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Abstract 
An equation for dislocation density during creep was introduced for martensitic heat-resistant steel using Orowan’s 
equation and a thermal activation equation of Kauzmann type based on several assumptions. The dislocation 
density discussed here corresponds to the number of dislocations swept out of an imaginary deformable domain in 
an activated state and is not the so-called mobile dislocation density. The one adjustable parameter, the actual 
deformable domain size, was adopted in the equation as a size intermediate of the lath martensite and packet. The 
activation energy and volume,  and , were calculated using creep curves for 9Cr-1W tempered martensitic 
steel as a function of creep strain. The changes in the dislocation density during creep were estimated 
nondestructively to be roughly 10  m  to 10  m  using the values of  and . The obtained densities 
were approximately comparable to the values of total dislocation density reported for directly observed 
ferritic/martensitic steels. It was found that the dislocation density of 9Cr-1W steel initially increased and then 
decreased in a transition creep range, which relate to hardening and recovery, respectively. This point of inversion 
from hardening to recovery can be confirmed easily and nondestructively far before the time to minimum creep 
rate and as a matter of course the time to rupture. It is suggested that monitoring of the dislocation density can 
predict the unexpected decrease in long-term rupture strength in advance.  
Keywords: dislocation density, dislocation velocity, creep curve, martensitic heat-resistant steel, creep equation 
1. Introduction 
It is well known that continuous recovery occurs during the creep of high-strength martensitic steel (Abe, 
Nakazawa, Araki & Noda, 1992; Sawada, Maruyama, Komine, & Nagae, 1997), except in cases of work hardening 
immediately after high-stress loading (Cottrell, 1997; Kimura, Sawada, Kubo, & Kushima, 2004) or precipitation 
hardening within specified conditions (Abe, 2005). Variations of microstructure including that of dislocation 
density during creep have been studied in detail for martensitic steels (Briggs & Pakker, 1965; Spiradek, Bauer, & 
Zeiler, 1994; Ennis & Czyrska-Filemonowicz, 2003). From the results of these studies, representative high-
strength martensitic steels have been developed using sophisticated control technology for precipitation to delay 
recovery (Sikka, Ward, & Thomas, 1983; Naoi et al., 1995; Abe, Tabuchi, Tsukamoto, & Shirane, 2010). However, 
more than 10 years passed following the development of high-strength steels before it was clarified that the long-
term rupture strengths of some of the steels tended to lower unexpectedly (Kushima, Kimura, & Abe, 1999; 
Tamura, 2015). Moreover, it requires a very long time and much effort to investigate metallurgically the recovery 
behavior during the creep of these steels. It is thus proposed to study how to predict within a short time the decrease 
in long-term rupture strength by analyzing creep curves at stress levels near the 105-h rupture strength. For 
example, determining the minimum creep rate (MCR) is a feasible method of predicting the unexpected drop in 
the long-term rupture strength, because the MCR is inversely proportional to the time to rupture within a 
considerable wide range of test conditions (Monkman & Grant, 1956). However, the MCR approach is not so 
realistic for two reasons: first, it requires both advanced instrumentation and facilities, because the MCRs are very 
low, below 10−5 h−1 for a creep test at stress levels near the 105-h rupture strength, and second, it still requires a 
long time before the MCR can be determined, because the time to the MCR for martensitic steel is approximately 
25% of the time to rupture of 105 h, at least. (Abe, 2003; Abe, 2011).  
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The allowable stresses for ASME Gr.122 (America Society of Mechanical Engineers) were revised because it was 
found that the long-term rupture strengths of the steel were considerably less the strength expected from short-
term data (Masuyama, 2007). It was also clarified for this steel that a sign of degradation can be detected even at 
the time to 0.5% strain, which is before the time to the MCR (Tamura, 2015). It is thus considered important to 
analyze creep behavior in the transition creep range in detail. However, the time to 0.5% strain cannot be used as 
a general index for analyzing creep curves of heat-resistant steel and the physical meaning of time to 0.5% strain 
is vague.  
Grain boundary sliding and/or diffusional creep have not been confirmed near the test conditions for the practical 
uses of martensitic heat-resistant steel (Klueh, 2004), excepting for a welding joint (Elarbi, 2008) and oxide-
dispersion-strengthened steel (Sugino et al., 2012). Therefore, the creep behavior of martensitic steel should be 
described using the general variables of dislocation density and average velocity for glide motion of dislocations 
including climb motion. From these viewpoints, if changes in the dislocation density during creep tests can be 
estimated nondestructively, it is expected that a sign of an unexpected decrease in long-term rupture strength due 
to the early recovery of materials under development can be found easily in advance.  
The flow rate of a crystal due to the glide motion of dislocations is described by Orowan’s equation (Orowan, 
1940):  

  = ,  (1) 
where , , , and  are the normal flow rate under uniaxial tension, the factor of conversion from shear strain to 
tensile strain, the length of the Burgers vector, and the average dislocation velocity, respectively. Equation (1) is 
equivalent to equations derived by Taylor (1934) and Seeger (1957).  in Equation (1) denotes the moving 
dislocation density. Therefore, when work hardening takes place, the number of dislocations that cross out of the 
crystal and consequently create a measurable strain is smaller than the number of dislocations corresponding to  in 
Equation (1). In contrast, in steady-state flow,  in Equation (1) is equal to the total number of dislocations that 
completely cross a single crystal on single slip planes divided by the cross section of the crystal (Cottrell, 1965).  
However, in polycrystalline material, even for a steady-state flow, the number of moving dislocations within each 
grain (i.e., the number of dislocations crossing out of each grain) does not generally coincide with the number of 
dislocations that create a measurable strain of the specimen. This is because some of the dislocations crossing out 
of each grain are accumulated or annihilated near the grain boundaries, and therefore, the number of dislocations 
crossing out of grains is always larger than the number of dislocations necessary for creep strain; i.e., the number 
of dislocations swept out of the specimen. However, misunderstandings have arisen frequently in applying 
Equation 1 to flow phenomena of polycrystalline; i.e., the mobile dislocation density measured employing 
transmission electron microscopy (TEM) or the moving dislocation density calculated using flow curves have been 
discussed in relation to the observed creep rate (Ishida, Cheng, & Dorn, 1966; Orlova, 1988; Orlova, 1992; Piccolo, 
Martin & Bonneville, 2000; Hayakawa et al., 2007; Eisenlohr, Blum, & Milicka, 2009). Hayakawa et al. (2007), 
for example, measured internal stresses employing a stress change test during the creep of ferritic/martensitic heat-
resistant steels and assuming the mobility of dislocations is proportional to the effective stress; i.e., the applied 
stress minus the internal stress, mobile dislocation density and average dislocation velocity were calculated as 
functions of creep strain. They also claimed that the calculated mobile dislocation densities were reasonable 
comparing with values observed employing TEM. These conclusions are valid only when the deformation 
behavior of polycrystalline can be presumed as that of the steady-state deformation of a single crystal.  
To minimize the abovementioned uncertainties of the stress change test, how to estimate  in Equation 1 for 
steady-state creep in polycrystalline is studied. The strict definition of dislocation density in polycrystalline is 
given below. We also assume that in steady-state creep, the dislocation motion is helped phenomenologically by 
a thermally activated process. The purpose of this study is not to deduce theoretically a new creep equation but 
rather to investigate how to detect reasonably in advance a sign for the unexpected decrease in the long-term 
rupture strength of martensitic steel. For this purpose, an equation for the dislocation density is introduced on the 
basis of several assumptions, while the meaning of each variable in the equation is made as clear as possible 
according to existing theory. The dislocation density can be estimated from the proposed equation using both a set 
of creep data and only one adjustable parameter. The proposed equation for the dislocation density in a steady state 
is extended to the transition and acceleration creep ranges, and thus, the changes in the dislocation density can be 
estimated nondestructively using a set of creep curves. The reasonableness and usefulness of the proposed equation 
were examined using a set of creep curves of an experimental martensitic steel, namely 9Cr-1W steel. The results 
of the examination for the creep curves conducted in a wide range of test conditions of heat-resistant steel for 
practical uses will be presented elsewhere.  



www.ccsenet.org/jmsr Journal of Materials Science Research Vol. 4, No. 4; 2015 

50 

2. Introduction of Equations  
2.1 Average Dislocation Velocity 

To calculate the dislocation density using Equation 1, it is necessary to evaluate the velocity. The average 
dislocation velocity in solids containing dispersive obstacles is expressed as 

  = ̅ exp(−∆ ̅⁄ ),  (2) 
where ̅ is the mean distance that the dislocation travels and is comparable to the average obstacle spacing, Δ ̅  
is change in the average Gibbs free energy for dispersive activation points (Schoeck, 1980), and , , and  
are the effective frequency, gas constant, and absolute temperature, respectively. The value of Δ ̅  can be 
estimated, as mentioned below, using constants calculated from a set of creep curves and the temperature 
dependence of the shear modulus under reasonable assumptions. However, because both ̅ and  vary during 
creep, the expression in Equation 2 is not suitable for practical estimation of the dislocation density. We thus 
evaluated the use of a different expression for the dislocation velocity. 
Zener (1952) expressed the rate, , at which an atom moves to an adjacent lattice point as  

  = exp(−Δ ⁄ ),  (3) 
where  and  are the Debye frequency and Boltzmann constant, respectively. Δ  is the local increase in Gibbs 
free energy during lattice diffusion. When single jumps perpendicular to a dislocation and towards the force occur 
along the dislocation line with the help of a thermally activated process, according to Equation 3, the dislocation 
moves one atomic distance. Such thermally activated events continue until the dislocation is trapped or annihilated. 
During these motions of the dislocation, assuming  is constant and denoting the time required for a single jump 
as  and the total migration distance from the stable position of the dislocation to the trap or annihilation point as 

, we obtain the relation = 1⁄ = 1⁄ ∙ exp(∆ ⁄ ) using Equation 3. Therefore, the average dislocation 
velocity is given by  
 = ∑⁄ = ∑ exp Δ ⁄ ( ⁄ )⁄⁄ ,  (4) 
where  is a single jump distance. Here, ⁄  in Equation 4 is the total number of jumps during the life of the 
dislocation in the direction of the dislocation motion, and the term in the square brackets in Equation 4 is thus an 
algebraic mean of the exponential term. If we replace this term with a geometric mean, we obtain 

 = ∏ exp Δ ⁄ ⁄⁄                                

    = exp − ∑ Δ ⁄  (5) = exp(−Δ ̅⁄ )  
and 

  Δ ̅ = ∑ Δ ( ⁄ )⁄ ,  (6) 
where Δ ̅ denotes an algebraic mean of the change in the Gibbs free energy for each jump of the dislocation 
throughout its life.  is the ratio of the geometric mean to the algebraic mean and the geometric mean is equal to 
or smaller than the algebraic mean ( ≤ 1). We can assume that ≈ 1 in practice, when Δ  is as large as that 
for self-diffusion or so long as Δ  does not become excessively small during the travel of the dislocation. These 
situations were sufficiently evidenced by the systematic work of Sherby, Orr, & Dorn (1953) on the creep of pure 
metals. Equation 5 does not imply that a dislocation can move without any resistance to the next obstacle after 
overcoming the first obstacle with the help of a thermal activation process. Apart from thermally overcoming 
dispersive obstacles, the dislocation may overcome resistance to the same level as lattice diffusion over its lifetime, 
like viscous flow. Meanwhile, Equation 5 indicates that the dislocation velocity can be estimated when Δ ̅ can be 
evaluated adequately, because the pre-factor of Equation 5 is insensitive to variations in microstructure during 
creep. Comparing Equations 2 and 5 and assuming = , we obtain  
  ̅ = .  (7) 
On the left side of Equation 7, ̅ and  depend on the dispersion spacing of the obstacles and the strength of 
the elastic interaction between obstacles and dislocations, respectively. However, the right side of Equation 7 
becomes = 2.5 kms  if we assume that = 2.5 × 10  m, = 1, and = 10  s . The obtained 
value is approximately equivalent to the velocity of sound in steel and is a constant that is independent of the 
microstructure. Schoeck (1980) estimated that /  ranges from 1 for strong obstacles to 0.001 for weak 
obstacles. This leads to ̅ in Equation 7 ranging from 0.25 to 250 nm. These values are reasonable spacings 



www.ccsenet.org/jmsr Journal of Materials Science Research Vol. 4, No. 4; 2015 

51 

among obstacles for dispersion strengthening materials. Equation 7 shows that the variations in ̅ and  during 
creep cancel each other out and, as a result, the product of ̅  becomes independent of the changes in 
microstructure during creep.  
Although an estimation of the traveling distance of the moving dislocations can be omitted, the physical meaning 
of the traveling distance is included in Δ  in Equation 7; i.e., the activation volume is a component of Δ  
because the activation volume is the product of the area swept by the dislocations and the length of the Burgers 
vector. Additionally, the strength of interaction between the dislocations and the obstacles is represented by the 
increase in internal energy; i.e., the internal energy is also a component of Δ . It is thus not unusual to be able to 
image continuous thermally activated processes like lattice diffusion as a dislocation motion. Although Equation 
5 is obtained from premises and has not been experimentally validated, if Equation 5 is assumed to be reasonable, 
we can discuss the variations in the dislocation density during creep much more thoroughly.  
2.2 Rate Equation for Creep and the Activation Volume 

The time (Andrade, 1910; Cottrell & Aytekin, 1947; Sully, 1949; Prager, 1995), temperature (Dickenson, 1922; 
Sherby et al., 1953), and stress (Norton, 1929) dependences of the creep of metals at high temperatures have long 
been systematically studied. In contrast with these phenomenological approaches for creep, Eyring (1936) 
developed absolute reaction rate theory for viscous flow on the basis of thermodynamics. Employing Eyring’s 
theory, Kauzmann (1941) presented the creep rate as a function of temperature and stress for crystalline solids:  

  = exp(− ∆ ⁄ )sinh( ⁄ ),   (8) 
where ∆  is the change in the Helmholtz free energy in the activated state when there is shear deformation of one 
atomic distance.  and  are a constant and the applied normal tensile stress, respectively, and  is a constant 
(hereafter referred to as the activation volume following Seeger (1957) and Schoeck (1957)). In a high stress range, sinh ( ) ≈ 0.5exp ( ) for > 1 and Equation 8 indicates that the activation energy for creep deformation is 
reduced from ∆  to Δ −  by applying external stress. 
According to Kauzmann’s shear model, ≈  is obtained assuming one atomic distance is . Kauzmann (1941) 
also reported that ≈ 30 − 3 300  according to creep data for 16 kinds of lead, tin, zinc, brass, and steel, though 
the values of  depended on the type of alloy and were large for higher temperatures and/or stresses; i.e., the 
observed values of  are much larger than the value for the theoretical model. Dushman, Dunbar, & Huthsteiner 
(1944) confirmed similar results that ≈ 35 − 650  for constantan, Al, Al-Mg alloy, Ni alloy, Pt, and Ag. 
Kauzmann (1941) considered that the difference between the observed values of  and the modeled value could 
be explained by the motion of a dislocation. Many researchers have studied creep rate equations of Kauzmann’s 
type theoretically using different dislocation models. According to these works, the constant or activation volume, 

, is expressed as  

  = ∆ ℓ , (9) 
for any model studied (reviewed by Schoeck, 1957), where ∆  is the activation distance required to thermally 
overcome the obstacles and ∆ ≈ 0.5  is assumed, and ℓ  is the length of a dislocation segment. Substituting ≈ 30 − 3 300  reported by Kauzmann (1941) into Equation 9 and assuming = 0.5, we obtain ℓ ≈ 60 −6 600 . The values obtained may be reasonable as compared with values based on metallurgical common sense. 
Equations 8 and 9 are obtained from the following considerations (Kauzmann, 1941; Gibbs, 1964; Schoeck, 1965; 
Gibbs, 1965; Gibbs, 1969). When a dislocation overcomes an obstacle thermally and under the help of applied 
stress, the thermal potential of a specimen becomes a maximum in an imaginary activated state, at distance ∆  
from the normal position of the dislocation under free stress. At this point, the activation potential, ∆ , is reduced 
by , which corresponds to the work imparted by the specimen to a loading system. Afterward, the dislocation 
can glide out of the specimen without any additional energy, which generates both plastic strain and a strain rate. 
However, this is only valid when a single dislocation segment overcomes dispersive obstacles of the same quality 
and then glides in a single slip system operating within a single crystal or, in the case of the motion of many 
dislocations, there is no elastic interaction among these dislocations.  
In contrast, within polycrystalline material, even if a dislocation is generated in a grain and the dislocation 
overcomes the obstacles via thermally activated processes and then arrives at the grain boundary, the dislocation 
may be trapped, absorbed or annihilated near the grain boundary. Therefore, to generate the same plastic strain in 
polycrystalline material as that for the single crystal, many more dislocations should be activated in polycrystalline 
material. Some of the dislocations pass through the grain boundary or activate dislocation sources nearby the 
boundary in an adjacent grain, and these dislocations in the adjacent grain glide further and generate plastic strain 
in the grain. Repeating these processes, finally, dislocations that have arrived at the surface of a specimen generate 
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detectable plastic deformation. That is to say, it is difficult in the case of polycrystalline material having practical 
uses to specify or model a predominant obstacle for a dislocation to generate plastic deformation and to define the 
activation process, because the microstructures including grain boundaries, dislocations, and precipitates are 
highly complex. These situations discourage us from applying Equation 8 to the creep rate of martensitic steel for 
practical uses. Therefore, since Norton (1929), the so-called power law, where the logarithm of the creep rate or 
the time to rupture is described as a function of the logarithm of the applied stress, in most cases has been used in 
arranging time to rupture of heat-resistant materials for practical uses. However, it is also well known that the time 
to rupture is inversely proportional to the minimum creep rate (Mankman & Grant, 1956). Therefore, it has been 
also well confirmed experimentally that a modified equation of an exponential type for Equation 8 remains very 
useful to this day in arranging long-term rupture data for wide ranges of temperature and stress of many kinds of 
heat-resistant steels for actual use (Tamura, Esaka, & Shinozuka, 1999). The literature has confirmed linear 
relationships between ⁄  in Equation 8 and the logarithm of the time to rupture even for low stresses of about 
30 MPa for steels and 1 MPa for Pb-Sn eutectic solder alloy (Tamura, Esaka, & Shinozuka, 1999; Tamura, Esaka, 
& Shinozuka, 2003). Moreover, Kanter has already pointed out in a written comment in a Larson–Miller paper 
(Larson & Miller, 1952) that the fitness of the semi-logarithmic relation between the stress and time to rupture was 
superior to that of the power law plot. When we consider creep phenomena as a whole process, these findings 
suggest that Equation 8 may be applicable to polycrystalline material and that it may be possible to image an 
imaginary activation process that represents a creep phenomenon of polycrystalline material. The following 
scenario is developed under this hypothesis, though an activation process is not specified.  
2.3 Relation among the Activation Distance and other Parameters  

Experimentally, the values of  of polycrystalline materials calculated using Equation 8 differ from those of single 
crystals for the same metals. Kauzmann (1941) reported that ≈ 195  for polycrystalline tin at room 
temperature is smaller than ≈ 2 903  for a single crystal by an order of magnitude or more. Cottrell & Aytekin 
(1950) reported that ≈ 18  for polycrystalline zinc at 120 °C is smaller than ≈ 830  for a single crystal 
by approximately two orders of magnitude. If we apply this phenomenon that the activation volume of a 
polycrystalline material is smaller than that of a single crystal to Equation 9, we can guess the area swept out by 
dislocation motion in an activation process in polycrystalline is smaller than that in a single crystal, ∆ ℓ . 
However, the activation distance for an imaginary activated process in polycrystalline is unknown and we thus 
symbolize the activation distance for polycrystalline material as . Equation 9 is formally rewritten as  
 ≈ ℓ .   (10) 
The value of  should correlate with creep strain in an imaginary activation process in polycrystalline, because 

 is a variable of the term  and  is the work done by the specimen on the loading system, as explained 
below; i.e.,  should correlate with the experimentally obtained activation volume. 
First, we define an imaginary domain, Dm, the size of which is ×  ( < ) in an activated process, 
where  is the width of the specimen. Such a domain is partitioned by boundaries with the adjacent domains and 
distributed uniformly in the specimen. When  dislocations are swept out of the domain, the dislocation density 
for swept-out dislocations can be defined as 

 = ⁄ .  (11) 
The activated tensile strain, , generated by these dislocations is defined as 

  = ⁄ ∙ ⁄ = ,  (12) 
where  is the length of the specimen and is usually larger than , though  is independent of . New 
relations similar to Equations 11 and 12 are also obtained in a real space as 
 = ⁄    (13) 
And 
 = ⁄ = .  (14) 
Here,  denotes not the total creep strain at an instant in time, , but the strain increment with which we 
calculate the creep rate, ∆⁄ , where ∆  is time increment and we can select a value of either  or ∆  
arbitrarily, and  is the actual number of dislocations swept out of the specimen during  or ∆  and  is 
thus the minimum dislocation density for the plastic deformation of . Grain boundaries are sink sites for 
dislocations, and therefore,  

  ∙ ⁄ > .  (15) 
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From Equations 11, 12, 13, 14, and 15 and the definition of > , we obtain 

  = ⁄ ∙ ⁄ ∙ = ⁄ ∙ ( ∙ ⁄ )⁄ ∙ > ,  (16) 
and, therefore, 

 = ⁄ ∙ ⁄ ∙ = ( ∙ ⁄ )⁄ ∙ > .  (17) 
We cannot specify rigidly the relation of Equations 16 and 17 and we therefore assume 

  ≡ = ( ∙ ⁄ )⁄ ,⁄                 0 < < 1 .   (18) 
Using Equations 11, 13, and 18 we have 

 ≡ = ,           0 < < 1.⁄⁄   (19) 
From Equations 12 and 18, we obtain  

  = ( ) / = ( ).   (20) 
This relation indicates that when the number of dislocations corresponding to density  is swept out of a domain 
having dimensions × , strain of  is generated in the domain. Such domains fill the specimen, and 
thus, the actual creep strain of  is observed. Therefore, the domain of × , which is smaller than the 
imaginary domain, , should be an existing domain; e.g., lath martensite, a block, or a packet. In polycrystalline 
material, multiple-slip systems are always activated owing to the constraint from neighboring grains, and the value 
of  in Equation 20 should thus be modified from its original meaning. However, neglecting this modification 
and assuming ≈ 1 μm, we obtain ≈ 2 × 10  m  for = 0.25%. This means that the dislocation 
density can be calculated by measuring the values of  for a given  through investigating microstructures 
via interruption of the creep test. However, our purpose is to estimate the dislocation density as a function of creep 
strain using creep curves nondestructively and not to evaluate the value of  at a certain strain or time.  
Incidentally, a specimen in an activated state elongates by ∆  under a tensile load, , and the specimen does work 
on the loading system equal to Δ  (Esherby, 1956; Mura & Mori, 1976) and this work is expressed by  in 
Equation 8. The work done by the specimen having a cross section / , where  is the molar volume, is 
given by  

  ∆ = ∆ ⁄ = = , (21) 
where  is the activation volume having dimensions of units per mole. Finally, from Equations 18 and 21, we 
obtain 

  = = / .   (22) 
Equation 22 can be rewritten using Equation 20 and the definition of dislocation density as  

  = ( )⁄ = ℓ ( )⁄ .   (23) 
Comparing Equation 23 with Equation 10, we obtain 

  = ( )⁄ .  (24) 
If we assume =  (i.e., ⁄ =  (  )⁄⁄ ), from Equations 18, 19, and 24, =  (i.e., = ). 
In contrast, if = 1, Equation 24 indicates = , which may be comparable to the actual grain size, such 
as a packet. Therefore, the activation distance in polycrystalline material, , is considered to range from 
approximately the size of one grain to the size of the specimen, which is very wide compared with that for a model 
of a single jump of a dislocation in a single crystal, Δ , shown in Equation 9. Summarizing this section, it is 
pointed out that the parameters , , , , , , , , and  are correlated with each other through 
Equations 10, 12, 13, 18, 19, 20, 22, 23, and 24 though  is an arbitrary or independent variable. 
2.4 Experimental Determination of Dislocation Density 

Schoeck expressed the change in the Gibbs free energy for an activation process of a dislocation as 
  ∆ = ∆ − ( − )ℓ ∆ ,   (25) 
where ∆  is the change in the Gibbs free energy due to the position change of ∆  between the normal and 
activated states, and ℓ  is the length of a dislocation segment. ∆  in Equation 25 has the same meaning as that in 
Equations 5 and 6. −  in Equation 25 denotes the effective stress acting on the dislocation and the dislocation 
jumps in the direction of the applied stress when > . Equations equivalent to Equation 25 for the activated 
motion of a dislocation were also reported by Seeger (1957) and Gibbs (1964, 1965, and 1969). However, the 
internal stress, , indicated in Equation 25 is not equal to the average internal stress obtained in a stress change 
test, because internal stress changes every moment three dimensionally (Yoshinaga, 1977). Therefore, by dividing 
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the second term on the right side of Equation 25, using the average variables with dimensions of per-unit-mole, 
and referring to Equations 9 and 10, the changes in the Gibbs free energy due to the imaginary activation motion 
in polycrystalline can be rewritten formally, as the well-known relation 

   Δ = Δ − Δ = Δ − Δ − ,  (26) 
and combining the approximation of Equation 8 for high stresses and Equations 1 and 5, we obtain 

  = exp(− Δ ⁄ ),  (27) 
where Δ , Δ , Δ , Δ , and  are the change in the Gibbs free energy for the motion of all swept-out 
dislocations for creep, the change in the enthalpy, the change in the entropy, the increase in the internal elastic 
energy, and the activation volume, respectively. The energy barrier for the swept-out dislocations to overcome via 
thermally activated processes is expressed as  

  Δ = Δ − .   (28) 
Finally, Equation 27 can be rewritten as 
 = exp(∆ ⁄ )exp(− ( − )⁄ )  (29) 
and 

  = .  (30) 
 is the increase in internal elastic energy; i.e., = ∆ . Most previous reports on creep only discuss  and we 

therefore use  and refer to  as the apparent activation energy. Equations 29 and 30 appear like popularly used 
relations. However, in Equation 29 for the creep of polycrystalline material, it is necessary to note the meaning of 
the activation volume given in Equation 23. ∆  and  values correlate with the experimentally determined ∆ , , and  values as given in 

  ∆ = ∆ − ( ln ⁄ ) ,   (31) 
  ∆ = − = ( ln ⁄ ) ,   (32) 
  = − ( ln ⁄ ) ,   (33) 
And 
  = ln ⁄ ,   (34) 
where the subscript “ex” indicates experimentally obtained values. The value of  can be easily calculated using 
Equations 32 and 34. 
Equation 29 can be rewritten using Equations 28, 30, 31, 32, 33, and 34:  

  (−log + ) = ( − )/2.3 ,   (35) 
where  

  = ∆ 2.3 + log( ) + 2.3 ∙ ( ln ln⁄ )⁄⁄ . (36) 
The left side of Equation 35 is the famous Larson–Miller parameter (Larson & Miller, 1952) and the Larson–
Miller constant, , is not a simple adjustable parameter for arranging creep data. However, it has a clear physical 
meaning, as shown by Equation 36 (Tamura, Abe, Shiba, Sakasegawa, & Tanigawa, 2013). 
To calculate the dislocation density, a formulation of the entropy change is necessary. Zener (1951) suggested that 
changes in entropy for diffusion can be calculated using the activation enthalpy and the temperature dependence 
of the shear modulus. Using Zener’s idea, Schoeck (1965; 1980) derived an expression for the change in Gibbs 
free energy during plastic deformation based on reasonable assumptions such as = ( ⁄ , ): 

  ∆ = / + (1 − )⁄ + ,   (37) 
where  

  = ⁄ ∙ ( ln ⁄ )      and    = 1 − ln ln⁄ . (38) 

Combining Equations 5 and 37, we obtain 

    = exp − ( / + (1 − )⁄ + )⁄ .   (39) 
However, Equation 39 still contains the unknown variable .  in Equation 38 cannot be solved until the function 

 is clarified. Therefore, we treat  as an adjustable parameter on the basis of the metallurgical considerations 
mentioned below. 
If an appropriate  value is selected, the dislocation density can be easily calculated from Equations 1 and 39: 
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  = ⁄ ∙ exp ( / + (1 − )⁄ + )⁄ .  (40) 
The dislocation density in Equation 40 is based on Equation 1, which was introduced using a single crystal and 
single slip system model. However, in Equation 40, all dislocations swept out of the imaginary deformable domain, 
Dm, surrounded by boundaries in polycrystalline material are counted as dislocations. Therefore, the dislocations 
pinned within the domains are not considered. These retained dislocations in the domains contribute to an increase 
in the internal energy, . 
2.5 Determination of   

Combining Equations 23 and 40, we obtain 

 = ⁄ ∙ exp − ( / + (1 − )⁄ + )⁄ .   (41) 
From Equations 22 and 41, the actual domain size is obtained as  

   = ⁄ ∙ exp − ( / + (1 − )⁄ + )⁄ .  (42) 
Given that the value of the strain increment, , can be selected arbitrarily and   is proportional to the strain 
increment as seen in Equation 20, the actual domain size may seem to be much smaller when  approaches 
zero. However, Equation 42 indicates that an adequate value of  should be determined to obtain a reasonable 

 value. Therefore, we denote by  and  the upper and lower limits of , respectively: 

  ≤ ≤ .  (43) 
In the case of a typical martensitic heat-resistant steel, the upper limit for   is the packet size ~5 μm, where 
the packet is a minimum unit surrounded by large-angle boundaries in martensitic steel. Schäublin, Spätig, & 
Victoria (1998) observed the dislocation structure of a crept specimen employing TEM and showed that only screw 
dislocations were present within lath martensite in 8Cr-2W steel. This suggests that retained dislocations with an 
edge character were absorbed in the lath boundaries. It is therefore reasonable for martensitic steel to have a lower   limit, which is a lath martensite width of ~0.2 μm. Therefore, the value for  can be determined by 
selecting adequate   values that satisfy Equation 43.  
3. Experimental Verification of Dislocation Density  
3.1 Material and Creep Test 

9Cr-1W martensitic steel was selected to experimentally verify Equations 39 and 40, because variations in 
microstructure are simple and a set of long-term digital creep data is available for the steel. The steel was vacuum 
melted, forged, and rolled, and then quenched and tempered. The detailed preparation and test method as well as 
variations in the microstructure have been reported by Abe (2003). The creep tests were performed at 550 and 
600 °C for varying stress at the National Institute for Materials Science in Japan (NIMS) with very high accuracy 
(NIMS, 1996) and seven creep curves were obtained in total. The specimen size was 6 mm in diameter and 30 mm 
in gauge length. The temperatures of both the specimen and test room were controlled within ±2 ℃ and the 
minimum detected displacement was less than 5 μm. The creep rate was calculated using digital creep curves that 
were drawn from a set of time and displacement data and the practical detectable limit of the creep rate was below 1 × 10  h . 
3.2 Analytical PROCedures and RESULTS 

3.2.1 Variations of , , and  
Figure 1 shows the relation between linear stress and the logarithm of the minimum creep rate; we can confirm a 
linear relationship in the figure. This indicates that Equation 29 is satisfied for the MCR instead of the steady-state 
creep rate. According to an experimental rule that the time to rupture is inversely proportional to the MCR 
(Monkman & Grant, 1956), an equation similar to Equation 29 may be obtained for the time to rupture. Therefore, 
the linear semi-logarithmic relationship for the time to rupture is also confirmed in Figure 1 as is explained 
previously (Larson & Miller, 1952; Tamura et al., 1999; Tamura et al., 2003; Tamura et al., 2013; Tamura, 2015).  
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Figure 1. Minimum creep rate and time to rupture for 9Cr-1W steel as functions of stress 

 

 
Figure 2. Variations in ,  and  as functions of creep strain for 9Cr-1W steel. For simplicity, the error 
bars are shown only for . The double arrow indicates the existing range of strain for the minimum creep rate 
(MCR) of the original creep curves. The values , , and  for the MCR were obtained using Equation 35 

and individual minimum-creep-rate data, and the results are plotted at a strain for the MCR of the synthesized 
strain rate versus strain curve, shown in Figure 9. Similar plots are presented in the following figures, but the 

explanation is omitted for brevity 
 
3.2.2 Determination of the actual domain size  and correction term  
First, the change in the Gibbs free energy can be calculated according to Equation 37 assuming that = 0 and 
using the values shown in Figure 2 for the average temperature (578.6 °C) and stress (120.5 MPa). The value of 

 that is needed to calculate the Gibbs free energy and that is related to the temperature dependence of the shear 
modulus in Equation 38 was calculated using Young’s modulus and Poisson’s ratio at high temperatures (ASME, 
2013). We next obtained α ( = 0) using ∆ ( = 0) and Equation 42; the results are shown in Figure 3. In 
this calculation,  = 1, = 10  s , and = 2.5 × 10  m were assumed, and the strain increment  
was the increase in strain between adjacent data points, or 0.25% as shown in the figure. 
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Figure 3. Actual domain size and changes in the 
Gibbs free energy as functions of creep strain for 

9Cr-1W steel 

Figure 4. Variations in actual domain size, , and 
gamma, , as functions of the strain increment, , 

for 9Cr-1W steel 
 

The correction term  for Δ  in Equation 37 could be neglected at low temperatures (Schoeck, 1980), but  may 
vary according to changes in microstructure and test conditions at high temperatures. It is reasonable, therefore, 
that the values of  are calculated for the transition and acceleration creep ranges separately, as follows. First, we 
chose the data set with ( = 0), which satisfies the relationship ≤ ( = 0) ≤ . Next, if in the 
absence of these data as shown in Figure 3, we calculate both ( = ) and ( = ) for each data set 
using Equation 42. The average value of gamma is then denoted . In Figure 3, in the case of = 0.2 μm and = 5 μm, the values of  are −28.92 and −35.71 kJmol−1 for the transition creep range and the acceleration 
creep range, respectively. The mean value of  for the transition and acceleration creep ranges (i.e., −32.32 
kJmol−1) is used as the value of  for the MCR.  
Using Equation 42, we calculate the domain size for each  and denote it ( ). The results are shown by 
the green line in Figure 3. Even in this state, when the data for ( ) do not satisfy ≤ ≤ , a value 
closer to  or  was assigned to , as shown near the MCR range in the figure. The change in the Gibbs 
free energy when using the finally selected  is calculated and the results are shown in Figure 3. In the figure 
error bars are shown for each data point of ∆ , where ∆  values are calculated for the upper and lower values of 

 and  shown in Figure 2 using Equation 37, though the values for  are omitted for simplicity, and the 
range of the error bar is determined to be the difference between the values of ∆  for the upper and lower values 
of  and . The variations in ∆  shown in the figure are very similar to those in ; however, the values of ∆  are about half those of . 
Figure 4 shows the variations in  and  for a given creep strain, , as functions of the strain increment, . 
In Figure 4 error bars are shown for each  and are calculated using the same method described for ∆  in 
Figure 3, but using Equation 42. The values of  are selected as values satisfying Equation 43, as a matter of 
course, and the selected , which is independent of  in the transition creep range, tends to approach a certain 
value, approximately −30 kJmol−1, for ≈ 0 . In any case, the correction term, , is not so large when 
compared with the values of ∆ , as shown in Figure 3. 
3.2.3 Calculation of Dislocation Density and Factors Affecting the Density 
Dislocation densities can be easily calculated using both Equation 20 for a given  and the finally decided 
actual domain size, . Figure 5 shows variations in the dislocation density at the average temperature and under 
average stress as a function of creep strain for a given strain increment, = 0.25%. The dislocation density has 
a peak at 0.6% strain  and a valley at 2% in the transition creep range followed by fluctuations around 2 × 10  m  in accordance with creep strain in the acceleration creep range. It should be recalled that we use 
different values of  for the strain increment of = 0.25% in the transition and acceleration ranges; i.e., −28.92 and −35.71 kJmol−1, respectively. If we apply the  value for the transition creep range to the whole 
range of creep, the calculated dislocation density is a little higher for the acceleration creep range. The data point 
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of the MCR is shown by a double circle, because the accuracy of the calculation is not sufficiently near the MRC 
range and it may be reasonable to consider that the dislocation density near the MCR range varies from the end 
point of the transition creep range to the beginning point of the acceleration creep range through the MCR data 
point not along a solid polygonal blue line.  
 

 
Figure 5. Calculated dislocation density with error bars for 9Cr-1W steel 

 
The calculated data points and the upper (for = 0.2 μm) and lower (for = 5 μm) limits for dislocation 
density are also drawn in Figure 5. It is natural that the estimated dislocation density (including the data point of 
the MCR) is between the upper and lower limits for dislocation density shown in the figure. However, the 
variations in the density shown in Figure 5 might appear irregular or scattered. Therefore, the error bars are shown 
for the data points in Figure 5. The error bars are calculated using the same method described for ∆  in Figure 3, 
but using Equation 40. It is found that the changes in dislocation density for a given creep strain within the 
scattering of  and  (i.e., the ranges for error bars) are clearly smaller than the changes in dislocation density 
caused by creep strain. Consequently, it is understood that the fluctuation in dislocation density according to the 
progress of creep strain is not largely affected by the scattering of  and .  
Equation 20 indicates that the dislocation density directly depends on strain increment, and therefore, variations 
in the dislocation density as a function of creep strain for a given strain increment, = 0.25%, 0.5%, and 0.75% 
are shown in Figure 6. In Figure 6, the minimum dislocation density for each  (i.e., ) given in Equation 
14 and the minimum dislocation density for total creep strain, = ⁄ , are also drawn. These values are far 
lower than the calculated dislocation densities shown in Figure 6 and, of course, < . Although the values 
of =  ⁄  defined by Equation 19 depend on both  and  as seen in Figure 6, the ratio, , ranges 
approximately from 10  to 10 . Dislocations corresponding to the difference between the swept-out 
dislocation density, , and , − ≈ , for each  should stay near the actual domain boundaries. It is 
noteworthy that most dislocations generated during the activated processes remain near grain boundaries and thus 
contribute to maintain the continuity of the body, support grain boundary sliding, and introduce recovery or 
nucleation for recrystallized grains, and only a small number of the generated dislocations produce detectable 
creep strain in polycrystalline material. 
Given that the dislocation density is proportional to the strain increment, , as shown by Equation 20, the 
dislocation densities for = 0.50% and 0.75% are larger than those for = 0.25% as shown in Figure 6. 
However, Figure 6 shows that fluctuation in dislocation density depending on creep strain is not affected largely 
by the strain increment, which indicates the fluctuation in dislocation density is intrinsic. 
The dislocation density varies in inverse proportion to  for a given  as indicated by Equation 20 and the 
values of  are determined by the upper and lower limits of the deformable domain size,  and . The 
dislocation densities are then recalculated for the different values of  and  from the values shown in Figures 
5 and 6; i.e., = 5 μm  and = 0.2 μm . The results are shown in Figure 7. The figure reveals that the 
dislocation density decreases for larger values of  or  ( = 1 μm, = 5 μm and = 0.2 μm, =
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20 μm) and increases for a smaller value of  ( = 1 μm). These simulations indicate that the dislocation 
density decreases when the deformable domain size increases and consequently the microstructure may become 
coarser with the progress of creep deformation. As a matter of course, comparing the calculated values of  
with the microstructure of the crept specimens will be a topic of future work. 
In summarizing the findings taken from Figures 5, 6, and 7, we note that the dislocation density of 9Cr-1W steel 
defined by Orowan’s equation and calculated using Equation 40 ranges approximately 10 − 10  m  during 
creep; only a small number of dislocations calculated (approximately 10 − 10 ) are swept out of a specimen 
and generate creep strain, and consequently, most dislocations are accumulated or annihilated near boundaries; 
and the dislocation density fluctuates clearly with an increase in the creep strain though the dislocation density is 
approximately 2 × 10  m  depending on the experimental error of  and , , and the upper and lower 
limits of , i.e., the variations in dislocation density shown in Figures 5, 6, and 7 are considered to be intrinsic 
and reliable. Therefore, a critical issue to be discussed here is that the dislocation density fluctuates clearly with 
an increase in creep strain as shown in Figures 5, 6, and 7.  
 

 
Figure 6. Calculated dislocation densities for = 0.25%, 0.50%, and 0.75%, as functions of creep strain for 
9Cr-1W steel.  and  are the minimum dislocation density for generating creep strain, , and each strain 

increment, , respectively 
 

 
Figure 7. Calculated dislocation densities for  and  listed in the figure, as functions of creep strain for 9Cr-

1W steel 



www.ccsenet.org/jmsr Journal of Materials Science Research Vol. 4, No. 4; 2015 

60 

3.2.4 Calculated Dislocation Density and Comparison with Observations 
The calculated dislocation density shown in Figure 5 should not be compared directly with the observed dislocation 
density, because the annihilated dislocations are not taken into account in the calculated dislocation density, 
although we note that we cannot observe annihilated dislocations. Moreover, the initial dislocation density may 
affect the observed total dislocation density. The initial dislocation density of high-Cr martensitic heat-resistant 
steels for practical uses (e.g., steel types of T91, P91, and P92 registered by the American Society for Testing and 
Materials (ASTM)) ranges from 1 to 9 × 10  m  and the decrease in total dislocation density during long-term 
thermal exposure or a creep rupture test under very low stress is not so large (Spiradek et al., 1994; Sawada et al., 
1997; Ennis & Czyrska-Filemonowicz, 2003; Panait et al., 2010; Dudova, Plotnikova, Molodov, Belyyakov, & 
Kaibyshev, 2012). However, in a creep-interrupted test or rupture test conducted within approximately 1 000 h, 
the total dislocation density of the high-Cr martensitic heat-resistant steels for practical uses readily decreases to 
approximately 1 × 10  m , depending on the test temperature and stress (Sawada et al., 1997; Dudova et al., 
2012). Meanwhile, Hayakawa et al. (2007) reported that though the initial dislocation density of 1Cr-0.5Mo steel 
(ASTM A213/A213M-10 T12) observed employing TEM is approximately 1012 m−2, total dislocation density 
increases approximately 1013 m−2 within a very small strain and there is then nearly constant total dislocation 
density until rupture. Bazazi (2009) made TEM observations and reported that though the total dislocation density 
of X20CrMoV12 1 steel (Deutsch Industrie Normen 1.4922) remains around 5 × 10  m  in an un-deformed 
grip portion, which is about half the initial value (i.e., 1.2 × 10  m ), even after rupture after approximately 
110 000 h at 550 °C and 120 MPa, the total dislocation density in a gauge portion decreases to 1 × 10  m  after 
a creep interruption test at 0.5% strain (about 10 000 h) and then gradual decreases to 7 × 10  m  at rupture. 
These observations indicate that though the microstructure strongly depends on temperature, stress, and/or strain, 
the initial dislocation structure readily changes in response to very low creep strain and then gradually decreases 
during creep and has rather low density at rupture, being a “soft material” that does not contain strong hardening 
particles of (Nb,V)(C,N) like 1Cr-0.5Mo and X20CrMoV12-1 steels.  
 

 
Figure 8. TEM images for 9Cr-1W steel a) before creep testing and b) after rupture testing at 600 oC and 78 MPa 
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Although the dislocation density of 9Cr-1W steel was not estimated employing TEM and we cannot provide TEM 
images for the creep interrupted specimen because there is no unused sample remaining, TEM images of 9Cr-1W 
steel before and after rupture testing at 600 oC and 78 MPa are presented in Figure 8. Abe (2003) confirmed through 
these TEM observations the high density of dislocations and fine Cr23C6 carbide particles present in the tempered 
lath martensitic structure before the creep test. Furthermore, after rupture, the total dislocation density decreased 
and the growth of lath martensite or the formation of subgrains and coarsening of Cr-carbides occurred owing to 
recovery. Abe et al. (1992) also reported that gradual decreases in hardness and mean width of lath martensite 
were observed using creep interrupted specimens in the acceleration creep range of a tempered martensitic steel 
of 9Cr-2W steel similar to 9Cr-1W steel. Neither 9Cr-1W or 9Cr-2W steel contain strong hardening particles 
(Nb,V)(C,N) and the results of the TEM observations for 9Cr-W steels mentioned above are similar to those for 
X20CrMoV12 1 steel (Bazazi, 2009). Therefore, 9Cr-1W steel can be categorized as a “soft material”, where the 
effect of the initial dislocation structure disappears within a very small creep strain.  
The observed dislocation densities correspond to the values of the generated dislocations for creep minus the 
annihilated dislocations plus the effect of the initial dislocation density. However, because 9Cr-1W steel is 
categorized as a “soft material”, we assume that the effect of the initial dislocation density can be ignored in 
comparing the calculated dislocation density with the observations. Moreover, if the annihilated dislocation density 
can be assumed to be not so large as compared with the total dislocation density generated, it is understood that 
the calculated dislocation density of approximately 10 − 10  m  during creep shown in Figures 5, 6, and 7 
is roughly in agreement with the total dislocation density of approximately 10  m  observed for low alloy steel 
of a similar soft material. A strict comparison of the calculated values with the observations requires evaluation of α , the annihilated dislocation density, and the strain increment. The strain increment of the specimen for the 
TEM observation corresponds to the interrupted total creep strain, i.e., several %, and therefore, the calculated 
dislocation density for the TEM observation may be large as compared with the dislocation density shown in 
Figures 5, 6, and 7 (i.e., 10 − 10  m ). However, in that case, the number of annihilated dislocations may 
increase. In any case, if the results shown in Figures 5, 6, and 7 are accepted to be roughly reasonable, we must 
consider the meaning of the fluctuation in the dislocation density during creep.  
Here, we also discuss briefly the mobile dislocation density. In steady-state creep, an increase in dislocation density 
within a certain interval (e.g., = 0.25%), , is equal to the mobile dislocation density. However, most 
dislocations corresponding to  stay near the boundaries and the minimum dislocation density for creep is defined 
as = ⁄  as mentioned above. Therefore, the mobile dislocation density in grains ranges between  and  . The mobile dislocation density observed employing TEM or the mobile dislocation density,  , calculated 
from a stress change test indicates usually dislocations in grains. Therefore, we obtain the relation, >  >   
and possibly  ≈  , because dislocations near the boundaries are not taken into account. We therefore obtain  ≈ 5 × 10  m  for the creep strains of the MCR shown in Figure 5. Hayakawa et al. (2007) calculated mobile 
dislocation densities of carbon steel, low alloy steel, and 9Cr-1MoVNb steel (T91) by conducting a stress change 
test and reported that the mobile dislocation densities increase with a gradual increase in the creep strain and 
reached 1 − 3 × 10  m  at rupture, while the mobile dislocation density varies in the range 10  m  at a 
very small strain depending on the alloy type and test conditions. Therefore, the estimated mobile dislocation 
density  ≈ 5 × 10  m  for the MCR of 9Cr-1W steel well agrees with the observed values for similar steels. 
4. Discussion 
4.1 Rate-Controlling Variables during Creep 

An average creep rate can be calculated for the average temperature and stress using , , and  as shown 
in Figure 2. The average dislocation velocity is then easily calculated using Equation 1, the average creep rate, and 
the dislocation density shown in Figure 5. The results are shown in Figure 9 for = 0.25% as a function of 
creep strain. Error bars of the average velocity are omitted for simplicity, because variations in the creep rate is 
very small, and therefore, it is estimated from Equation 1 that error bars of the average velocity should be the same 
as those of the dislocation density shown in Figure 5. The average velocity seems to vary inversely against the 
dislocation density and the variations in the velocity and density are larger and more like polygonal lines as 
compared with the variation in the creep rate. The velocity ranges approximately from 10  to 10  μms  and 
is rather low. This indicates that dislocations are barely observed employing high-resolution and high-
magnification TEM. The apparent low velocity shown in Figure 9 is the result of averaging over all swept-out 
dislocations, most of which remain near the domain boundaries.  
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Figure 9. Dislocation density, creep rate, and average velocity as functions of creep strain for 9Cr-1W steel. Rate 

controlling variables are schematically shown by arrows 
 
Equation 1 indicates that, when the creep rate decreases, at least one of  and  should decrease with an increase in 
strain and the decreasing variables  and/or  are thus rate-controlling variables in the transition creep range, and 
in contrast, that when the creep rate increases in the acceleration creep range, at least one of  and  should increase 
with an increase in strain and the increasing variables  and/or  are thus rate-controlling variables. In Figure 9, the 
rate controlling variables are indicated by arrows schematically. The figure shows that “hardening” occurs when 
creep begins, which reduces the dislocation velocity, during which time the dislocation density increases in the 
opposite manner. Then, in the creep strain range between 0.6% and 2% (i.e., approximately 10 to 100 h), the velocity 
increases gradually and the dislocation density decreases. In this creep strain range, the actual domain size, , 
also increases as shown in Figure 3, which indicates that “recovery” is initiated even in the transition creep range. In 
this stage, the decreasing dislocation density is a rate-controlling variable. Next, the creep velocity decreases again, 
which is followed by a region including the MCR point. Although the calculation accuracy for  and  is 
insufficient for the polygonal lines near the MCR range, the dislocation velocity may tend to decrease towards the 
MCR data point shown by an inverse double triangle. In the acceleration creep region, inversions from hardening to 
recovery and vice versa are frequently observed. The velocity increases slightly throughout the acceleration creep 
range and, in contrast, the dislocation density decreases, which corresponds to the macroscopic occurrence of 
recovery during the acceleration creep range. However, we observe a roughly slow increase in the dislocation density 
as shown by arrows three times, while there is a rapid and obvious increase in velocity twice as shown by arrows. 
This suggests that there is a “slow hardening period” even in the acceleration creep range. In any case, frequently 
observed increasing variables are rate-controlling variables in the acceleration creep range. 
The initial decrease in the velocity may result from hardening due to the effect of instantaneous strain and the second 
decrease near 2% creep strain (at approximately 100 h) may be related to the systematical rearrangement of texture 
due to the progress of recovery, because these changes are often observed according to the electron backscattering 
pattern during early tempering and the short-term creep of high-Cr martensitic steels (Sawada et al., 1997; Tamura et 
al., 2006a; Tamura, Nowell, Shinozuka, & Esaka, 2006b), and 9Cr-1W steel does not precipitate anything other than 
preexisting Cr23C6 carbide during creep (Abe, 2003). Figure 9 surprisingly shows that recovery and subsequently 
hardening repeatedly occur and that recovery does not take place continuously, even in the acceleration creep. These 
phenomena have not yet been reported in the open literature and must be further studied in detail. 
4.2 Monitoring of Recovery 

All dislocations that are calculated as swept-out dislocations should be trapped and annihilated near the domain 
boundaries, except for dislocations swept out of the specimen. As long as a high density of dislocations remains 
near the boundaries, a certain creep strength will be maintained. Occasionally, accumulated dislocations may result 
in the formation of nuclei for the recovered zone, the growth of domains, or the formation of new sub-grains that 
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lead to an increase in  and/or the average velocity. This indicates the essential decrease in strength, but the 
observed creep rate in the transition creep range is reduced by the decrease in the dislocation density. In the 
acceleration creep range, there is another decrease followed by an increase in the dislocation density (or vice versa 
in the velocity), which indicates repeated occurrences of recovery and hardening, and finally, the material 
approaches rupture as seen in Figure 9.  
In the above-mentioned situation, if we can detect the early inversion point from hardening to recovery even in the 
transition creep range and if other hardening processes such as precipitation hardening are contrived according to 
the metallurgical considerations, we can slow the recovery rate or delay the inversion point of the modified steel. 
Therefore, by monitoring the inversion of the dislocation density or the recovery rate represented by arrows in 
Figure 9 for the transition creep range, the finding of an early beginning of recovery allows for a prediction of an 
unexpected decrease in long-term creep strength. Of course, this is based on the idea that the early recovery may 
be a trigger for early rupture at a later time. Therefore, this correlation should be studied further. However, it must 
be useful to monitor the dislocation density in improving a material. This monitoring of a set of creep curves at 
near stress levels of the 105-h rupture strength can be carried out nondestructively and is quicker than waiting for 
rupture to occur over a very long time. Creep tests should thus be conducted with high accuracy. In this case, 
determining the point of inversion from hardening to recovery during the transition creep range would be feasible. 
The analysis described above indicates that both the dislocation density and velocity can be evaluated as functions 
of the creep strain using creep data, fundamental Equations 1 and 8, and several serious assumptions, such as 
Equations 5 and 10. Only one parameter (i.e., the value of  or the actual deformable domain size, α , in 
Equation 42) is assumed on the basis of metallurgical considerations and the dislocation densities are calculated. 
In this study, the upper and lower limits of  were assumed to be constant throughout each transition and 
acceleration creep range, but it is also possible to treat these limits as variables during creep according to 
metallurgical investigations. However, the simple method shown in Figure 3 and thus Figures 5 and 9 is sufficient 
to qualitatively monitor the variations in the dislocation density during creep. 
Figure 6 shows that the variations in dislocation density can be declared in more detail for a finer strain increment 
at low creep strain, though the frequency of calculations increases. Accordingly, the dislocation density is 
calculated at almost even intervals on a logarithmic scale and the results are shown in Figure 10 with those for the 
strain increments of 0.25%, 0.5%, and 0.75%. Here, we can reduce the number of calculations, and moreover, 
investigate in more detail especially at a small strain. Additionally, we can detect a sign of the initiation of early 
recovery even at almost even intervals on a logarithmic scale, because as seen in Figure 10 referring to Figure 5, 
we can reconfirm the change near 0.6% strain is correlated with the inversion shown in Figure 5. Creep strain in 
an early transition creep range of high-strength heat-resistant steel is generally very low as compared with that of 
9Cr-1W steel. Therefore, it is useful in the case of high-strength steel to calculate the dislocation density as a 
function of creep strain with almost even intervals on a logarithmic scale.  
 

 
Figure 10. Variations in dislocation density as functions of creep strain at even intervals of  and log  for 

9Cr-1W steel 
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The inversion point near 0.6% creep strain confirmed in Figures 5, 6, 7, 9, and 10 is derived by analyzing only the 
creep curves. Therefore, it might be possible that another sign of early recovery can be detected by investigating 
directly the changes in creep rate in detail excluding heavy calculations, fuzzy assumptions, and an adjustable 
parameter,  or α , as mentioned above. However, the changes in creep rate are not so clear as shown in Figure 
9, and therefore, it is not so easy to extract a sign of early recovery from the creep curves. Even though changes in 
creep rate could be detected, the physical or metallurgical meaning of the change is unclear. Therefore, it is a 
practical approach to detect a sign for long-term degradation of creep strength within a short time by calculating 
the dislocation density during creep using Equation 30 and using creep curves obtained under the conditions near 
the stress levels of the 105-h rupture strength, where the physical meanings of the variables are clear, though the 
assumptions adopted should be validated in future work.  
After recognizing that the calculated dislocation density is reasonable and the physical meaning of each variable 
is clear, however, we can choose another easy method to detect a sign of the long-term degradation of creep 
strength. Figure 11 shows the correlation between the dislocation density and the apparent activation energy, . 
With an increase in creep strain, the data point for  and  shifts from a solid red circle at the lower left along 
the solid line in the transition creep range, skips to a solid blue triangle at the upper left in the acceleration creep 
range via a double circle for the MCR, and again shifts along a solid line with open triangles, while  increases 
or decreases in a manner similar to the change in dislocation density and a positive correlation holds. It is difficult 
to specify a dislocation model to calculate the value of  for martensitic steel, but the values can be easily 
obtained from creep curves as a function of creep strain as shown in Figure 2. It is thus possible to judge that early 
recovery may occur when  begins to decrease by monitoring the changes in  as a function of creep strain 
calculated from creep curves under the 105-h rupture strength levels (with a minimum of three creep tests). 
According to the judgement of the occurrence of the early recovery, we can start the modification of the developed 
material within an early time.  

 

 
Figure 11. Correlation between dislocation density and experimentally obtained apparent activation energy for 

9Cr-1W steel 
 
The logarithm of the creep rate has been plotted as a function of the logarithm of the stress. In this case, we can 
easily obtain the apparent activation enthalpy, ∆ , using Equation 32 as a function of creep strain. A diagram 
similar to Figure 11 is obtained for the relation between  and ∆ . Therefore, monitoring ∆  is also 
effective. We can detect a sign of the long-term degradation of creep strength by monitoring  or ∆ ; 
however, it should be remembered that the inversion from an increase to a decrease in  or ∆  with an 
increase in the creep strain is caused by the change in the dislocation density, which corresponds to the early 
initiation of recovery. 
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4.3 Meaning of the Calculation Equation for the Dislocation Density  

Equation 40 is used to calculate the dislocation density that generates a strain increment, , through an 
adjustable parameter, , which is determined through , , and  using Equations 42 and 43 (see Figure 3). 
The calculation uses the values of  and , which are obtained from the creep rate at a specific strain using 
Equation 35. We can thus calculate the dislocation density nondestructively for a given strain. The dislocation 
densities calculated for 9Cr-1W steel are similar to the total dislocation density observed for a similar heat-resistant 
steel employing TEM. The definition of the dislocation density used in this study is different from the total 
dislocation density observed; however, this can be explained by referring to the literature and the assumptions 
made as mentioned above. Although the dislocation density depends on not only , , and  but also the 
strain increment, , if these variables are assumed to be constant during creep deformation, the dislocation 
density calculated varies appreciably as shown in Figures 5, 6, and 7.  
A critical problem in introducing Equation 40 for polycrystalline may be whether correlating Equation 1 with 
Equation 2 or Equation 8 is valid. There is no problem applying Orowan’s equation (Equation 1) to the deformable 
domain in polycrystalline that is considered to be a single crystal, because Equation 1 is a basic equation for plastic 
deformation of a single crystal and we assume the MCR to be the rate of steady-state flow, and therefore, the 
dislocation density defined in this study is considered to be the mobile dislocation density in Equation 1. However, 
Equations 2 and 8 are derived for a model in which the motion of a single dislocation overcomes thermally 
dispersive obstacles of the same quality in a single crystal. When we consider the motion of many dislocations 
based on Equation 8, these dislocations should not elastically interact with each other, but this situation is 
practically improbable. If dislocations glide with random timing in a crystal and elastically interact with each other, 
we cannot define ∆  in Equation 25. However, when we apply Equation 2 or 8 to polycrystalline, we should 
consider the motion of many dislocations, though such models have not yet been developed. We therefore treated 
the creep phenomenon as a whole process.  
The essence of Equation 8 is that the potential energy required for a dislocation to overcome an obstacle is reduced 
by . The activation distance included in  should theoretically be ∆ ≈ 0.5  in a crystalline material as 
shown in Equation 9. However, in polycrystalline, since we cannot specify a dislocation model, the unknown 
variable  was introduced as the activation distance as described by Equation 10. When Equation 10 is solved 
satisfying the relation between the observed strain rate and the applied stress, we obtain = ( ) =⁄  as 
shown in Equation 24. We can estimate ≈ 3.8 × 10  for the MCR and = 0.25% using Equation 22 and 
the value of  shown in Figure 2, and assuming ≈ , and using the MCR, we obtain = ( )⁄ ≈1 3.8 × 10⁄  μm ≈ 1 × 10 . This suggests that the activation distance in polycrystalline, , may be 
considerably larger than the theoretical value of ∆ ≈ 0.5  for a single dislocation and equivalent obstacles in a 
single-crystal model. In contrast, assuming ≈  and ≈ 1 μm, which corresponds to = 2 × 10  m , 
we obtain from Equation 24 = 4000. This estimation contradicts Equation 18; ≡ ,⁄  0 < < 1. It may 
thus be concluded that applying the thermally activated equation of Kauzmann type, Equation 8, to polycrystalline 
is theoretically incorrect. 
However, it has been well confirmed that an approximate exponential equation of Equation 8 can be widely applied 
to arranging time-to-rupture or MCR data of many kinds of heat-resistant steels, Ni base alloys, and solders that 
are obtained under widely spread test conditions (Kanter in a Larson-Miller’s paper, 1952; Tamura, Esaka, & 
Shinozuka, 1999; Tamura, Esaka, & Shinozuka, 2003). Therefore, though the contradiction concerning the 
activation distance, , mentioned above is not yet solved, Equation 40 for calculating the dislocation density, 
which is based on Equations 1 and 8 and an adjustable parameter  (i.e., ) is valid for practical use. This 
contradiction will be solved in future work, if the random motion of many dislocations can be modeled and  
can be solved. However, the aim of the present work is not solving this problem but rather detecting a sign of the 
long-term degradation of the rupture strength of martensitic steel within a short time using Equation 40 via an 
adjustable parameter, ; i.e., . 
If Equation 40 is reasonable or acceptable, a sign of early recovery in the transition creep range that may be a 
trigger for the long-term degradation of creep strength of martensitic steel can be extracted, whatever the absolute 
value of the dislocation density. When the sign of early degradation is detected nondestructively by analyzing 
creep curves obtained under the conditions around the estimated 105-h strength levels after development of a new 
material, we can start to take counter measures such as micro-alloying, modification of the chemical composition, 
and/or heat treatment within an early time. Though there is a more simple and practical way of monitoring the 
apparent activation energy, , mentioned above, rather than monitoring the estimated dislocation density, it is 
essential to understand the physical meaning of the variables to calculate the dislocation density using Equation 
40. 
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5. Conclusions 
1) An equation for the dislocation density is introduced by making several assumptions and using one variable, , 
as an adjustable parameter. The value of  is determined by selecting the actual deformable domain size according 
to metallurgical considerations. Using the equation and a set of creep curves, the dislocation density in 
polycrystalline heat-resistant steel during creep can be estimated as a function of creep strain nondestructively. 
2) The estimated dislocation densities for 9Cr-1W steel are approximately within the range of total dislocation 
densities measured employing TEM for similar heat-resistant steels. 
3) The dislocation density of 9Cr-1W steel increases or decreases repeatedly during creep. The point of conversion 
from increasing to decreasing dislocation density within the transition creep range probably indicates the 
occurrence of early recovery, which suggests an unexpected decrease in long-term rupture strength. 
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