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We explored changes in multiscale brain signal complexity and power-law scaling exponents of

electroencephalogram (EEG) frequency spectra across several distinct global states of con-

sciousness induced in the natural physiological context of the human sleep cycle. We specifically

aimed to link EEG complexity to a statistically unified representation of the neural power spec-

trum. Further, by utilizing surrogate-based tests of nonlinearity we also examined whether any

of the sleep stage-dependent changes in entropy were separable from the linear stochastic

effects contained in the power spectrum. Our results indicate that changes of brain signal

entropy throughout the sleep cycle are strongly time-scale dependent. Slow wave sleep was

characterized by reduced entropy at short time scales and increased entropy at long time scales.

Temporal signal complexity (at short time scales) and the slope of EEG power spectra appear, to

a large extent, to capture a common phenomenon of neuronal noise, putatively reflecting corti-

cal balance between excitation and inhibition. Nonlinear dynamical properties of brain signals

accounted for a smaller portion of entropy changes, especially in stage 2 sleep.

1 | CHANGES IN EEG MULTISCALE

ENTROPY AND POWER-LAW FREQUENCY

SCALING DURING THE HUMAN SLEEP CYCLE

One of the defining features of consciousness is that it undergoes spon-

taneous transitions over the course of a day, ranging from wakefulness

through varying depths of sleep that encompass synchronous slow-

wave episodes interspersed with periods of rapid eye movement (REM)

sleep (Llinás & Paré, 1991; Steriade, Timofeev, & Grenier, 2001). These

transitions are examples of large-scale self-organized events that reflect

delicately tuned competitive interactions between discrete brainstem

and basal forebrain nuclei (Brown, Basheer, McKenna, Strecker, &

McCarley, 2012; Schwartz & Roth, 2008). The resulting shifts in global

states of consciousness are accompanied by widespread changes in the

frequency and amplitude of mass cortical electrophysiology. Sleep stag-

ing has conventionally been quantified using electroencephalographic

(EEG) measures of power in specific frequency bandwidths and the

spread of spatially synchronous waves of activity (Pivik, 2007). Another

window on the dynamic cortical signatures of sleep and wakefulness is

offered by a growing family of non-linear measures related to the tem-

poral complexity of brain signals (see Ma, Shi, Peng, & Yang, 2017 for a

review). In spite of the increasing enthusiasm that such measures have

garnered recently, it remains unclear how changes in brain signal

complexity relate to classical measures of spectral power or what aspect

of neurophysiology they reflect. Our aim here was to use distinct sleep

stages as a natural physiological context for examining changes in scalp

EEG complexity and to relate this to a unified statistical representation

of the power spectrum that grounds both phenomena in emerging per-

spectives on large-scale cortical function.

Functional brain networks are fluidly assembled and disassembled

throughout the course of the sleep–wake cycle (Atasoy, Deco, Krin-

gelbach, & Pearson, 2018; Deco, Jirsa, & McIntosh, 2011; Hansen,

Battaglia, Spiegler, Deco, & Jirsa, 2015; Tagliazucchi, 2017; Tagliazuc-

chi, Behrens, & Laufs, 2013; Tononi & Koch, 2008). To capture the

repertoire of functional networks that form and fragment over time,

in terms of the diversity of patterns present in brain signals,

researchers have turned to a quantitative metric of uncertainty/com-

plexity known as entropy (Courtiol et al., 2016; Peng, Costa, & Gold-

berger, 2009; Vakorin & McIntosh, 2012). Entropy denotes the

irregularity of time series data—patterns with low predictability are

assigned high entropy, while highly ordered, regular signals (e.g., sine

waves with fixed frequency) contain very little entropy. When regular-

ity is computed at multiple time scales, it offers one quantitative index

of a system’s degree of complexity (Costa, Goldberger, & Peng, 2005;

Goldberger, Peng, & Lipsitz, 2002; Pincus & Goldberger, 1994).
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Accumulating evidence suggests that brain signal entropy tracks

gradations in global consciousness. The overall trend reported by

studies encompassing human and non-human animal models, is that

signal diversity decreases from wakefulness to the NREM-1 and

NREM-2 stages, reaching its nadir in slow-wave sleep (SWS), before

recovering to near waking levels during REM epochs (Abásolo,

Simons, Morgado da Silva, Tononi, & Vyazovskiy, 2015; Acharya,

Faust, Kannathal, Chua, & Laxminarayan, 2005; Bruce, Bruce, & Ven-

nelaganti, 2009; Burioka et al., 2005; Lee, Fattinger, Mouthon, Noir-

homme, & Huber, 2013; Mateos, Guevara Erra, Wennberg, & Perez

Velazquez, 2018; Nicolaou & Georgiou, 2011; Shi, Shang, Ma, Sun, &

Yeh, 2017). Convergent findings point to reductions of neurophysio-

logical signal complexity during the loss of consciousness induced by

anesthesia (e.g., Ferenets, Vanluchene, Lipping, Heyse, & Struys,

2007; Schartner et al., 2015; Zhang, Roy, & Jensen, 2001) while hallu-

cinogenic drugs produce a diversification of neuronal time series pat-

terns consistent with their profound perceptual, cognitive, and

emotional effects (e.g., Schartner, Carhart-Harris, Barrett, & Seth,

2017; Tagliazucchi, Carhart-Harris, Leech, Nutt, & Chialvo, 2014; Viol,

Palhano-Fontes, Onias, de Araujo, & Viswanathan, 2017). These find-

ings have paved the way for a novel view of conscious states referred

to as the entropic brain theory (Carhart-Harris, 2018; Carhart-Harris

et al., 2014), according to which qualitative shifts in mental states can

be directly linked to the degree of irregularity evident in macroscopic

recordings of neuronal activity. The possibility of having information

theoretic based measures of consciousness, accessible from non-

invasive EEG recordings, could be further leveraged to investigate a

range of sleep disorders, in addition to typical, diurnal variations of

the sleep–wake cycle (Ma et al., 2017).

Despite converging findings that the entropy of brain signals

changes across distinct conscious states, there are still numerous

unresolved theoretical and methodological issues, which limit inter-

pretations of temporal complexity in terms of large-scale cortical

events. A major gap stems from the scarce evidence about the degree

to which entropy effects are driven by: (i) the linear properties of brain

signals (reflected in the power spectrum), (ii) nonlinear time dependen-

cies, or (iii) some combination of the two. The amount of irregularity

in time series patterns reflects linear stochastic effects as well as non-

linear deterministic correlations (Courtiol et al., 2016; Kaffashi,

Foglyano, Wilson, & Lopario, 2008; Park, Kim, Kim, & Cichocki, 2007;

Wang, McIntosh, Kovacevic, Karachalios, & Protzner, 2016). One

sleep study that directly explored this question found that single scale

estimates of EEG entropy were strongly predicted by the log-

transformed ratio of high (alpha and beta) to low frequency (delta and

theta) spectral power (Bruce, Bruce, & Vennelaganti, 2009). The

authors concluded that high frequency spectral components were

entropy raising and lower frequencies entropy suppressing (see also

Lee et al., 2013; Mizuno et al., 2010), and that overall, entropy reflects

the balance between sleep and alertness promoting factors. The impli-

cation here is that entropy changes stem almost entirely from the lin-

ear properties of brain signals. Surrogate data analyses, which involve

preserving the linear properties of neural time series while simulta-

neously altering the underlying temporal dependencies via phase ran-

domization, provide a more explicit test for the presence of

nonlinearities (Theiler, Eubank, Longtin, Galdrikian, & Farmer, 1992),

yet they have not been used frequently (for an exception, see Schart-

ner, Pigorini, et al., 2017).

An intriguing possibility, that we set out to test here, is that

sleep-dependent changes in signal complexity and the power spec-

trum index a common phenomenon of neuronal noise that is driven

by state shifts in cortical excitation and inhibition (Waschke, Wöst-

mann, & Obleser, 2017). Recent work demonstrates that specific fea-

tures of the broadband power spectrum of neural field recordings

(Gao, 2016; Gao, Peterson, & Voytek, 2017; Lombardi, Herrmann, &

de Arcangelis, 2017) may be used to make inferences about synaptic

excitatory-inhibitory (E:I) balance. It is well established that, within

specific ranges, the background frequency spectra of electrophysio-

logical mass activities, including local field potentials, intracranial

recordings, and scalp EEG, follow a power-law distribution such that

power is inversely proportional to frequency (1/ƒ) with a scaling expo-

nent, χ, somewhere between −4 and − 1 (Deghani, Bédard, Cash,

Halgren, & Destexhe, 2010; Fransson et al., 2013; Freeman, Holmes,

Burke, & Vanhatalo, 2003; Freeman & Zhai, 2009; He, 2014; He, Zem-

pel, Snyder, & Raichle, 2010; Podvalny et al., 2015; Pritchard, 1992;

Wen & Liu, 2016). Power-law scaling exponents are typically esti-

mated from the slope of a linear fit of the power spectral density

(PSD) in log–log coordinates. In terms of a neurophysiological mecha-

nism, PSD slope varies with the strength of temporally correlated pop-

ulation spiking activity, being steeper when neural activity is more

synchronized (Freeman & Zhai, 2009; Pozzorini, Naud, Mensi, &

Gerstner, 2013; Wen & Liu, 2016). A flatter slope, by contrast,

appears to indicate higher background activation (He et al., 2010;

Manning, Jacobs, Fried, & Kahana, 2009; Miller et al., 2014; Podvalny

et al., 2015) and greater neural noise resulting from neural de-

correlation (Gao, 2016; Voytek & Knight, 2015; Voytek et al., 2015).

A computational model that incorporated the differential time

constants of glutamatergic (AMPA) and GABAergic synaptic currents

found that a reduction in the E:I ratio led to more negatively sloped

PSDs, while an increased ratio was associated with slope flattening

(Gao et al., 2017; but see Lombardi et al., 2017). Corroborating evi-

dence comes from the observation that the PSD becomes more nega-

tively sloped in electrocorticographic (ECoG) recordings of rhesus

monkeys undergoing propofol-induced sedation (Gao et al., 2017).

Furthermore, scalp EEG recordings evidence flatter PSD slopes in old

relative to young human populations (Voytek et al., 2015), consistent

with age-dependent reductions of cortical GABA concentrations in

human and non-human primates (He, Koo, & Killiany, 2016; Porges

et al., 2017).

Although E:I balance appears to be regulated narrowly across the

sleep–wake cycle (Deghani et al., 2010), there is evidence from

rodents that glutamate AMPA receptor levels are high in wakefulness

and low during sleep (Vyazovskiy, Cirelli, Pfister-Genskow, Faraguna, &

Tononi, 2008). In vivo glutamate concentrations are increased during

wakefulness and REM sleep, but decreased in NREM sleep of rats

(Dash, Douglas, Vyazovskiy, Cirelli, & Tononi, 2009). Echoing these

animal studies, magnetic resonance spectroscopy imaging has docu-

mented overnight reductions in glutamate + glutamine concentrations

within the cortex of healthy human adults, with EEG slow-wave activ-

ity being correlated to diurnal glutamate levels (Volk, Jaramillo, Merki,

O’Gorman Tuura, & Huber, in press). Concordant with these
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observations, neural field models also suggest that states of dimin-

ished consciousness are associated with reduced E:I ratios, a collapse

in the repertoire of neuronal configurations and a temporal slowing of

dominant oscillatory frequencies (Atasoy, Deco, Kringelbach, & Pear-

son, 2018; Atasoy, Donnelly, & Pearson, 2016). With the progressive

disengagement from the external environment that seems to attend

increasingly deeper stages of sleep (Cote, 2002; Cote, Etienne, &

Campbell, 2001), one would predict that changes in PSD slopes and

the diversity of neuronal time series patterns are, to a large extent,

reflecting a common underlying neurobiological mechanism. Here, we

directly linked the temporal complexity of scalp EEG during different

stages of the sleep cycle to variation in the power-law scaling of fre-

quency spectra.

Another significant drawback of previous investigations that we

attempted to remedy is that the majority of sleep EEG complexity

findings have consisted of entropy measurements at a single time

scale (Ma et al., 2017). Complexity in biological systems, however, is

characterized by variability over many time scales, from fine (approxi-

mately <10 ms) to coarse, such as those 50 ms and above (Garrett

et al., 2013; Sejdi�c & Lipsitz, 2013). A proper measure of a system’s

complexity necessitates iteratively computing signal regularity over

multiple time scales, since even uncorrelated, random signals

(e.g., white noise) are high in entropy, despite being low in structural

complexity (Costa et al., 2005). Findings gathered from M/EEG (Heisz,

Gould, & McIntosh, 2015; McIntosh et al., 2014; Mizuno et al., 2010;

Vakorin, Lippé, & McIntosh, 2011; Wang et al., 2016) and fMRI imag-

ing (McDonough & Nashiro, 2014), suggest that entropy at fine time

scales indexes local brain dynamics that are characterized by the de-

synchronization of neuronal assemblies while entropy at the coarse

scales is driven by long-range integration and global synchronization

processes. In one study that examined multiscale entropy during sleep

progression in a healthy sample, the typical finding of increased

entropy during wakefulness compared with deep sleep was reported

only at fine time scales, which contain a mixture of low and high fre-

quency neural networks (Shi et al., 2017). At longer time scales, pri-

marily containing slow frequencies, this trend was reversed, with deep

sleep now marked by increased entropy relative to wakefulness, sug-

gesting that sleep-dependent changes in signal diversity are strongly

dependent on the spatiotemporal scale being investigated. However,

that study contained a limited set of observations from four partici-

pants in total.

1.1 | The present study

Our goal was to use sleep as a naturally occurring physiological con-

text for investigating a concerted set of transitions in the global field

dynamics of EEG. Specifically, we aimed to examine changes in the

amount of multiscale entropy as individuals cycled through conven-

tional sleep stages, while directly linking the estimated entropy of

brain signals to state variability in PSD slopes (spectral tilt), a putative

index of cortical E:I balance. In light of previous evidence from neural

field models (Atasoy et al., 2016, 2018) and neurophysiological

recordings (Tononi & Koch, 2008) that progressive disengagement

from the external environment during the deeper (slow wave) stages

of sleep is accompanied by decreased E:I ratios, we expected that the

rotation of the power spectrum would substantially overlap with shifts

in entropy, especially at short time scales. In a more exploratory set of

analyses, we performed surrogate (phase shuffled) tests to evaluate

the contribution of nonlinear dynamical properties to any of the

observed shifts in entropy beyond the second order statistics carried

in the EEG power spectrum.

2 | METHOD

2.1 | Participants

Thirty-four young adults (22 women) aged 18–30 years (M = 20.63,

SD = 2.68) were recruited from the Brock University population to

take part in a study investigating sleep and memory. Participants

reported normal sleep of approximately 7–9 hr nightly typically

between 22:00 and 08:00 and having not worked shift-work in at

least 6 months. Participants reported being healthy, medication-free,

and without a history of sleep disorder or psychiatric/neurological

condition. Participants were asked to abstain from alcohol, caffeine,

vigorous exercise, and naps from 24 hr before their participation until

the end of the study. Additionally, all participants were right handed

and had learned English before age 8. A $50 honorarium or course

credit was provided for participation. All study procedures were

approved by the host Institutional Review Board.

2.2 | Procedure

After initial screening procedures via telephone interview, participants

gave informed consent and attended one overnight session in the lab-

oratory to screen for evidence of sleep disorders using polysomnogra-

phy and to acclimatize participants to the sleeping environment

before the main study. After eligibility was confirmed, participants

returned to the laboratory 2–7 days later for the main protocol. The

main protocol consisted of laboratory sessions on two consecutive

nights, each with a portion of a memory task and an overnight sleep

recording. The memory task component of the protocol is not the

focus of current investigation, but the complete details and results of

the memory task are reported in MacDonald and Cote (2016). Ses-

sions began at 21:00 with the memory task; electrodes for polysom-

nography were applied at approximately 22:00, and participants were

left undisturbed to sleep in a darkened bedroom from 23:00 until

07:00. The second of these two nights of recorded sleep was selected

for the current investigation of sleep EEG.

2.3 | Polysomnography

Neuroscan SynAmps2 amplifiers with SCAN 4.5 software

(Compumedics Inc., Abbotsford, Australia) was used to record electro-

physiology at 1000 Hz filtered DC to 200 Hz with a 60-Hz notch fil-

ter. Gold-plated silver electrodes were applied to sites F3, Fz, F4, C3,

Cz, C4, P3, Pz, P4, O1, Oz, and O2 to record EEG with an online refer-

ence at site Fpz. To identify sleep stages according to standardized

criteria (Rechtshaffen & Kales, 1968), additional peripheral electrodes

were placed at sites A1 and A2 for re-referencing, a bipolar electrooc-

ulography channel was created from electrodes placed to the sides of
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each eye (LEOG and REOG), and a bipolar electromyography (EMG)

channel was created from two electrodes placed under the chin.

NREM stages 3 and 4 were scored collectively as NREM-3 sleep. Seg-

ments used for subsequent analyses were selected from wake (imme-

diately after lights out), early stage 2 sleep (EN2; first bout), late stage

2 sleep (LN2; last bout), NREM-3 (first bout), and each period of REM

sleep (R1 to R4), according to the following criteria: Segments were

primarily selected from the first five continuous minutes of each stage

without evidence of stage transitions or visually identified artifact

from movement or other sources. If at least 4 min of continuous,

artifact-free data were not available within 10 min of the stage onset,

multiple smaller segments were selected from the same 10 min win-

dow up to a combined maximum of 5 min. This resulted in each partic-

ipant’s data for a given sleep stage consisting of anywhere from one

to six segments (minimum duration of a segment = 27 s). For cases in

which multiple smaller segments were used, outcomes variables for

each of these segments were averaged together. The LN2 segments

were selected with the same criteria except by working from the end

of the last NREM-2 bout rather than the start. Since preliminary ana-

lyses indicated no reliable difference between EN2 and LN2 or

between the successive REM phases, these were subsequently aver-

aged together into a common NREM-2 and REM phase. Supporting

Information Table S1 describes the total EEG signal duration by sub-

ject and sleep stage.

2.4 | EEG data reduction and analysis

Offline processing of EEG data was accomplished using a combination

of EEGLAB (Delorme & Makeig, 2004) functions (for re-referencing

and bandpass filtering) and in-house MATLAB routines. After re-

referencing the EEG data to Cz, a two-way least squares finite impulse

response filter was used to bandpass the time domain signal (high-

pass cut-off: 0.1, low-pass cut-off: 50 Hz). Next, peripheral channels

A1, A2, REOG, LEOG, and EMG were removed. The remaining frontal

(F3, Fz, F4), central (C3, C4), parietal (P3, Pz, P4), and occipital (O1,

Oz, and O2) channels were used in subsequent processing and

analyses.

2.4.1 | Power spectrum density analyses

The artifact-free time domain data from each electrode were submit-

ted to power spectrum density (PSD) analyses using a modified ver-

sion of the Welch periodogram method (Tröbs & Heinzel, 2006) with

Hanning tapered windows of 2,000 data points (2 s) and 50% overlap.

Power spectral density (μV2/Hz) was estimated for a continuous range

from 0.5 to 35 Hz, in 50 logarithmically spaced frequencies. Frequen-

cies less than 0.5 Hz were not included in order to avoid potential

slow artifacts arising from skin potentials (e.g., sweating). Frequencies

greater than 35 Hz were excluded as there was little power spectral

density beyond 30 Hz and we wished to avoid contamination from

myogenic sources. Subsequently, frequency spectra were transformed

to log–log coordinates in order to calculate the power-law frequency

scaling exponent (slope of the line of best for frequencies between

0.5 and 35 Hz) which was estimated using robust linear regression

(MATLAB robustfit.m). Frequency bins between 13.5 and 14.7 Hz

were omitted from the main analyses presented in the Results

section to avoid the influence of periodic sleep spindle oscillations.

None of the main findings were affected when fits were estimated

using the full range of the frequency spectrum.

2.4.2 | Multiscale dispersion entropy analyses

Multiscale dispersion entropy (MDE) was used to quantify the com-

plexity of EEG signals over numerous time scales (Azami, Rostaghi,

Abásolo, & Escudero, 2017; Rostaghi & Azami, 2016). Dispersion

entropy is related to sample and permutation entropy, but it is more

tolerant to the presence of noise in time series signals and has a con-

siderably shorter computation time (Rostaghi & Azami, 2016). The

computational complexity of traditional sample entropy, is higher (O

[N2]) relative to dispersion entropy (O[N]), although both methods

yield similar results with high test–retest and internal reliabilities when

applied to neural time series data (Kuntzelman, Rhodes, Harrington, &

Miskovic, 2018). A schematic depicting some of the major steps in the

calculation of dispersion entropy is provided in Figure 1, alongside

example time series traces from different global states of conscious-

ness. Briefly, dispersion entropy operates by discovering symbolic

dynamics (or dispersion patterns) in a time series and then using Shan-

non entropy to quantify the resulting uncertainty of these patterns.

The first step involves mapping each time series sample to one of

c classes (with integer indices from 1 to c) using a mapping based on

the normal cumulative distribution function (NCDF), with μ and σ of

the NCDF set at the mean and standard deviation, respectively, of the

original time series. These remained constant across all scale factors,

analogous to keeping the tolerance fixed for sample entropy calcula-

tions which, for physiological signals, is preferable to recalculating tol-

erance at each scale factor (Castiglioni, Coruzzi, Bini, Parati, & Faini,

2017). Note that using NCDF for mapping makes this approach non-

linear, resulting in a classified signal (see Figure 1b) matching the size

of the original. This approach is robust to observational noise while

retaining high sensitivity to amplitude differences and can accept adja-

cent instances of the same class. Next, a window with embedding

dimension (m) and time delay (tau) slides along the signal, counting the

frequency of each of cm potential dispersion patterns (Figure 1c).

Finally, the probability of each of these dispersion patterns (Figure 1d)

is used to calculate the Shannon entropy where the maximum possible

value is ln(cm), which would result from all possible dispersion patterns

having equal probability. The smallest possible theoretical dispersion

entropy value obtains when only one dispersion pattern has a proba-

bility greater than zero.

Consistent with the multi-scaling procedure introduced by Costa,

Goldberger, and Peng (2002), after an entropy measure is calculated

on the original time series of length N, for a given scale factor (π), each

non-overlapping set of adjacent samples of length π is averaged pro-

ducing a new time series of length N/π (rounded down; excess sam-

ples at the end of a sequence are discarded). This process is repeated

until entropy has been calculated for all time scales of interest.

In keeping with established recommendations (Azami et al., 2017;

Rostaghi & Azami, 2016), we fixed the value of c at six for all analyses

in this article. The scale factor (π) was set to 300 sample points and

the time delay (tau) was set to 1, while the number of embedding

dimensions (m) was set to 2 as is common in the literature (e.g., Heisz
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et al., 2015; McIntosh et al., 2014; Wang et al., 2016). Preliminary

analyses were used to ensure the stability of entropy curve differ-

ences across a range of free parameter settings. For additional mathe-

matical details on the calculation of dispersion entropy and

computational resources, readers are referred to the original publica-

tions (Azami et al., 2017; Rostaghi & Azami, 2016).

2.4.3 | Synthetic time series simulations

One way of testing for the contribution of the power spectrum to any

entropy related changes would be to attempt to recreate the same

pattern of entropy results obtained from empirical EEG recordings

using synthetic EEG-like signals. To accomplish this we generated

100 different instantiations of Gaussian white noise sequences (5 min

in duration, with a 1 kHz sampling rate). These Gaussian white noise

signals were then bandpass filtered using first order Butterworth fil-

ters into canonical delta (0.5–4 Hz), theta (4.5–7.5 Hz), alpha

(8–13.5 Hz), beta (14–30 Hz), and gamma (30.5–45 Hz) frequency

bands. Subsequently, the different bandpass filtered white noise seg-

ments were multiplied with weights corresponding to the average

spectral density (μV/Hz2) in each of the corresponding frequency

bands within NREM-3, NREM-2, and REM sleep. Finally, the filtered

outputs were summed to create corresponding aggregate signals that

would in this way theoretically simulate the power from each of the

sleep stages, albeit without the contribution of narrowband sleep

spindle oscillations and with random phase coefficients drawn from a

uniform distribution between 0 and 2π.

2.4.4 | Surrogate controls

In order to determine whether the differences in entropy between

sleep stages could be explained by PSD rotations alone, we conducted

a second set of MDE analyses using phase-shuffled surrogate time

series signals. The rationale for use of the surrogates is the following:

linear processes are completely accounted for by the second order

statistics (power spectrum) of a time series. The power spectrum,

however, does not contain phase information. The surrogate signals

are generated by keeping the power spectrum constant, while ran-

domly shuffling phase (which destroys higher-order correlations) and

in the final step, performing an inverse Fourier transform back into

the time domain (Theiler et al., 1992). The algorithm that we used to

construct the surrogates was the iterated amplitude adjusted Fourier

transform (IAAFT) which minimizes the spurious detection of nonli-

nearity (Schreiber & Schmitz, 1996). Surrogate sets were generated

separately for every participant, electrode channel and sleep stage

(using a maximum number of 100 iterations) and then, these surro-

gates were used to construct ratio scores of original relative to surro-

gate data, similar to what has been reported in other studies

(Schartner, Carhart-Harris, et al., 2017; Schartner, Pigorini, et al.,

2017). In brief, the normalized ratios were calculated as MDEoriginal/

MDEsurrogate for each sleep stage. Accordingly, if sleep stage contrast

reversed in direction between the original and the surrogate set of

analyses (e.g., REM > NREM-3 for the original MDE analyses, but

REM < NREM-3 for surrogate normalized ratios), then it can be con-

cluded that the entropy differences are explained entirely by linear

processes. In the absence of a direction reversal, the contribution of

nonlinearity to the sleep stage differences in entropy can be inferred.

2.5 | Statistical analyses

Since we wished to avoid averaging MDE values across a priori time

scale factors and since we had no specific regional electrode hypothe-

ses, we adopted a mass univariate approach to testing for changes in

EEG signal complexity. To detect reliable differences in EEG entropy

as a function of sleep stage, we submitted the MDE values to a paired

samples, two-tailed permutation test based on the tmax statistic

(Blair & Karniski, 1993; Groppe, Urbach, & Kutas, 2011) using a

family-wise alpha level of 0.01, effectively controlling for the inflation

FIGURE 1 (a) Example EEG signal traces (5 s duration) across distinct wake–sleep stages from a randomly selected participant (C4 electrode),

along with dispersion entropy estimates from the original time series (i.e., without coarse graining). A schematic depiction of the dispersion
entropy calculation process is depicted in (b) starting with a mapping of the original time series signal into a set of c classes. For ease of
illustration, a mapping to 3 classes is depicted here, which differs from the 6 classes used for actual analyses. In the next step, (c), a set of cm (for
illustration purposes, a total of 32 = 9) symbolic dynamics or dispersion patterns are counted along the length of the entire signal. The relative
frequency of each unique dispersion pattern (d) is then tallied and Shannon entropy is calculated on the probability value of all possible dispersion
patterns
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of Type I error rates. All 300 scale factors at 11 cephalic electrodes

were included in the test (i.e., 3,300 total comparisons). Adopting a

Monte Carlo approach, we used 5,000 random within-participant per-

mutations of the data to empirically approximate the null distribution

for the contrasts of interest. Based on this estimate, critical t-scores

were derived and any differences in the original data that exceeded

the tmax statistic were deemed reliable.

To test for differences in PSD0.5–35 Hz slopes, we conducted

repeated-measures ANOVAs using the within-subject factors of Sleep

Stage (NREM-3, NREM-2, and REM) and Region (frontal, central, pari-

etal, and occipital). All ANOVA models were evaluated using Type III

Sums of Squares and Greenhouse–Geisser corrections were applied in

cases where Mauchly’s test revealed violations of the sphericity

assumption.

All statistical analyses were performed using a combination of

functions from MATLAB and R (R Development Core Team, 2008).

3 | RESULTS

3.1 | Multiscale entropy across sleep stages

Figure 2 depicts thresholded (pperm < .01) maps of the mass univariate

contrasts between successive sleep stages. As a general pattern, mul-

tiscale entropy followed the pattern of REM > NREM-2 > NREM-3,

for time scales up to approximately 100 ms. At temporal scales larger

than approximately 100 ms, entropy estimates are largely based on

frequencies in the theta and delta bandwidths. When contrasting

NREM-2 relative to the NREM-3 stage, entropy was higher in the for-

mer up to a temporal scale factor of approximately 70 ms and then

reversed in direction from a scale factor of approximately 110 ms up

to 300 ms across all electrode locations (Figure 2, left panel). A similar

pattern obtained for the REM to NREM-3 contrast, except that the

enhanced entropy in the former stage persisted until a scale factor of

approximately 100 ms (at least at the posterior electrodes) and did

not reverse in direction until after approximately 150 ms (see

Figure 2, middle panel). Relative to NREM-2, there was more entropy

during REM sleep up to a temporal scale of approximately 150 ms

(Figure 2, right panel), at least at the posterior electrodes as well as at

the frontal midline (Fz).

3.2 | PSD0.5–35 Hz slopes across sleep stages

The results of the repeated measures ANOVA revealed main effects

of Sleep Stage, F(2,66) = 607.53, Greenhouse–Geisser corrected

p < 3.13 × 10−43, η2p = .87, and Region, F(3,99) = 109.95,

Greenhouse–Geisser corrected p = 3.50 × 10−23, η2p = .16. As shown

in Figures 3 and 4, PSDs were increasingly more negatively sloped

from REM to NREM-2 to NREM-3 sleep (all pairwise ps ≤ .001). It can

be seen from inspection of Figure 3 that change in the slow frequency

bands (delta and theta bandwidths) across sleep stages was consider-

ably more pronounced than increases in the higher frequencies, so

that it can be inferred that slow waves were the major driver of PSD

slope shifts depicted in Figure 4 (see Supporting Information

Figure S1 for mass univariate contrasts of spectral power across all

electrodes and frequency bins).

In terms of the regional distribution of PSD0.5–35 Hz slopes, the

steepest slopes were observed at the frontal electrode cluster

(M = −1.90, SD = 0.50) and the least negatively sloped PSDs obtained

at the central cluster (M = −1.72, SD = 0.48). The frontal and occipital

(M = −1.88, SD = 0.45) electrode clusters did not differ from each

other, but all other pairwise regional contrasts reached significance

(ps < 1 × 10−14).

3.3 | Linking entropy to PSD0.5–35 Hz Slopes

Since there were notable individual differences in the distribution of

PSD0.5–35 Hz slopes within each sleep stage, we next examined

whether this was related to individual differences in EEG entropy

values. Figure 5 shows the Spearman’s rho correlations between PSD

slopes and entropy across the full range of temporal scales for the

FIGURE 2 Statistical saliency maps depicting mass univariate contrasts of dispersion entropy at each electrode and time scale factor. Colors

represent t-test values (hot colors indicate higher entropy for the sleep stage indicated first for a given contrast and cool colors indicate the
opposite pattern), masked by significance as determined using the tmax Monte Carlo method (with 5,000 random within-subject data
permutations). Green areas depict contrasts that did not survive statistical thresholding (pperm < .01) [Color figure can be viewed at
wileyonlinelibrary.com]
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different sleep stages, averaged over EEG electrodes. Higher disper-

sion entropy at time scales up to approximately 50 ms was predicted

by shallower PSD0.5–35 Hz slopes with increasingly less explained vari-

ance at larger scale factors. At coarse time scales of approximately

200–300 ms this relationship reversed (at least during NREM-3 and

NREM-2 sleep), such that more negatively sloped PSDs became asso-

ciated with higher entropy values.

Next, we averaged dispersion entropy at both the fine (1–10 ms)

and coarse (250–300 ms) time scales and then calculated difference

scores across successive sleep stages. Subsequently, we evaluated lin-

ear regression models in which we regressed the stage-dependent

changes in dispersion entropy on stage-dependent changes in

PSD0.5–35 Hz slopes. Approximately 59–70% of the variance in fine

scale entropy was predicted by variation in the frequency scaling of

EEG spectra (see Figure 6a). By contrast, a smaller proportion of

coarse entropy variance could be explained by stage-dependent dif-

ferences in PSD slopes.1

3.4 | Synthetic EEG-like signals

To further explore the extent to which the multiscale entropy changes

observed above, including the cross-over of entropy values at coarser

time scales, were driven by the underlying spectral power changes

alone, we next turned to simulations using synthetic EEG-like signals

created from linear summations of bandpass filtered Gaussian white

noise. As illustrated in Figure 7, the general trend of REM > NREM-

2 > NREM-3 entropy at fine time scales was reproduced using these

synthetic EEG-like signals, as well as the reversal of this pattern at

coarse time scales. However, there were also notable differences

between the entropy curves obtained from synthetic signals relative

to the scalp EEG epochs (Figure 7b), especially at large time scale fac-

tors. In general, the stage-dependent differences in the magnitude of

entropy tended to be underestimated in the synthetic data. These dif-

ferences possibly stem from nonstationary sleep spindle oscillations,

which are dominant during NREM-2 and NREM-3 sleep. The contribu-

tion of EEG phase dynamics to estimates of brain signal complexity is

not captured in signals simulated using band-pass filtered noise.

3.5 | Surrogate normalized multiscale entropy

analyses

In order to determine the contribution of nonlinear dependencies to

stage-dependent changes in entropy, we conducted another round of

mass univariate analyses using EEG signals that were normalized by

phase-shuffled IAAFT surrogates.2 The results of these analyses are

depicted in Figure 8. Many of the changes in entropy between

NREM-2 and NREM-3 stages remained even after this normalization

procedure, providing evidence that the shifts in complexity were not

driven entirely by information contained in the power spectrum but

also stemmed from higher-order properties of brain signals. Virtually

all of the differences in entropy between REM sleep and NREM-3

were eliminated, while a larger proportion of entropy differences

between REM and NREM-2 stages, at coarse time scales, survived the

surrogate testing procedure.

FIGURE 3 Averaged power spectral density (PSD) plots (on a log–log

scale) shown separately for each sleep stage and electrode cluster
region along with robust fits (dashed lines) [Color figure can be
viewed at wileyonlinelibrary.com]

FIGURE 4 Kernel densities for each sleep stage showing the

distribution of power-law exponents of EEG spectra (PSD slope)
estimated using a robust linear regression

1Predicting stage-dependent changes in fine time scale dispersion entropy from

changes in slow-wave power alone (i.e., log transformed delta and theta spectral

power density), accounted for 60, 54, and 53% of the variance in

ΔNREM2-NREM2, ΔREM-NREM3, and ΔREM-NREM2 shifts respectively (all

ps < .0001). The increase in slow-wave power from the NREM2 to the NREM3

stage explained 36% of the variance in coarse entropy.
2As verification that the normalized entropy scores reduced sensitivity to signal

spectral content, we observed reduced and nonsignificant correlations between

individual differences in PSD slopes and normalized entropy measures

(in contrast to the non-normalized entropy values; see Figure 4).
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To test whether the occurrence of spindles during NREM-2 sleep

contributed to the degree of entropy during this stage, we calculated

Spearman’s rho correlations between NREM-2 spindle counts (manu-

ally counted over the full night at Cz) and dispersion entropy at fine

and coarse time scale factors (see Table 1). These analyses revealed a

positive association between NREM-2 spindle count and entropy at

fine time scales, except at the occipital electrode cluster.

3.6 | REM sleep versus pre-sleep wakefulness

Finally, in a set of follow-up comparisons, we contrasted multiscale

entropy and PSD0.5–35 Hz slopes between REM sleep and pre-sleep

wakefulness (immediately after lights out) in a smaller subset of partic-

ipants (N = 30) who had usable wake epochs. As illustrated in

Figure 9, wakefulness was associated with higher entropy up to scale

factors of approximately 40 ms while REM entropy was greater than

FIGURE 5 Spearman's rho correlations (df = 33) between the absolute levels of dispersion entropy at scales 1–300 ms and PSD slope. Dashed

lines indicate the correlation strengths corresponding to the 99th percentile of rho coefficients built from an empirical distribution of 5,000
random data permutations [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 Linear models regressing (a) Δ dispersion entropy at the fine (1–10 ms) and (b) coarse (250–300 ms) time scales on Δ PSD slopes,

averaged over all electrodes
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during wakefulness from a time scale of approximately 60 ms until

300 ms at the majority of electrodes. None of the differences in

entropy between REM sleep and wakefulness remained after using

phase shuffled surrogate tests for nonlinearity.

The robust regression estimates of PSD0.5–35 Hz slopes for the

wake segments excluded frequency bins between 9 and 11 Hz con-

taining prominent non-broadband alpha oscillation peaks. These ana-

lyses revealed a main effect of global consciousness state, F

(1,29) = 169.64, p < 1.21 × 10–13, η2p = .59, with more negatively

sloped PSDs during REM sleep (M = −1.36, SD = 0.18) compared with

wakefulness (M = −0.92, SD = 0.24).

4 | DISCUSSION

We explored changes in multiscale brain signal entropy and power-

law scaling exponents of EEG frequency spectra across the sleep

cycle. Overall, our findings suggest that the changes in entropy that

occur throughout the sleep cycle are strongly dependent upon the

time scale being investigated. In addition, we discovered that,

although a large portion of the stage-specific changes of signal

FIGURE 7 Multiscale dispersion entropy curves estimated from (a) bandpass filtered Gaussian white noise samples constructed to have the same

theoretical power spectra as NREM-3, NREM-2, and REM sleep respectively (average of 100 simulated signals) or from (b) empirical EEG
recordings (average of all electrodes and participants). Shading indicates �1 SEM [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 8 Statistical saliency maps depicting mass univariate contrasts of dispersion entropy at each electrode and time scale factor, normalized

by IAAFT phase-shuffled surrogates. Colors represent t-test values (hot colors indicate higher entropy for the sleep stage indicated first for a
given contrast and cool colors indicate the opposite pattern), masked by significance as determined using the tmax Monte Carlo method (with
5,000 random within-subject data permutations). Green areas depict contrasts that did not survive statistical thresholding (pperm < .01) [Color
figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Spearman's rho correlations between NREM-2 spindle

count and NREM-2 dispersion entropy

Region Time scale of entropy Rho p value

Frontal 1–10 ms 0.46 .01

250–300 ms 0.05 .79

Central 1–10 ms 0.41 .02

250–300 ms 0.12 .53

Parietal 1–10 ms 0.39 .03

250–300 ms 0.13 .48

Occipital 1–10 ms 0.31 .10

250–300 ms 0.18 .34
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complexity can be seen to overlap with a rotational shift of the EEG

power spectrum (spectral tilt), some of the variability is driven by sig-

nal phase dynamics, particularly stemming from endogenous events

occurring during stage 2 sleep.

4.1 | Entropy at fine time scales

The reduction of brain signal complexity with increasing sleep depth is

in good agreement with previous findings in humans (Acharya et al.,

2005; Bruce et al., 2009; Burioka et al., 2005; Lee et al., 2013; Nico-

laou & Georgiou, 2011; Shi et al., 2017) and rodents (Abásolo et al.,

2015). Our results extend this body of knowledge by measuring multi-

scale brain signal variability in contrast to the majority of previous

studies that have quantified entropy/complexity at single time scale

factors, without performing temporal coarse graining (except for Shi

et al., 2017).

Another way in which our study helps to extend prior work is by

explicitly linking the entropy of brain signals to the 1/ƒχ component of

power spectra (see Sheehan, Sreekumar, Inati, & Zaghloul, 2018 and

Waschke et al., 2017). The PSD slope of large-scale field potentials

has been proposed to be a measure of neural noise that reflects popu-

lation spiking statistics (Voytek & Knight, 2015; Voytek et al., 2015).

Since the degree of entropy at smaller time scales has been hypothe-

sized to measure local information processing within asynchronous

neuronal assemblies (Heisz et al., 2015; McDonough & Nashiro, 2014;

McIntosh et al., 2014; Mizuno et al., 2010; Vakorin et al., 2011; Wang

et al., 2016), our finding of a positive association between fine scale

entropy and PSD slopes is to be expected (see also, Waschke, Wöst-

mann, & Obleser, 2017). If the entropic content of brain signals at fine

time scales is intimately linked with variation in the slope of the EEG

power spectrum, what might be the common neurophysiological

mechanism that underlies this? Combining evidence from computa-

tional modeling and cross-scale recordings in nonhuman animal prepa-

rations, variation in PSD slopes has been proposed to provide an

aggregate read-out of fluctuations in E:I balance (Gao et al., 2017).

Our results here can be seen as essentially consistent with this

hypothesis in so far as increasing sleep depth is accompanied by

greater inhibitory (or reduced excitatory) activity (Atasoy et al., 2018;

Tononi & Koch, 2008) and lowered global levels of consciousness

(Cote, 2002; Cote et al., 2001). A major caveat here is that the

hypothesis that PSD slopes index E:I balance (and exactly how they

index it) remains up for debate (Gao, 2016; Gao et al., 2017; Lombardi

et al., 2017), especially at the level of extracranially recorded brain sig-

nals which do not contain the sensitive high gamma range that is

accessible in intracranial recordings (He et al., 2010). Supportive evi-

dence can be gleaned from a recent study, which noted that overnight

reductions in cortical glutamate metabolites were positively correlated

to scalp-recorded slow-wave activity (Volk et al., in press)—a finding

that extends similar results from rodents (Dash et al., 2009). In the

future, combined EEG and pharmacology studies would offer a more

direct way to test some of tentative interpretations offered here, by

examining the effects of agents that modulate the level of inhibition

and excitation of cortical neurons. Anesthetic compounds like propo-

fol, whose actions at the level of GABA neurotransmission are well

characterized (Concas, Santoro, Serra, Sanna, & Biggio, 1991) and psy-

chedelic drugs that increase cortical excitation (Celada, Puig, & Arti-

gas, 2013) and produce broadband desynchronization of MEG signals

(Muthukumaraswamy et al., 2013), might be particularly suitable can-

didates for further research.

A final point is worth noting here. A previous sleep study (Bruce

et al., 2009) has reported that EEG entropy of the original time series

was strongly predicted by the logarithmically transformed power ratio

of fast to slow frequencies. Our results provide confirmatory evidence

but also suggest a slightly different interpretation of those findings,

namely that this ratio can be alternatively conceptualized as a flatten-

ing of the PSD slope resulting from a rotation of the neurophysiologi-

cal power spectrum (Voytek & Knight, 2015).

4.2 | Entropy at coarse time scales

The entropic level of NREM-3 sleep was increased relative to NREM-

2 and REM at large time scales (see also Shi et al., 2017). This suggests

a shift toward more distributed, rather than local, entropy as cortical

activity switches into a global bistable pattern of depolarized (up) and

hyperpolarized (down) states characteristic of slow-wave sleep

(Sanchez-Vives & McCormick, 2000). Findings from a variety of differ-

ent recording modalities (EEG, MEG and fMRI) have demonstrated

that entropy at small time scales (approximately < 10 ms) is inversely

correlated, while entropy at coarser time scales (approximately

> 50 ms), is positively correlated with long-range brain functional con-

nectivity (McDonough & Nashiro, 2014; McIntosh et al., 2014;

Vakorin et al., 2011). It is possible, therefore, that the increased

entropy of slow-wave sleep at long time scales originates from the

action of distant synchronization processes. Indeed, electrophysiologi-

cal measures have documented that functional connectivity, within

specific band-limited frequencies, particularly in the slow (1–2 Hz)

FIGURE 9 Mass univariate contrasts of dispersion entropy at each

electrode and time scale factor. Colors represent t-test values (hot
colors indicate higher entropy in pre-sleep wakefulness relative to
REM sleep and cool colors indicate the opposite pattern), masked by
significance as determined using the tmax Monte Carlo method (with
5,000 random within-subject data permutations). Green areas depict
contrasts that did not survive statistical thresholding (pperm < .01)
[Color figure can be viewed at wileyonlinelibrary.com]
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range tends to be highest in deep NREM sleep (Achermann & Borbély,

1998a,b)—an effect that is independent of signal amplitude

(Achermann & Borbély, 1998b; Nayak et al., 2017). Cortical hypersyn-

chrony has also been demonstrated to alter the routing of information

and predict diminution of consciousness during sedation (Supp, Siegel,

Hipp, & Engel, 2011).

On the surface, the evidence just reviewed may seem to be con-

tradicted by studies reporting a breakdown of effective connectivity

(Massimi et al., 2005) and fMRI functional connectivity

(e.g., Spoormaker et al., 2010) during NREM sleep. Clearly any broad

statements concerning global hyper- or hypo-connectivity associated

with a given mental state are bound to be oversimplifications without

taking into account spatiotemporal scale dependency that is inherent

in neural time series data or the differences in recording modalities.

Moreover, there is a large heterogeneity of mental state-dependent

changes depending on the constituent modular network that is under

investigation and whether one is measuring total, between or within-

system integration (e.g., Boly et al., 2012; Tagliazucchi, von Wegner,

et al., 2013). Unfortunately, this level of detail is not accessible in the

sparse recording montage employed in our study. However, a more

general interpretation of the scale-dependent crossover of entropy

observed here suggests that the mix between functional integration

and segregation that determines the complexity of a system’s output

(Pedersen, Omidvarnia, Walz, Zalesky, & Jackson, 2017) is tipped in

favor of integration at the distributed level during deep NREM sleep

and in favor of local integration during REM sleep and waking.

4.3 | Nonlinear contributions

The high amounts of variance in EEG entropy explained by variation

in PSD0.5–35 Hz slopes—between 60 and 70% at fine time scales and

approximately 40% at coarse scales—indicates that a substantial por-

tion of the state-dependent changes in scalp EEG complexity is driven

by linear stochastic effects (see also Pereda, Gamundi, Rial, & Gonzá-

lez, 1998 and Shen, Olbrich, Achermann, & Meier, 2003 for additional

evidence of weak nonlinearity in human sleep EEG). However, higher-

order dynamical properties of brain activity also accounted for some

of the stage-dependent complexity changes (see also Schartner,

Carhart-Harris, et al., 2017; Schartner, Pigorini, et al., 2017). This con-

clusion can be drawn from two separate lines of evidence. First, the

multiscale entropy curves of bandpass filtered noise with the same

theoretical power spectra as NREM-3, NREM-2, and REM sleep, while

reproducing many of the effects obtained in EEG data, also seemed to

underestimate the state differences in signal complexity suggesting

that phase spectra contribute to some of the entropy changes. Sec-

ond, the results of our phase-shuffled IAAT surrogate normalized

entropy analyses confirm that nonlinear dependencies additionally

contribute to some of the differences in entropy between NREM-2

and REM as well as between NREM-2 and NREM-3 sleep. By con-

trast, virtually all of the differences in entropy between NREM-3 and

REM as well as between REM and waking appear to be explained by

EEG power. Our findings underscore recent recommendations

(Courtiol et al., 2016) that analyses of brain signal complexity should

include the combined examination classical spectral power effects as

well as the use of surrogate time series in order to guide proper

interpretation—a feature that has been largely lacking in prior litera-

ture on EEG entropy changes during sleep.

On the whole, nonlinear dynamics exerted a stronger influence at

coarser time scales relative to smaller ones that were the focus in pre-

vious sleep EEG studies (e.g., Bruce et al., 2009). This is consistent

with evidence that coarse graining alleviates the linear stochastic

effects in time series signals (Kaffashi et al., 2008; Vakorin & McIn-

tosh, 2012). The presence of nonlinearities during the NREM-2 stage

in particular, appears to be in line with prior findings (Shen et al.,

2003) where this was attributed to the presence of sleep spindles and

K-complexes. This hypothesis was partially supported by our finding

of a positive correlation between NREM-2 spindle count and the

degree of EEG signal entropy, highlighting a role for phase-dependent

signal characteristics.

5 | CONCLUSIONS

In sum, we found that changes in the entropy of global field EEG

dynamics throughout the sleep cycle are strongly time-scale depen-

dent. At shorter time scales, that putatively measure local information

processing in brain networks, entropy followed a pattern of REM >

NREM-2 > NREM-3 (with the greatest entropy observed during pre-

sleep wakefulness). At longer time-scales, this pattern reversed, result-

ing in the greatest amounts of distributed entropy during the deepest

stage of sleep (NREM-3). To a large extent, this time-scale dependent

cross-over of entropy could be explained by the linear stochastic

effects of the power spectrum, with a slower time constant during

NREM-3 sleep. Critically, temporal signal complexity (at small time

scales) and the slope of EEG power spectra appear to be largely over-

lapping representations of neuronal noise. Additionally, some of the

changes in EEG complexity across the human sleep cycle cannot be

explained by linear dependencies alone but are also driven by phase

dynamics. It can be speculated that neuronal events occurring during

the NREM-2 stage, in particular, are important contributors to esti-

mates of brain signal complexity. Our findings raise the possibility

that, in the future, the joint investigation of EEG power-law frequency

scaling and signal entropy measures, which reflect both shared and

unique aspects of neural signal complexity (Sheehan et al., 2018),

could assist in understanding changing consciousness levels, sleep reg-

ulation and disruptions to sleep mechanisms in a variety of sleep

disorders.
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