

Changes in bird distribution in a Central European country between 1985-1989 and 2001-2003

Jaroslav Koleček, Jiří Reif, Karel Šťastný, Vladimír Bejček

▶ To cite this version:

Jaroslav Koleček, Jiří Reif, Karel Šťastný, Vladimír Bejček. Changes in bird distribution in a Central European country between 1985-1989 and 2001-2003. Journal für Ornithologie = Journal of Ornithology, Springer Verlag, 2010, 151 (4), pp.923-932. 10.1007/s10336-010-0532-x. hal-00596615

HAL Id: hal-00596615 https://hal.archives-ouvertes.fr/hal-00596615

Submitted on 28 May 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Changes in bird distribution in a Central-European country between 1985–1989 and 2001–2003

3

4 Jaroslav Koleček, Jiří Reif, Karel Šťastný, Vladimír Bejček

5

6 Abstract European birds have been significantly affected by dramatic environmental changes 7 during the last decades. The effects of these changes on species richness and distribution in 8 particular countries remain poorly understood due to a lack of high-quality, large-scale data 9 standardized over time. This is especially true in Central and Eastern Europe. On a model 10 group of birds in the Czech Republic (countrywide atlas mapping data), we examined whether 11 long-term changes of species richness and distribution between 1985–1989 and 2001–2003 12 differed among groups of species defined by their habitat requirements, type of distribution in 13 Europe, migratory strategy, and the degree of national legal protection. Further, we 14 investigated the effects of colonizers and local extinctions on these changes. Whereas the 15 number of species in the whole country remained the same in both periods (208 species), 16 species composition had changed. Increasing occupancy (i.e., number of occupied mapping 17 squares) was observed in species of forest and wetland habitats, in short-distance migrants 18 and in non-protected species. Southern species also positively changed their occupancy but 19 this pattern disappeared after the inclusion of six species dependent on extensively cultivated 20 farmland that went extinct between mappings. The overall occupancy of all species together 21 showed positive changes after excluding colonizers and extinct species. We suggest that the 22 improvement of environmental conditions after 1990 caused the stability of or increased the 23 distribution of common birds in the Czech Republic and it was the disappearance of specific 24 farmland practices that might cause the loss of several species.

23	
26	Keywords bird community, species richness, distribution, central Europe, global change,
27	land use
28	
29	J. Koleček (corresponding author)
30	Department of Zoology and Laboratory of Ornithology, Faculty of Science, Palacký
31	University,
32	tř. Svobody 26, 771 46 Olomouc, Czech Republic
33	e-mail: j.kolecek@email.cz
34	
35	J. Reif
36	Institute for Environmental Studies, Faculty of Science, Charles University in Prague,
37	Benátská 2, 128 01 Praha 2, Czech Republic
38	
39	K. Šťastný and V. Bejček
40	Department of Ecology, Faculty of Environmental Sciences, Czech University of Life
41	Sciences,
42	Kamýcká 1176, 165 21 Praha 6, Czech Republic
43	
44	
45	
46	
47	
48	
49	

50 Introduction

51

52 Biodiversity conservation is one of the fundamental objectives of current initiatives for nature 53 protection (Primack 2006). Although most attention is paid to the ongoing decline of global 54 species richness (Swanson 1998), we should bear in mind that management measures are 55 most frequently implemented at local or regional levels, usually within individual states 56 (Lenzen et al. 2008; Yamamura 2008; Orłowski and Ławniczak 2009). Local change in 57 species richness is determined by the number of species which colonize the area and the 58 number of species that disappear. Local colonization and extinction rates are related to the 59 sensitivity of particular species to current changes in the landscape (Donald et al. 2007; Lenzen et al. 2008). For effective conservation management it is, therefore, important to see 60 61 whether species undergoing range retraction have different ecological traits from species with 62 expanding ranges. For this purpose, we can examine the mean change in regional distribution 63 of groups of species with defined ecological characteristics (Gregory et al. 2005, Jiguet et al. 64 2007, Van Turnhout et al. 2010). 65 Such an "ecological-group" approach has been used successfully for the examination 66 of temporal changes in regional breeding bird distribution in several Western European 67 countries (Gregory et al. 2004, Julliard et al. 2004, Lemoine et al. 2007, Van Turnhout et al. 68 2007, Bauer et al. 2008). These studies have found prominent effects of various 69 environmental changes on European birds such as the intensification of farming practices, 70 urbanization and global climate change or habitat degradation on stop-over and wintering 71 sites in the Mediterranean region and Sahel zone (Feranec et al. 2000; Jongman 2002, Opdam 72 and Wascher 2004; Moreno-Rueda and Pizarro 2008; Schaefer et al. 2008). 73 Despite this large body of evidence, our information about factors affecting changes in

74 bird distribution is incomplete due to an apparent regional bias in these studies. Findings from

75 former communist Central and Eastern European countries are based only on a few local scale 76 results (e.g., Tryjanowski 2000, Verhulst et al. 2004, Goławski 2006, Orłowski and 77 Ławniczak 2009) and their generalisation is thus problematic. At the same time, factors 78 affecting bird distribution might differ between Western and Eastern European countries: 79 agriculture was less intensive in the East (Donald et al. 2001), implementation of conservation 80 legislation was delayed (Donald et al. 2007) and many migratory species use different 81 flyways and wintering grounds (Busse 2001, Cepák et al. 2008). The examination of whether 82 the patterns found in Western parts of the European continent also hold true in former communist Central and Eastern European countries is thus of high conservation importance. 83 84 In this respect, birds of the Czech Republic represent an ideal opportunity to fill this 85 knowledge gap. Their breeding distribution was mapped using a standardized technique in 86 two mapping sessions during the last decades: in 1985–1989 and 2001–2003. Moreover, their 87 ecological requirements are well known and documented (Hudec 1983, 1994; Hudec and 88 Šťastný 2005; Cepák et al. 2008) enabling the sorting of particular species into various 89 ecological groups.

90 Based on the results of studies of European bird communities, we can formulate the 91 following predictions about recent changes in distribution of particular ecological groups of 92 Czech birds. First, landscape changes, such as the loss of extensively cultivated farmland due 93 to agricultural intensification or land abandonment followed by forest spread, should reduce 94 the distribution of farmland birds and increase the distribution of forest species (Lenzen et al. 2008; Reif et al. 2008a; Orłowski and Ławniczak 2009). Second, the increase in the average 95 96 annual temperature should have a positive effect on the distribution of south-European species 97 and a negative impact on the north-European ones (Bauer et al. 2008; Reif et al. 2008b). 98 Third, global warming, along with the degradation of wintering habitats, should lead to an 99 increase in the distribution of resident species and to a decrease of migrants (Schaefer et al.

100 2008). Fourth, legal protection should have a positive impact on protected species compared101 to unprotected ones (Donald et al. 2007).

102 The aim of the study was to examine these predictions comparing particular ecological 103 groups of Czech birds between the two mapping periods. For each species group, we have 104 focused on changes in breeding distribution. We have paid special attention to the species that 105 colonized the country or went extinct between the mappings and how these species influenced 106 the observed patterns.

107

108

109 Methods

110

- 111 Bird distribution data
- 112

113 We used data from the two atlases of breeding bird distribution (hereafter Atlases) in the 114 Czech Republic covering the period 1985–1989 (Šťastný et al. 1996) and 2001–2003 (Šťastný 115 et al. 2006). Data was collected in a unified network of 628 squares of 10' longitude and 6' 116 latitude (roughly 12 by 11.1 km) evenly covering the entire territory of the country. The 117 method of fieldwork was based on the contributions of a high number of volunteers (750 and 118 532 in the first and second mapping periods, respectively) and was the same in both Atlases. 119 Each volunteer was requested to survey all habitats in a selected square. It was recommended 120 they start with the most frequent habitats (fields, meadows, forests, towns, villages, etc.) and 121 then move onto rarer ones (water bodies, wetlands, streams, etc.). Finally, a targeted search 122 was carried out for individual species in appropriate environments or at appropriate times – 123 e.g., at dusk in case of the owls, crakes, nightingales etc. Field observations of each bird 124 species in the particular mapping squares were recorded using 17 numerical breeding codes

with respect to the probability of its breeding occurence, according to the standards used inEurope (Hagemeijer and Blair 1997).

127 The distribution of each species (hereafter occupancy) was expressed as the number of occupied squares with categories of "probable" or "confirmed breeding" (breeding codes 3-128 129 16 in Hagemeijer and Blair 1997) in respective mapping periods. There were 215 species 130 conforming to these criteria. 131 132 133 Definition of explanatory variables 134 135 We have recognized the following species groups (Appendix 1) differing in (i) habitat 136 requirements, i.e., forest species (78 species in the first and 80 in the second mapping), 137 wetland species (61 / 65), farmland species (50 / 44) and urban species (19 / 19), (ii) 138 migration strategy, i.e., resident species (45 / 44), partial migrants (22 / 23), short-distance 139 migrants (71 / 74) and long-distance migrants (70 / 67), (iii) breeding distribution in Europe, 140 i.e., northern species (68 / 69), southern species (53 / 51), central species (22 / 22) and 141 widespread species (65 / 66), and (iv) legal protection in the Czech Republic, i.e., critically 142 endangered (30 / 28), highly endangered (56 / 55), endangered (28 / 28) and species without 143 any special legal protection (94 / 97). The terms like "endangered" do not describe the real 144 level of threat but they are the title of the official categories of legal protection listed in Czech 145 conservation law (Anonymus 2008). Therefore, a "critically endangered" species is under the 146 highest conservation concern according to Czech conservation law but in reality it may not be 147 more threatened than other species. The real levels of threat to a particular bird species in the 148 Czech Republic are currently unknown as no one has performed any formal analysis (Voříšek 149 et al. 2008).

Most of the species used for further analyses were already sorted into these categories in Reif et al. (2006, 2008b) and Voříšek et al. (2008). For the categorization of the remaining species, we used the following literature sources: Hudec (1983, 1994) and Hudec and Šťastný (2005) for the habitat requirements, Anonymus (2008) for legal protection status and Hagemeijer and Blair (1997) for the breeding distribution in Europe.

155 Determination of particular groups defined by different breeding distributions in 156 Europe followed the two-step assessment procedure described in Reif et al. (2008b). First, we 157 divided Europe into three large regions with respect to the location of the Czech Republic: the 158 northern region had its southern boundary five geographical degrees north of the latitudinal 159 midpoint of the Czech Republic, the southern region had its northern boundary five degrees 160 south of the midpoint of the Czech Republic and the central region laid between the northern 161 and southern regions. These regions broadly correspond to the biogeographical divisions of 162 Europe. The Mediterranean region is in the south, the boreal region is in the north and the 163 continental region is in the central part (European Environmental Agency 2006). In the 164 second step, we measured the area of the breeding range of each species in each region and 165 calculated the proportion of a region covered by the range of the focal species. Based on these 166 proportions, we defined four species groups differing in the latitudinal distributions of their 167 breeding ranges in Europe. As nearly all species occurring in the Czech Republic have 168 relatively large European breeding ranges distributed in all three regions, we could not use 169 strict criteria such as "northern species are those confined solely to northern region". Instead, 170 we used a criteria focused on the avoidance of a region in which a species has the lowest 171 proportion of its range. We thus recognized: (i) northern species whose ranges cover < 30% of 172 the southern region (e.g., *Turdus pilaris*); (ii) southern species whose ranges cover < 30% of 173 the northern region (e.g., Luscinia megarhynchos); (iii) central species whose ranges cover < 30% of southern and northern regions (e.g., Parus palustris); (iv) widespread species whose 174

175	ranges cover more than 30% of the area of each region (e.g., Passer domesticus). Although
176	such species sorting is arbitrary to some extent, and indeed 30% has no biological meaning,
177	we trust that it mirrors the real latitudinal preferences of a particular species.
178	Migratory strategy of each particular species were excerpted from the new Czech and
179	Slovak bird migration atlas (Cepák et al. 2008) which is based on all known ringing
180	recoveries of Czech birds up to 2002.
181	
182	
183	Statistical analysis
184	
185	We calculated the change in occupancy (C) of each particular species between the two
186	mapping periods using the formula introduced by Lemoine et al. (2007):
187	
188	$C = (N_2 - N_1) / ((N_2 + N_1)/2)$
189	
190	$N_{1,2}$ is the occupancy of a given species in the first and second mapping period, respectively.
191	Positive values of C indicate increasing occupancy, negative values decreasing occupancy and
192	where $C = 0$ there is an indication of no change (Lemoine et al. 2007).
193	To test whether mean occupancy of particular species groups increased or declined,
194	we performed the one-sample t-tests. Each test tested the null hypothesis that the mean
195	change in occupancy of a given group is zero. Performance of 16 repeated tests using the
196	same dataset would result in an elevated risk of a Type I error (Zar 1996). To account for this
197	factor, we have applied the Bonferroni correction, adjusting the 0.05 level of significance (α)
198	to 0.0031.
199	To test whether mean changes in occupancy differ among the focal species groups, we

200	have applied analysis of variance (ANOVA). First, we have performed one-way ANOVAs for
201	each factor (i.e., habitat, European distribution, migratory strategy and protection status)
202	separately. Tukey's HSD post hoc test was used to compare means where significant
203	differences were found with the ANOVA. Second, we have examined the effects of each
204	factor, controlling the influence of the others, using main-effects ANOVA.
205	Finally, we were interested in the influence of colonization/extinction processes on
206	changes in the distribution of birds in the Czech Republic. For this purpose, we have excluded
207	all species $(n = 14)$ present only in one of the mapping periods and then repeated all the tests
208	described above. Comparison of the outcome of the tests with and without such species
209	revealed their possible influence.
210	
211	
212	Results
212213	Results
	Results The number of species in the Czech Republic remained the same in both periods – 208
213	
213 214	The number of species in the Czech Republic remained the same in both periods – 208
213214215	The number of species in the Czech Republic remained the same in both periods – 208 species. Seven species went extinct in the Czech Republic during the time between the
213214215216	The number of species in the Czech Republic remained the same in both periods – 208 species. Seven species went extinct in the Czech Republic during the time between the mappings (<i>Falco vespertinus, Otis tarda, Burhinus oedicnemus, Charadrius hiaticula,</i>
 213 214 215 216 217 	The number of species in the Czech Republic remained the same in both periods – 208 species. Seven species went extinct in the Czech Republic during the time between the mappings (<i>Falco vespertinus, Otis tarda, Burhinus oedicnemus, Charadrius hiaticula, Coracias garrulus, Lanius minor</i> and <i>L. senator</i>) and, at the same time, seven species
 213 214 215 216 217 218 	The number of species in the Czech Republic remained the same in both periods – 208 species. Seven species went extinct in the Czech Republic during the time between the mappings (<i>Falco vespertinus, Otis tarda, Burhinus oedicnemus, Charadrius hiaticula, Coracias garrulus, Lanius minor</i> and <i>L. senator</i>) and, at the same time, seven species colonized the country (<i>Egretta alba, Anas penelope, Tadorna tadorna, Pandion haliaetus,</i>
 213 214 215 216 217 218 219 	The number of species in the Czech Republic remained the same in both periods – 208 species. Seven species went extinct in the Czech Republic during the time between the mappings (<i>Falco vespertinus, Otis tarda, Burhinus oedicnemus, Charadrius hiaticula,</i> <i>Coracias garrulus, Lanius minor</i> and <i>L. senator</i>) and, at the same time, seven species colonized the country (<i>Egretta alba, Anas penelope, Tadorna tadorna, Pandion haliaetus,</i> <i>Aquila heliaca, Chlidonias hybridus</i> and <i>Otus scops</i>). The prevailing characteristics of the
 213 214 215 216 217 218 219 220 	The number of species in the Czech Republic remained the same in both periods – 208 species. Seven species went extinct in the Czech Republic during the time between the mappings (<i>Falco vespertinus, Otis tarda, Burhinus oedicnemus, Charadrius hiaticula,</i> <i>Coracias garrulus, Lanius minor</i> and <i>L. senator</i>) and, at the same time, seven species colonized the country (<i>Egretta alba, Anas penelope, Tadorna tadorna, Pandion haliaetus,</i> <i>Aquila heliaca, Chlidonias hybridus</i> and <i>Otus scops</i>). The prevailing characteristics of the species which were not registered in the second mapping period were: farmland habitat (six
 213 214 215 216 217 218 219 220 221 	The number of species in the Czech Republic remained the same in both periods – 208 species. Seven species went extinct in the Czech Republic during the time between the mappings (<i>Falco vespertinus, Otis tarda, Burhinus oedicnemus, Charadrius hiaticula,</i> <i>Coracias garrulus, Lanius minor</i> and <i>L. senator</i>) and, at the same time, seven species colonized the country (<i>Egretta alba, Anas penelope, Tadorna tadorna, Pandion haliaetus,</i> <i>Aquila heliaca, Chlidonias hybridus</i> and <i>Otus scops</i>). The prevailing characteristics of the species which were not registered in the second mapping period were: farmland habitat (six species), long-distance migratory strategy (six species), southern distribution (five species)

225 species).

The overall mean change in occupancy between both mappings was not significantly different from zero (Table 1a). Regarding particular species groups, we found a positive change in occupancy in forest and wetland species, short-distance migrants and non-protected species. After application of the Bonferroni correction, the result remained significant in the wetland species only (Table 1a). No group showed a significantly negative change in mean occupancy, although the result in farmland birds approached the 0.05 significance level (Table 1a).

We applied analysis of variance to test whether some ecological characteristics would predict differences among the species groups in their mean changes in occupancy. We have found that habitat requirements were the only significant predictor of these changes, as shown by both one-way and main effects ANOVAs (Table 2a, b, Fig. 1). Post hoc comparisons using Tukey's HSD tests showed that both forest (P = 0.0138) and wetland (P = 0.0001) species extended their distribution more than farmland species.

239 After exclusion of the 14 species present only in one of the two mappings, we found 240 that the overall mean change in occupancy between the mappings was positive (Table 1b). 241 Further, the results showed increasing occupancy in southern species (Table 1b). Excluding 242 colonizers and extinct species did not qualitatively change the results for forest, wetland and 243 non-protected species (Table 1b). In contrast, change in short-distance migrants was no longer 244 significant (Table 1b). After the Bonferroni correction, the overall average change in 245 occupancy and change in southern and non-protected species remained significant (Table 1b). 246 Exclusion of the 14 species, present only in one of both mappings, did not reveal any 247 significant results in both one-way and main effects ANOVAs (Table 2c, d). 248

249

250 **Discussion**

251

252 Our results based on the analysis of the large-scale mapping data showed four striking 253 patterns of changes in breeding bird distribution in the Czech Republic between 1985–1989 254 and 2001–2003: (i) dominant effect of habitat over all other factors, (ii) weaker but significant 255 effects of European distribution, migratory strategy and protection status in some tests, (iii) 256 influence of rare species on most of the observed patterns, (iv) prevalence of positive changes 257 in bird distribution over the negative ones. The effects of habitat and European distribution 258 were in congruence with our initial predictions, but the legal protection status showed the 259 opposite pattern to what we had expected. The effect of migratory strategy did not support our 260 prediction of decline in long-distance migrants and increase of residents.

261 The effect of habitat was caused by expansion of forest and wetland species in contrast 262 to farmland birds. Since this contrast was not significant after excluding species detected in 263 one mapping only, the marked difference between these habitat-defined species groups is 264 probably caused by the extinction of six farmland species between the mapping periods: 265 Falco vespertinus, Otis tarda, Burhinus oedicnemus, Coracias garrulus, Lanius minor and L. 266 senator. Their disappearance from the Czech Republic indicates a possible adverse impact of 267 the recent land use practices on these species. This result is somewhat surprising as the 268 decrease in agricultural intensity after the fall of communism probably reduced the rate of 269 population decline of common farmland birds in the Czech Republic (Reif et al. 2008a), 270 Poland (Goławski 2006) and Hungary (Verhulst et al. 2004). This land use change obviously 271 did not prevent more sensitive farmland species from extinction. The exact causes of the loss of these species remains unexplored. We can only speculate about the switch from an 272 273 extensively cultivated agricultural landscape providing a heterogenous mosaic of habitats to 274 either highly intensive agriculture or the complete abandonment of arable land in the key

areas for populations of these species (Konvička et al. 2006, 2008, Ludwig et al. 2009; see
also Šťastný et al. 1996). The disappearance of these highly specialized species is consistent
with Kerbiriou's et al. (2009) findings on the spread of tolerant species with a broad
ecological niche leading to biotic homogenization of bird communities in France (Devictor et
al. 2008) and the Netherlands (Van Turnhout et al. 2007).

280 The increasing occupancy of forest and wetland birds was found even if the species 281 detected in only one mapping were excluded (although with lower significance). Therefore, 282 we suggest that these patterns were caused mainly by extending distribution of common 283 species already breeding in the Czech Republic and the colonization of the country by new 284 species has only strenghtened this effect. In the case of forest birds, this result is in 285 accordance with studies based on annual monitoring of populations of common species in the 286 Czech Republic (Reif et al. 2007) and other parts of Europe (Gregory et al. 2007, Van 287 Turnhout et al. 2007). It might be attributed to forest expansion, the alteration of forest age 288 class composition towards older classes and/or by the impact of forest recovery after the 289 reduction of imissions in the 1990s (Reif et al. 2007, 2008c). The increase of wetland birds 290 was also confirmed in local bird communities in central and western Europe (Lemoine et al. 291 2007, Van Turnhout et al. 2010, Orłowski and Ławniczak 2009) and was probably caused by 292 lower hunting pressure and the fact that many newly established nature reserves in the country 293 protected wetland habitats (Málková & Lacina 2002).

Southern species that bred in the Czech Republic in both mapping periods extended
their occupancy, corresponding with findings of an earlier study focused on annual changes in
abundance of common birds in the Czech Republic (Reif et al. 2008b). This result is
consistent with the observations of climate change impact on bird species (Julliard et al. 2004,
Jiguet et al. 2007, Bauer et al. 2008). It also corroborates predictions of future breeding bird
distribution patterns modelled under various scenarios of climatic warming (Huntley et al.

2007). Increasing occupancy of southern species, however, vanished after the inclusion of the
species which became extinct between the mappings. A more detailed focus on particular
species uncovered the fact that decrease was caused by the extinction of the farmland species
which were probably more affected by unfavourable land use practices than by the climate.
This result implies that global warming itself is not a sufficient impetus for range expansion
of the southern species, if their habitat is destroyed.

306 Regarding changes of distribution of birds with different migratory strategies, we have 307 found two unexpected results: increased occupancy in short-distance migrants and no change 308 in occupancy in long-distance migrants. The first pattern was driven by the expansion of 309 several colonizers of wetland birds (Egretta alba, Anas penelope and Tadorna tadorna) and it 310 was probably caused by habitat effects. The second pattern contrasts with observations of 311 population decline of long-distance migrants in several western European countries (e.g., 312 Lemoine et al. 2007, Heldbjerg and Fox 2008) and might be attributable to the use of different 313 migratory routes and/or wintering sites by the Czech populations (Busse 2001, Cepák et al. 314 2008).

315 Increasing occupancy was found in non-protected species and the same result was 316 found in all species grouped together after the exclusion of species detected in one mapping 317 only. These results imply that common birds probably benefited from changes in the Czech 318 landscape after 1990. In fact, components of the environment, including water, air, forests and 319 farmland were heavily affected by human activity within all of Europe in the late 1980s 320 (Moldan 1990). During the 1990s, the water quality and air pollution greatly improved and 321 there was also a sharp decrease in agricultural intensity. These positive changes were also 322 documented in Poland (Goławski 2006) and Hungary (Verhulst et al. 2004). Moreover, 323 forests, defoliated in extensive areas due to air pollution, started to recover (Anonymus 1996; 324 Reif et al. 2007, 2008a). At the same time, we have failed to find any significant positive

325	effect of legal protection on the occupancy of species. The reason may lie in the low
326	effectiveness of direct conservation actions (Kumstátová et al. 2005). Czech nature
327	conservation is probably not able to take care of problematic bird species (Voříšek et al.
328	2008). Further studies are needed to ensure that existing protected areas create suitable
329	conditions for endangered birds' existence (e.g., Kollar and Wurm 1996).
330	To our knowledge, our study is the first attempt to examine the patterns of changes in
331	breeding bird distribution on a country-wide level within the former Eastern block. Compared
332	to the previous studies based on population trends from annual monitoring schemes (e.g.,
333	Gregory et al. 2007, Reif et al. 2008a, b, c), our breeding distribution mapping data involve
334	information about uncommon species (Van Turnhout et al. 2007). They are, therefore, less
335	biased and the observed patterns are more general. Our results imply that the major drivers of
336	changes (agricultural intensification, forest expansion, global climate change, biotic
337	homogenization) are probably similar across European regions, although local specificities of
338	several aspects emerged (e.g., poor performance of legal protection). Future studies should
339	focus in more detail on the investigation of particular drivers.
340	
341	Zusammnefassung
342	
343	Veränderungen in der Vogelverbreitung in einem mitteleuropäischen Land zwischen
344	1985-1989 und 2001-2003
345	
346	Europäische Vögel sind in den letzten Jahrzehnten signifikant von dramatischen
347	Umweltveränderungen betroffen worden. Die Effekte dieser Veränderungen auf den
348	Artenreichtum und die Verbreitung in bestimmten Ländern sind nach wie vor schlecht
349	verstanden, da hochwertige, großräumige Daten fehlen, die über die Zeit standardisiert sind.

350 Dies trifft besonders auf Mittel- und Osteuropa zu. Anhand einer Modellgruppe von Vögeln 351 in Tschechien (landesweite Atlaskartierungsdaten) haben wir untersucht, ob sich 352 Langzeitveränderungen in Artenreichtum und Verbreitung zwischen 1985-1989 und 2001-353 2003 zwischen Artengruppen unterschieden, die anhand ihrer Habitatansprüche, ihrem 354 Verbreitungstyp in Europa, ihrer Zugstrategie und ihrem nationalen Schutzstatus voneinander 355 abgegrenzt sind. Außerdem haben wir die Effekte von Erstbesiedlungen und lokalen 356 Ausrottungen auf diese Veränderungen untersucht. Während die Artenzahl im gesamten Land 357 in beiden Zeiträumen gleich blieb (208 Arten), hat sich die Artenzusammensetzung verändert. 358 Zunehmende Besiedlung (d.h. Zahl besetzter Kartenquadrate) wurde für in Wald- und 359 Feuchtlandhabitaten vorkommende Arten, Kurzstreckenzieher und nicht geschützte Arten 360 beobachtet. Im Süden vorkommende Arten veränderten ihre Besiedlung ebenfalls zum 361 Positiven, doch dieses Muster verschwand nach der Einbeziehung von sechs Arten, die auf 362 extensiv bewirtschaftetes Ackerland angewiesen sind und zwischen den Kartierungen 363 ausstarben. Die gesamte Besiedlung aller Arten zusammengenommen zeigte positive 364 Veränderungen, nachdem Erstbesiedler und ausgestorbene Arten ausgeschlossen worden 365 waren. Wir schlagen vor, dass die Verbesserung der Umweltbedingungen nach 1990 die 366 Verbreitung von häufigen Vögeln in Tschechien stabilisierte oder ansteigen ließ, und der 367 Verlust mehrerer Arten könnte durch das Verschwinden spezifischer Ackerbautechniken 368 verursacht worden sein.

369

Acknowledgements Special thanks belongs to all the volunteers who participated in the
collection of data needed to write this paper. We thank Karel Weidinger, Martin Paclík and
two anonymous referees for their critical comments on the manuscript. Pamela and Kenneth
C. Lewis improved the English. The study was supported by the Grant Agency of the
Academy of Sciences of the Czech Republic (KJB601110919) and Ministry of Education of

375	the Czech Republic (MSM 6198959212). The authors declare that they have no conflict of
376	interest.
377	
378	
379	References
380	
381	Anonymus (1996) Environmental Yearbook of the Czech Republic 1995. Ministry of the
382	Environment of the Czech Republic, Czech Ecological Institute, Prague
383	
384	Anonymus (2008) Decree of the Ministry of the Environment of 11 Jun 1992, implementing
385	selected provisions of Czech National Council Act No. 114/1992 Coll. on the protection of
386	the environment and the natural landscape, in the wording till 4 Nov 2008
387	
388	Bauer H-G, Lemoine N, Peintinger M (2008) Avian species richness and abundance at Lake
389	Constance: diverging long-term trends in Passerines and Nonpasserines. J Ornithol 149:217-
390	222
391	
392	Busse P (2001) European passerine migration system – what is known and what is lacking.
393	Ring 23, 1-2:3–36
394	
395	Cepák J, Klvaňa P, Škopek J, Schröpfer L, Jelínek M, Hořák D, Formánek J, Zárybnický J
396	(2008) Czech and Slovak Bird Migration Atlas. Aventinum, Prague (in Czech with English
397	summary)
398	
399	Devictor V, Julliard R, Clavel J, Jiguet F, Lee A, Couvet D (2008) Functional biotic

400	homogenization of bird communities in disturbed landscapes. Global Ecol Biogeogr 17:252-
401	261
402	
403	Donald PF, Green RE, Heath MF (2001) Agricultural intensification and the collapse of
404	Europe's farmland bird populations. Proc R Soc Lond Ser B Biol Sci. 268:25–29
405	
406	Donald PF, Sanderson FJ, Burfield IJ, Bierman SM, Gregory RD, Waliczky Z (2007)
407	International Conservation Policy Delivers Benefits for Birds in Europe. Science 317:810-
408	813
409	
410	European Environmental Agency (2006) Biogeographical regions, Europe 2005. European
411	Environmental Agency, Copenhagen
412	
413	Feranec J, Šúri M, Oťaheľ J, Cebecauer T, Kolář J, Soukup T, Zdeňková D, Waszmuth J,
414	Vájdea V, Víjdea A-M, Nitica C (2000) Inventory of major landscape changes in the Czech
415	Republic, Hungary, Romania and Slovak Republic 1970s–1990s. Int J Appl Earth Obs Geoinf
416	2:129–139
417	
418	Gregory RD, Noble DG, Custance J (2004) The state of play of farmland birds: population
419	trends and conservation status of lowland farmland birds in the United Kingdom. Ibis 146:1-
420	13
421	
422	Gregory RD, van Strien A, Vorisek P, Meyling AWG, Noble DG, Foppen RPB, Gibbons DW
423	(2005) Developing indicators for European birds. Philos Trans R Soc B Biol Sci 360:269–288
424	

425	Gregory RD, Voříšek P, van Strien A, Meyling AWG, Jiguet F, Fornasari L, Reif J, Burfield
426	IJ (2007) Population trends of widespread woodland birds in Europe. Ibis 149:78-97
427	
428	Goławski A (2006) Changes in numbers of some bird species in the agricultural landscape of
429	eastern Poland. Ring 28:127–133
430	
431	Hagemeijer WJM, Blair MJ (1997) The EBCC atlas of European breeding birds. Their
432	distribution and abundance. T & AD Poyser, London
433	
434	Heldbjerg H, Fox TAD (2008) Long-term population declines in Danish trans-Saharan
435	migrant birds. Bird Study 55:267–279
436	
437	Hudec K (1983) Fauna of Czechoslovakia: Birds III. Academia, Prague (in Czech with
438	German summary)
439	
440	Hudec K (1994) Fauna of the Czech and Slovak Republic: Birds I. Academia, Prague (in
441	Czech with German summary)
442	
443	Hudec K, Šťastný K (2005) Fauna of the Czech Republic: Birds II. Academia, Prague (in
444	Czech with German summary)
445	
446	Huntley B, Green RE, Collingham YC, Willis SG (2007) A Climatic Atlas of European
447	Breeding Birds. Lynx Edicions, Barcelona
448	

449 Jiguet F, Gadot AS, Julliard R, Newson SE, Couvet D (2007) Climate envelope life history

450	traits and the resilience of birds facing global change. Global Change Biol 13:1672-1684
451	
452	Jongman RHG (2002) Homogenisation and fragmentation of the European landscape:
453	ecological consequences and solutions. Landsc Urban Plan 58:211-221
454	
455	Julliard R, Jiguet F, Couvet D (2004) Common birds facing global changes: what makes a
456	species at risk? Glob Change Biol 10:148–154
457	
458	Kerbiriou C, Le Viol I, Jiguet F, Devictor V (2009) More species, fewer specialists: 100 years
459	of changes in community composition in an island biogeographical study. Divers Distrib
460	15:641–648
461	
462	Kollar HP, Wurm H (1996) Zur Bestandssituation der Großtrappe (Otis t. tarda L., 1758) in
463	Österreich. Natschutz Landschpflege Brandenbg Heft 1/2, 1996:7–9 (in German with English
464	summary)
465	
466	Konvička M, Fric Z, Beneš J (2006) Butterfly extinctions in European states: Do
467	socioeconomic conditions matter more than physical geography? Glob Ecol Biogeogr 15:82-
468	92
469	
470	Konvička M, Beneš J, Čížek O, Kopeček F, Konvička O, Vitaz L (2008) How too much care
471	kills species: Grassland reserves, agri-environmental schemes and extinction of Colias
472	myrmidone butterfly from its former stronghold. J Insect Conserv 12:519-525
473	
474	Kumstátová T, Nová P, Marhoul P (2005) Assessment of conservation projects on animals

475 endangered in the Czech Republic. AOPK ČR, Prague (in Czech)

476

- 477 Lemoine N, Bauer H-G, Peintinger M, Böhning-Gaese K (2007) Effects of Climate and Land-
- 478 Use Change on Species Abundance in a Central European Bird Community. Conserv Biol
- 479 21:495–503
- 480
- 481 Lenzen M, Lane A, Widmer-Cooper A, Williams M (2008) Effects of Land Use on
- 482 Threatened Species. Conserv Biol 23:294–306
- 483
- 484 Ludwig T, Storch I, Gärtner S (2009) Large-scale land use change may explain bird species
- 485 declines in semi-natural areas: the case of Black Grouse population collapse in Lower
- 486 Saxony, Germany. J Ornithol 150:871–882
- 487
- 488 Málková P, Lacina D (2002) Important Bird Areas in the Czech Republic. Czech Society for
- 489 Ornithology, Prague (in English and Czech)

490

- 491 Moldan B (1990) Environment of the Czech Republic. Development and statement until the
- 492 end of 1989. Academia, Prague (in Czech)
- 493
- 494 Moreno-Rueda G, Pizarro M (2008) Temperature differentially mediates species richness of
- 495 birds of different biogeographic types. Ardea 96:115–120

496

- 497 Opdam P, Wascher D (2004) Climate change meets habitat fragmentation: linking landscape
- 498 and biogeographical scale levels in research and conservation. Biol Conserv 117:285–297

500	Orłowski G, Ławniczak D (2009) Changes in breeding bird populations in farmland of south-
501	western Poland between 1977–1979 and 2001. Folia Zool 58:228–239
502	
503	Primack RB (2006) Essentials of Conservation Biology. Sinauer Associates, Andover
504	
505	Reif J, Voříšek P, Šťastný K, Bejček V (2006) Population trends of birds in the Czech
506	Republic during 1982–2005. Sylvia 42:22–37
507	
508	Reif J, Voříšek P, Šťastný K, Bejček V, Petr J (2007) Population increase of forest birds in the
509	Czech Republic between 1982 and 2003. Bird Study 54:248–255
510	
511	Reif J, Voříšek P, Šťastný K, Bejček V, Petr J (2008a) Agricultural intensification and
512	farmland birds: new insights from a central European country. Ibis 150:596-605
513	
514	Reif J, Voříšek P, Šťastný K, Koschová M, Bejček V (2008b) The impact of climate change
515	on long-term population trends of birds in a central European country. Anim Conserv 11:412-
516	421
517	
518	Reif J, Storch D, Voříšek P, Šťastný K, Bejček V (2008c) Bird-habitat associations predict
519	population trends in central European forest and farmland birds. Biodivers Conserv 17:3307-
520	3319
521	
522	Schaefer H-C, Jetz W, Böhning-Gaese K (2008) Impact of climate change on migratory birds:
523	community reassembly versus adaptation. Global Ecol Biogeogr 17:38–49
524	

525 Swanson TM (1998) The Economics and Ecology of Biodiversity Decline: The Forces

526 Driving Global change. Cambridge University Press, Cambridge

527

- 528 Šťastný K, Bejček V, Hudec K (1996) Atlas of Breeding Bird Distribution in the Czech
- 529 Republic. H & H, Prague (in Czech with English summary)
- 530
- 531 Šťastný K, Bejček V, Hudec K (2006) Atlas of Breeding Bird Distribution in the Czech
- 532 Republic. Academia, Prague (in Czech with English summary)
- 533
- 534 Tryjanowski P (2000) Changes in breeding bird populations of some farmland birds in W
- 535 Poland in relation to changes in crop structure, weather conditions and number of predators.
- 536 Folia Zool 49:305–315
- 537
- 538 Van Turnhout CAM, Foppen RPB, Leuven RSEW, Siepel H, Esselink H (2007) Scale-
- 539 dependent homogenization: Changes in breeding bird diversity in the Netherlands over a 25-
- 540 year period. Biol Conserv 134:505–516

- 542 Van Turnhout CAM, Foppen RPB, Leuven RSEW, Van Strien A, Siepel H (2010) Life-
- 543 history and ecological correlates of population change in Dutch breeding birds. Biol Conserv
- 544 143:173–181
- 545
- 546 Verhulst J, Báldi A, Kleijn D (2004) Relationship between land-use intensity and species
- richness and abundance of birds in Hungary. Agric Ecosyst Environ 104:465–473
- 548
- 549 Voříšek P, Reif J, Šťastný K, Bejček V (2008) How effective can be the national law in
 - 22

550	protecting birds? A case study from the Czech Republic. Folia Zool 57:221–230
551	
552	Yamamura Y, Amano T, Koizumi T, Mitsuda Y, Taki H, Okabe K (2008) Does land-use
553	change affect biodiversity dynamics at a macroecological scale? A case study of birds over
554	the past 20 years in Japan. Anim Conserv 12:110-119
555	
556	Zar JH (1996) Biostatistical analysis. Prentice Hall, New Jersey
557	
558	
559	
560	
561	
562	
563	
564	
565	
566	
567	
568	
569	
570	
571	
572	
573	
574	
575	
576	
577	

578 Table 1 Changes in species richness (total number of species in the country) and occupancy (number of occupied mapping squares) of birds in the Czech Republic between
 579 1985–1989 and 2001–2003 as revealed by the country-wide breeding distribution altas mapping. Species were sorted into groups defined by their habitat requirements,

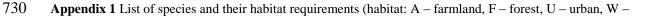
577 1985–1989 and 2001–2005 as revealed by the country-wide breeding distribution and sin apping. Species were solid into groups defined by the inabitat requirements, 580 migratory strategy, European distribution and legal protection status in the Czech Republic. Statistics refer to single sample t-tests that tested the significance of change in

581 occupancy of each group between the mapping periods. Significant differences (P < 0.05) are in bold type and those significant after the Bonferroni correction (P < 0.0031) are underlined. Tests were performed with (a) and without (b) 14 species that colonized the country or went extinct between the mapping periods. See Methods section for a detailed description of the calculation of change in occupancy and for more details on the sorting of species into the ecological groups

* 5 7	Specie	es richness	a) Change in occupancy	Ν	t	Р	b) Change in occupancy	Ν	t	Р
3	1985-	-9 2001–3	(± SE)				(± SE)			
<i>Habitat requirements</i>										
) Farmland	50	44	-0.21 (± 0.11)	50	-1.92	0.0614	$0.04 (\pm 0.06)$	44	0.58	0.5626
Forest	78	80	$0.14 (\pm 0.05)$	80	2.74	0.0076	$0.09 (\pm 0.04)$	78	2.33	0.0220
2 Urban	19	19	$-0.09(\pm 0.06)$	19	-1.42	0.1742	$-0.09(\pm 0.06)$	19	-1.41	0.1742
3 Wetland	61	65	0.28 (± 0.96)	66	<u>3.10</u>	<u>0.0029</u>	$0.19 (\pm 0.07)$	60	2.63	0.0107
1										
4 Migratory strategy										
Resident	45	44	$0.02 (\pm 0.08)$	45	0.24	0.8127	$0.06 (\pm 0.06)$	44	1.03	0.3096
5 Partial migrants	22	23	$0.14 (\pm 0.10)$	23	1.34	0.1934	$0.05 (\pm 0.06)$	22	0.87	0.3934
7 Short-distance migrant	s 71	74	$0.19 (\pm 0.07)$	74	2.64	0.0102	0.11 (± 0.06)	71	1.90	0.0619
B Long-distance migrant	s 70	67	0.01 (± 0.10)	73	0.08	0.9328	$0.10 (\pm 0.05)$	64	1.94	0.0571
<i>European distribution</i>										
) Central	22	22	$0.02 (\pm 0.17)$	23	0.09	0.9271	$0.02 (\pm 0.13)$	21	0.13	0.8947
Northern	68	69	$0.13 (\pm 0.08)$	70	1.70	0.0930	$0.11 (\pm 0.06)$	67	1.70	0.0882
2 Southern	53	51	$0.10 (\pm 0.12)$	56	0.86	0.3951	$0.20 (\pm 0.06)$	48	<u>3.14</u>	<u>0.0029</u>
3 Widespread	65	66	$0.05 (\pm 0.04)$	66	1.23	0.2239	$0.02 (\pm 0.03)$	65	0.73	0.4708
Protection status										
5 Non-protected	94	97	$0.12 (\pm 0.05)$	98	2.43	0.0168	<u>0.06 (± 0.02)</u>	93	<u>3.29</u>	<u>0.0014</u>
5 Endangered	28	28	$0.03 (\pm 0.06)$	28	0.43	0.6692	$0.03 (\pm 0.06)$	28	<u>3.29</u> 0.43	0.6692
7 Highly endangered	28 56	28 55	$0.03 (\pm 0.00)$ $0.10 (\pm 0.09)$	28 57	1.02	0.0092	$0.03 (\pm 0.00)$ $0.14 (\pm 0.07)$	28 54	1.86	0.0679
8 Critically endangered	30 30	28	$0.10 (\pm 0.09)$ $0.03 (\pm 0.20)$	32	0.16	0.8769	$0.14 (\pm 0.07)$ $0.19 (\pm 0.16)$	26	1.80	0.2344
) Critically endangered	30	20	$0.03 (\pm 0.20)$	32	0.10	0.0/09	$0.19(\pm 0.10)$	20	1.21	0.2344
) Total	208	208	$0.09 (\pm 0.05)$	215	1.91	0.0576	$0.09 (\pm 0.03)$	201	3.00	0.0030

Table 2 The effects of ecological characteristics of bird species expressed as four factors on changes in their

612 mean occupancy between 1985–1989 and 2001–2003 tested by one-way ANOVAs (seperate tests for each


factor) with (a) and without (c) 14 species present in only one of the mappings, and by main effects ANOVAs
(all factors included into one model) with (b) and without (d) 14 species present in only one of the mappings.

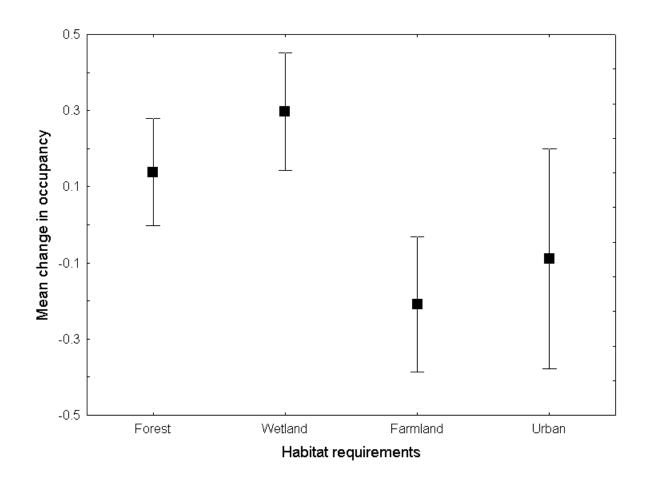
615 See Table 1 for identification of the levels of each factor

Factor	a)		b)		c)		d)	
	$F_{3,211}$	Р	$F_{3,202}$	Р	F _{3,197}	Р	F _{3,188}	Р
Habitat requirements	6.6040	0.0003	5.7691	0.0008	2.4741	0.0628	2.1731	0.0926
Migratory strategy	1.1359	0.3355	0.2256	0.8785	1.1795	0.9102	0.1149	0.9512
European distribution	0.2533	0.8589	0.3632	0.7796	1.8702	0.1471	1.6522	0.1789
Protection status	0.2152	0.8858	0.3402	0.7963	1.0695	0.3631	0.2533	0.8589

- 671 Fig. 1 Mean changes in the occupancy of Czech birds between 1985–1989 and 2001–2003 according to their
- habitat requirements. The vertical bars denote 0.95 confidence intervals. In one-way ANOVA, $F_{3,211} = 6.6040$ and P = 0.0003. Pairwise comparisons of means by the Tukey test gave the following results: Forest different

from Farmland (P = 0.0138) and Wetland different from Farmland (P = 0.0001)

731 732 733 734 735 wetland), migratory strategy (migration: R – resident, P – partial migrants, S – short-distance migrants, L – long-distance migrants), European distribution (distribution: C – central, N – northern, S – southern, W – widespread) and legal protection status (protection: N – non-protected, E – endangered, H – highly endangered, C – critically


endangered) in the Czech Republic

736	Species	Habitat	Migration	Distribution	Protection
737	Accipiter gentilis	F	R	W	Е
738	Accipiter nisus	F	Р	W	Н
739	Acrocephalus arundinaceus	W	L	S	Н
740	Acrocephalus palustris	А	L	Ν	Ν
741	Acrocephalus scirpaceus	W	L	W	Ν
742	Acrocephalus schoenobaenus	W	L	Ν	Ν
743	Actitis hypoleucos	W	L	W	Н
744	Aegithalos caudatus	F	R	W	Ν
745	Aegolius funereus	F	R	Ν	Н
746	Alauda arvensis	А	S	W	Ν
747	Alcedo atthis	W	Р	S	Н
748	Anas acuta	W	S	Ν	С
749	Anas clypeata	W	S	Ν	Н
750	Anas crecca	W	S	Ν	E
751	Anas penelope	W	S	Ν	Ν
752	Anas platyrhynchos	W	Р	W	Ν
753	Anas querquedula	W	L	Ν	Н
754	Anas strepera	W	S	С	E
755	Anser anser	W	S	Ν	Ν
756	Anthus campestris	А	L	S	Н
757	Anthus pratensis	А	S	Ν	Ν
758	Anthus spinoletta	А	S	S	Н
759	Anthus trivialis	F	L	W	Ν
760	Apus apus	U	L	W	E
761	Aquila heliaca	F	Р	С	Ν
762	Aquila pomarina	F	L	С	С
763	Ardea cinerea	W	S	W	Ν
764	Ardea purpurea	W	L	S	С
765	Asio flammeus	А	S	Ν	Н
766	Asio otus	А	Р	W	Ν
767	Athene noctua	U	R	S	Н
768	Aythya ferina	W	S	Ν	Ν
769	Aythya fuligula	W	S	Ν	Ν
770	Aythya nyroca	W	S	С	С
771	Bonasa bonasia	F	R	Ν	Н
772	Botaurus stellaris	W	S	С	С
773	Bubo bubo	F	R	W	E
774	Bucephala clangula	W	S	Ν	Н
775	Burhinus oedicnemus	А	L	S	С
776	Buteo buteo	F	Р	W	Ν
777	Caprimulgus europaeus	F	L	W	Н
778	Carduelis cannabina	U	S	W	Ν
779	Carduelis carduelis	U	Р	S	Ν
780	Carduelis flammea	F	R	Ν	Ν
781	Carduelis chloris	U	Р	W	Ν
782	Carduelis spinus	F	S	Ν	Ν
783	Carpodacus erythrinus	А	L	Ν	E
784	Certhia brachydactyla	F	R	S	Ν
785	Certhia familiaris	F	R	Ν	Ν
786	Ciconia ciconia	U	L	S	E
787	Ciconia nigra	F	L	S	Н
788	Cinclus cinclus	W	R	W	Ν
789	Circus aeruginosus	W	L	С	E
790	Circus cyaneus	F	S	N	Н
-	~				

791	Circus pygargus	А	L	S	Н
792	Coccothraustes coccothraustes	F	S	S	Ν
793	Columba livia f. domestica	U	R	W	Ν
794	Columba oenas	F	S	W	Н
795	Columba palumbus	F	S	W	Ν
796	Coracias garrulus	A	L	S	C
797		F	R	W	E
798	Corvus corax	-			
	Corvus cornix	A	R	W	N
799	Corvus corone	А	R	S	Ν
800	Corvus frugilegus	U	Р	С	Ν
801	Corvus monedula	U	Р	W	Н
802	Coturnix coturnix	А	L	S	Н
803	Crex crex	А	L	Ν	Н
804	Cuculus canorus	А	L	W	Ν
805	Cygnus olor	W	P	C	N
806	Delichon urbica	Ü	L	W	N
800					
	Dendrocopos leucotos	F	R	W	Н
808	Dendrocopos major	F	R	W	Ν
809	Dendrocopos medius	F	R	С	Е
810	Dendrocopos minor	F	R	Ν	Ν
811	Dendrocopos syriacus	F	R	S	Н
812	Dryocopus martius	F	R	Ν	Ν
813	Egretta alba	W	S	S	Н
814	Egretta garzetta	W	~ L	Š	H
815	Emberiza citrinella		R	W	N
815		A			
	Emberiza hortulana	A	L	W	C
817	Emberiza schoeniclus	W	S	N	N
818	Erithacus rubecula	F	S	W	Ν
819	Falco cherrug	F	Р	С	С
820	Falco peregrinus	А	Р	W	С
821	Falco subbuteo	F	L	W	Н
822	Falco tinnunculus	U	Р	W	Ν
823	Falco vespertinus	A	L	С	С
824	Ficedula albicollis	F	L	Č	N
825	Ficedula hypoleuca	F	L	N	N
825					
	Ficedula parva	F	L	N	Н
827	Fringilla coelebs	F	S	W	N
828	Fulica atra	W	S	W	Ν
829	Galerida cristata	А	R	S	E
830	Gallinago gallinago	W	S	Ν	Н
831	Gallinula chloropus	W	S	W	Ν
832	Garrulus glandarius	F	Р	W	Ν
833	Glaucidium passerinum	F	R	Ν	Н
834	Grus grus	W	S	N	C
835	Haliaeetus albicilla	Ŵ	R	N	Č Č
836		w	L	S	
	Himantopus himantopus				N
837	Hippolais icterina	F	L	N	N
838	Hirundo rustica	U	L	W	E
839	Charadrius dubius	W	L	W	Ν
840	Charadrius hiaticula	W	L	Ν	Ν
841	Charadrius morinellus	А	S	Ν	С
842	Chlidonias hybridus	W	L	S	Ν
843	Chlidonias niger	W	L	Ĉ	C
844		Ŵ	L	S	C
845	Ixobrychus minutus			S W	
	Jynx torquilla	A	L		Н
846	Lanius collurio	A	L	N	E
847	Lanius excubitor	Α	Р	W	E
848	Lanius minor	А	L	S	Н
849	Lanius senator	А	L	S	Н
850	Larus cachinnans	W	S	S	Ν

851	Larus canus	W	S	Ν	Ν
852	Larus melanocephalus	W	S	С	Н
853	Larus ridibundus	W	Š	N	N
854	Limosa limosa	W	L	C	C
855	Locustella fluviatilis	А	L	С	Ν
856	Locustella luscinioides	W	L	С	E
857	Locustella naevia	А	L	Ν	Ν
858	Loxia curvirostra	F	Р	Ν	Ν
859	Lullula arborea	F	S	S	Н
860	Luscinia luscinia	A	L	N N	Н
861	Luscinia megarhynchos	A	L	S	E
862	Luscinia svecica cyanecula	W	S	S	Н
863	Luscinia svecica svecica	W	S	Ν	С
864	Mergus merganser	W	S	Ν	С
865	Merops apiaster	А	L	S	Н
866	Miliaria calandra	A	P	Ŝ	C
867	Milvus migrans	F	L	S	C C
	8				
868	Milvus milvus	F	S	S	С
869	Motacilla alba	U	S	W	Ν
870	Motacilla cinerea	W	S	S	Ν
871	Motacilla flava	А	L	W	Н
872	Muscicapa striata	F	Ĺ	W	E
873		W	S	S	H
	Netta rufina				
874	Nucifraga caryocatactes	F	R	Ν	E
875	Numenius arquata	W	S	Ν	С
876	Nycticorax nycticorax	W	L	S	Н
877	Oenanthe oenanthe	А	L	W	Н
878	Oriolus oriolus	F	L	S	Н
879	Otis tarda	Ā	R	S	C
880		F	L	S	C C
	Otus scops				
881	Pandion haliaetus	W	L	Ν	С
882	Panurus biarmicus	W	Р	S	Н
883	Parus ater	F	R	W	Ν
884	Parus caeruleus	F	Р	W	Ν
885	Parus cristatus	F	R	W	Ν
886	Parus major	F	P	W	N
887	Parus montanus	F	R	N	N
888	Parus palustris	F	R	С	Ν
889	Passer domesticus	U	R	W	Ν
890	Passer montanus	А	R	S	Ν
891	Perdix perdix	А	R	С	Е
892	Pernis apivorus	F	L	N	Н
893	Phalacrocorax carbo	W	S	N	E
893 894					
	Phasianus colchicus	A	R	C	N
895	Phoenicurus ochruros	U	S	S	Ν
896	Phoenicurus phoenicurus	F	L	W	Ν
897	Phylloscopus collybita	F	S	W	Ν
898	Phylloscopus sibilatrix	F	L	Ν	Ν
899	Phylloscopus trochiloides	F	L	N	N
900		F			
	Phylloscopus trochilus		L	N	N
901	Pica pica	А	R	W	Ν
902	Picoides tridactylus	F	R	Ν	Н
903	Picus canus	F	R	Ν	Ν
904	Picus viridis	F	R	S	Ν
905	Platalea leucorodia	W	S	Š	C
906		W	S	N N	E
	Podiceps cristatus				
907	Podiceps grisegena	W	S	N	Н
908	Podiceps nigricollis	W	S	С	E
909	Porzana parva	W	L	С	С
910	Porzana porzana	W	L	Ν	Н
	•				

911	Prunella collaris	А	S	S	Н	
912	Prunella modularis	F	S	W	Ν	
913	Pyrrhula pyrrhula	F	Р	Ν	Ν	
914	Rallus aquaticus	W	S	S	Н	
915	Recurvirostra avosetta	W	S	S	С	
916	Regulus ignicapillus	F	S	S	Ν	
917	Regulus regulus	F	S	Ν	Ν	
918	Remiz pendulinus	W	S	S	Е	
919	Riparia riparia	А	L	W	Е	
920	Saxicola rubetra	А	L	Ν	Е	
921	Saxicola torquata	А	S	S	Е	
922	Scolopax rusticola	F	S	Ν	Е	
923	Serinus serinus	U	S	S	Ν	
924	Sitta europaea	F	R	W	Ν	
925	Sterna hirundo	W	L	Ν	Н	
926	Streptopelia decaocto	U	R	S	Ν	
927	Streptopelia turtur	A	L	S	Ν	
928	Strix aluco	F	R	W	Ν	
929	Strix uralensis	F	R	Ν	С	
930	Sturnus vulgaris	F	S	W	N	
931	Sylvia atricapilla	F	S	W	Ν	
932	Sylvia borin	F	L	W	Ν	
933	Sylvia communis	А	L	W	Ν	
934	Sylvia curruca	U	L	Ν	Ν	
935	Sylvia nisoria	A	L	С	Н	
936	Tadorna tadorna	W	S	W	Ν	
937	Tachybaptus ruficollis	W	S	S	Е	
938	Tetrao tetrix	А	R	Ν	Н	
939	Tetrao urogallus	F	R	Ν	С	
940	Tringa ochropus	F	S	Ν	Н	
941	Tringa totanus	W	S	Ν	С	
942	Troglodytes troglodytes	F	S	W	Ν	
943	Turdus iliacus	F	S	Ν	Н	
944	Turdus merula	F	Р	W	Ν	
945	Turdus philomelos	F	S	W	Ν	
946	Turdus pilaris	F	S	Ν	Ν	
947	Turdus torquatus	F	S	Ν	Н	
948	Turdus viscivorus	F	S	W	Ν	
949	Tyto alba	U	R	S	Н	
950	Upupa epops	Ā	L	Š	H	
951	Vanellus vanellus	A	S	Ň	N	
952		-		·	·	

