outdoor

and two indoor) have been captured by far-infrared

cameras. These videos contain typical thermal arti-

facts such as heat stamps (e.g., bright spots left on a

seat after a person gets up and leaves), heat reflection

on floors and windows (see the last column of Fig. 1),

and camouflage effects, when a moving object has the

same temperature as the surrounding regions.

We would like to mention that although camou-

flage, caused by moving objects that have very similar

color/texture to the background, is among the most glaring

change detection issues, we have not created a camouflage

category. This is partially because almost every real video

sequence contains some level of camouflage. It is difficult

to create a dataset in which there is a category exclusively

with camouflage challenges while other categories are void

of it.

3.2. Ground-Truth Labels

As mentioned in Section 2, the current online datasets

have been designed mainly for testing tracking and scene

understanding algorithms, and thus the ground truth is pro-

vided in the form of bounding boxes. Although this can be

used to validate change detection methods, a precise vali-

dation requires ground truth at pixel resolution. Therefore,

ideally, videos should be labeled a number of times by dif-

ferent persons and the results averaged out. This, however,

is impractical due to resource and time constraints. Fur-

thermore, it is very difficult for a person to produce uncon-

troversial binary ground-truth images for camera-captured

videos. This is particularly difficult near moving object

boundaries and in semi-transparent areas. Due to motion

blur and partially-opaque objects (e.g., sparse bushes, dirty

windows, fountains), pixels in these areas may contain both

the moving object and background. As a consequence, one

cannot reliably classify such pixels as belonging to either

Static or Moving class. Since these areas carry a certain

level of uncertainty, evaluation metrics should not be com-

puted for pixels in these areas. Therefore, we decided to

produce ground-truth images with the following labels:

Static: assigned grayscale value of 0,

Shadow: assigned grayscale value of 50,

4



Non-ROI8: assigned grayscale value of 85,

Unknown: assigned grayscale value of 170,

Moving assigned grayscale value of 255.

The Static and Moving classes are associated with pixels

for which the motion status is obvious. The Shadow label

is associated with hard and well-defined moving shadows

such as the one in Fig. 2. Hard shadows are among the most

difficult artifacts to cope with and we believe that adding

this extra information improves the richness and utility of

the dataset. Please note that evaluation metrics discussed in

Section 3.3 consider the Shadow pixels as Static pixels. The

Unknown label is assigned to pixels that are half-occluded

and those corrupted by motion blur. All pixels located close

to moving-object boundaries are automatically labeled as

Unknown (Fig. 2). This prevents evaluation metrics from

being corrupted by pixels whose status is unclear.

The Non-ROI (not in region of interest) label serves two

purposes. Firstly, since most change detection methods in-

cur a delay before their background model stabilizes, we la-

beled the first few hundred frames of each video sequence as

Non-ROI. This prevents the corruption of evaluation metrics

due to errors during initialization. Secondly, the Non-ROI

label prevents the metrics from being corrupted by activities

unrelated to the category considered. An example of this sit-

uation is shown in the second row of Fig. 2, which illustrates

a sequence of cars that arrive, stop at a street light and then

move away. The goal of the video is to measure how well

a change detection method can handle intermittent motion.

However, since the scene is cluttered with unrelated activi-

ties (cars on the highway) the Non-ROI label puts the focus

on street-light activities. Similarly, the top row in Fig. 2 il-

lustrates the Shadow category; the Non-ROI label is used to

prevent the metrics from corruption by trees moving in the

background.

3.3. Evaluation Metrics

Finding the right metric to accurately measure the ability

of a method to detect motion or change without producing

excessive false positives and false negatives is not trivial.

For instance, recall favors methods with a low False Nega-

tive Rate. On the contrary, specificity favors methods with a

low False Positive Rate. Having the entire precision-recall

tradeoff curve or the ROC curve would be ideal, but not

all methods have the flexibility to sweep through the com-

plete gamut of tradeoffs. In addition, one cannot, in general,

rank-order methods based on a curve. We deal with these

difficulties by reporting the average performance of each

method for each video category with respect to 7 different

performance metrics each of which has been well-studied

in the literature. Specifically, for each method, each video

category, and each metric, we report the performance (as

8ROI stands for Region of Interest.

Motion

Static

Outside ROI

hard shadow

Unknown

Static

Motion

Outside ROI

Unknown

Figure 2. Sample video frames from the Bungalows and Street

light sequences and corresponding 5-class ground-truth label

fields.

measured by the value of the metric) of the method aver-

aged across all the videos of the category.

Let TP = number of true positives, TN = number of

true negatives, FN = number of false negatives, and FP =
number of false positives. The 7 metrics that we use are:

1. Recall (Re): TP/(TP + FN)

2. Specificity (Sp): TN/(TN + FP )

3. False Positive Rate (FPR): FP/(FP + TN)

4. False Negative Rate (FNR): FN/(TN + FP )

5. Percentage of Wrong Classifications (PWC):

100(FN + FP )/(TP + FN + FP + TN)

6. Precision (Pr): TP/(TP + FP )

7. F -measure: 2 Pr·Re
Pr+Re

For the Shadow category, we also provide an average

False Positive Rate that is confined to the hard-shadow areas

(FPR-S).

For each method, the above metrics are first computed

for each video in each category. For example, the recall

metric for a particular video v in a category c is computed

as follows:

Rev,c = TPv,c/(TPv,c + FNv,c).

Then, a category-average metric for each category is com-

puted from the values of the metric for all videos in a single

category. For example, the average recall metric of category

c is given by

Rec =
1

|Nc|

∑

v

Rev,c

where |Nc| is the number of videos in category c. We also

report an overall-average metric which is the simple average

5



of the category-averages. For example, the overall-average

recall is given by

Re =
1

6

∑

c

Rec. (1)

Similar category-average and overall-average values are

also computed for the other metrics and categories accord-

ingly. The overall-average metrics such as Re are reported

in Table 1 while category-average metrics such as Rec are

reported on our website. Averaging metrics in this way

(as opposed to pooling together all pixels across all videos

and/or categories and then averaging) prevents bias that

would occur should some videos be much larger in terms of

frame size and/or length; summing up across videos would

give overwhelming importance to larger videos.

In order to rank-order different change detection meth-

ods, we need to rationally combine the performance across

different metrics (and/or categories) into a single rank that

is indicative of how well a method fares relative to other

methods in each category and across all categories. To this

end, motivated by the approach followed by Young and Fer-

ryman [27], we provide an average ranking R across all

overall-average metrics, and an average ranking RC across

all categories. To explain how these are computed, let

ranki(m, c) denote the rank of method i for metric m in

category c. The average ranking of method i in category c
across all metrics is given by:

RMc,i =
1

7

∑

m

ranki(m, c).

The overall ranking across categories RCi of method i is

then computed by taking the simple average of its average

rankings across all 6 categories:

RCi =
1

6

∑

c

RMc,i.

The average ranking Ri for method i across all overall-

average metrics is given by

Ri =
1

7

∑

m′

ranki(m
′)

where m′ is an overall-average metric such as the one com-

puted in equation (1) and ranki(m
′) denotes the rank of

method i according to the overall-average metric m′. We

report the values of R, RC, and the 7 overall-average met-

rics for different methods in Table 1. The category-wide

overall rankings and category-average metrics are available

on the www.changedetection.net website.

4. Methods Tested

A total of 18 change detection methods were evaluated

for the IEEE Change Detection Workshop [1]. Of these,

3 are relatively simple methods that rely on plain back-

ground subtraction, of which two use color features (the Eu-

clidean and Mahalanobis distance methods described in [4])

and one uses local self-similarity features [11]. Two fairly

old, but frequently-cited, methods: KDE-based estimation

by Elgammal et al. [8] and GMM by Stauffer and Grim-

son [24], as well as 5 improved versions of these methods:

self-adapting GMM by KaewTraKulPong [12], improved

GMM by Zivkovic and van der Heijden [28], block-based

GMM by Dora (RECTGAUSS-Tex) et al. [20], multi-level

KDE by Nonaka et al. [17], and spatio-temporal KDE by

Yoshinaga et al. [1] were also tested. We also include re-

sults for a machine learning method based on neural maps

(SOBS and SC-SOBS) by Maddalena et al. [13, 14], a

post-processing method based on probabilistic super-pixels

(PSP-MRF) [22], a fairly complex commercial method that

does pixel-level detection using the Chebyshev inequality

and peripheral and recurrent motion detectors by Morde et.

al. [15] and 3 stochastic methods based on background sam-

ple selection namely ViBe [2], ViBe+ [7], and Hofmann’s

self-adaptive method (PBAS) [10]. We also included a per-

pixel recursive Bayesian background method, which shows

the best robustness to shadows [18], in our evaluations.

Out of the above methods, all except for the Euclidean

and Mahalanobis distance methods [4], are robust to back-

ground motion, four are robust to shadows [13, 28, 12, 18]

and two are robust to artifacts stemming from intermittent

motion [2, 7].

For each method, only one set of parameters was used for

all the videos. These parameters were selected according to

the authors’ recommendations or, when not available, were

adjusted to enhance the overall results. All parameters are

available on our website.

5. Experimental Results

The overall results are shown in Table 1 where the meth-

ods have been sorted according to their average ranking

across categories (RC). A more comprehensive tabulation

of performance can be found on our website, where a visitor

can re-sort the methods by the average overall ranking R as

well as individual average metrics.

It should come as no surprise that the three simplest

methods based on plain background subtraction [4, 11] are

at the bottom of the table, whereas the four most recent

methods [22, 7, 10, 14] are at the top. The methods ranked

number 1 [10] and number 3 [7] are closely related. Both

methods make use of a non-parametric probabilistic model

for the background at each spatial location based on a ran-

dom subset of pixel values from the recent past. Such a

stochastic non-parametric model makes these methods ro-

bust to instabilities (background motion and camera jitter)

and intermittent motion artifacts. The success of the num-

ber 1 [10] method can be attributed to the use of a dynamic
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Method RC R Re Sp FPR FNR PWC F-Measure Pr

PBAS [10] 3.00 3.29 0.78 0.990 0.010 0.009 1.77 0.75 0.82

PSP-MRF [22] 4.83 5.71 0.80 0.983 0.017 0.009 2.39 0.74 0.75

ViBe+ [7] 4.83 5.00 0.69 0.993 0.007 0.017 2.18 0.72 0.83

SC-SOBS [14] 6.00 6.14 0.80 0.983 0.017 0.009 2.41 0.73 0.73

Chebyshev probability [15] 6.67 5.86 0.71 0.989 0.011 0.015 2.39 0.70 0.79

SOBS [13] 8.17 8.57 0.79 0.982 0.018 0.009 2.56 0.72 0.72

KDE Nonaka et al. [17] 9.17 8.43 0.65 0.993 0.007 0.025 2.89 0.64 0.77

ViBe [2] 9.33 10.71 0.68 0.983 0.017 0.018 3.12 0.67 0.74

GMM KaewTraKulPong [12] 9.50 9.43 0.51 0.995 0.005 0.029 3.11 0.59 0.82

KDE Elgammal [8] 9.67 11.43 0.74 0.976 0.024 0.014 3.46 0.67 0.68

KDE Yoshinaga et al. [1] 10.67 9.29 0.66 0.991 0.009 0.024 3.00 0.64 0.73

Bayesian Back [18] 11.00 12.57 0.60 0.983 0.017 0.020 3.39 0.63 0.74

GMM Stauffer-Grimson [24] 11.50 10.14 0.71 0.986 0.014 0.020 3.10 0.66 0.70

GMM Zivkovic [28] 13.67 10.86 0.70 0.984 0.016 0.019 3.15 0.66 0.71

GMM RECTGAUSS-Tex [20] 13.67 13.00 0.52 0.986 0.014 0.027 3.68 0.52 0.72

Local-Self similarity [11] 14.67 13.14 0.94 0.851 0.149 0.002 14.30 0.50 0.41

Mahalanobis distance [4] 15.50 13.43 0.76 0.960 0.040 0.011 4.66 0.63 0.60

Euclidean distance [4] 16.67 14.00 0.70 0.969 0.031 0.017 4.35 0.61 0.62

Table 1. Overall results across all categories (RC: average ranking across categories, R: average overall ranking).

control algorithm for automatically adapting thresholds and

other parameter values. The second ranked method [22]

is a surprisingly simple super-pixel-based post-processing

method that can be combined with almost any other change

detection method to improve its performance. As shown in

the paper, this approach reduces both the FNR and the FPR

of any method it is used on. As for the fourth ranked method

SC-SOBS [14], its approach is orthogonal to traditional mo-

tion detection methods in its use of a self-organizing neu-

ral network. Such an approach gives remarkable results on

baseline and intermittent object motion videos.

A bit surprising is the fact that with the exception of the

method by KaewTraKulPong [12], the KDE-based meth-

ods outperform the GMM-based methods. Another interest-

ing observation is that the F-measure correlates better with

the average rankings than any of the other measures; recall,

FPR, FNR and precision are much less consistent.

In order to assess the challenge that each video category

poses for the tested methods, we ranked the categories ac-

cording to the median metrics obtained by all methods in a

given category. As can be seen in Table 2, videos with in-

termittent motion, shadows and camera jitter pose a greater

challenge than videos in the other categories. For exam-

ple, videos with intermittent motion pose the largest chal-

lenge in terms of the F-Measure (0.5), FPR (0.29) and PWC

(6%). On the other hand, videos exhibiting steady back-

ground motion seem to be less challenging. Many methods

had difficulty with thermal videos as most of the time they

suffered from camouflage problems, resulting in large FNR

scores.

It is clear from Table 2 that video sequences with strong

shadows pose a significant challenge for the tested meth-

ods. In order to verify this observation, we have also com-

puted FPR within shadow areas (FPR-S) for all videos in the

“Shadows” category. As can be seen in Table 3, the tested

methods attained FPR in shadow areas between 0.33 and

0.64. This large FPR indicates that most of the 18 methods

cannot effectively deal with shadows.

6. Future Work

The CDnet undertaking aims to provide the research

community with a rigorous and comprehensive scientific

benchmarking facility, a rich dataset of videos, a set of utili-

ties, and an access to author-approved algorithm implemen-

tations for testing and ranking of existing and new algo-

rithms for motion and change detection.

The already extensive dataset will be regularly revised

and expanded with feedback from the academia and indus-

try. We will maintain and update a rank list of the most

accurate motion and change detection algorithms in the var-

ious categories for years to come.
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