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Altered gut microbiota may trigger or accelerate alpha-synuclein aggregation in the

enteric nervous system in Parkinson’s disease (PD). While several previous studies

observed gut microbiota alterations in PD, findings like diversity indices, and altered

bacterial taxa itself show a considerable heterogeneity across studies. We recruited

179 participants, of whom 101 fulfilled stringent inclusion criteria. Subsequently, the

composition of the gut microbiota in 71 PD patients and 30 healthy controls was

analyzed, sequencing V3–V4 regions of the bacterial 16S ribosomal RNA gene in

fecal samples. Our goal was (1) to evaluate whether gut microbiota are altered in a

southern German PD cohort, (2) to delineate the influence of disease duration, stage, and

motor impairment, and (3) to investigate the influence of PD associated covariates like

constipation and coffee consumption. Aiming to control for a large variety of covariates,

strict inclusion criteria were applied. Finally, propensity score matching was performed

to correct for, and to delineate the effect of remaining covariates (non-motor symptom

(NMS) burden, constipation, and coffee consumption) on microbiota composition.

Prior to matching altered abundances of distinct bacterial classes, orders, families,

and genera were observed. Both, disease duration, and stage influenced microbiome

composition. Interestingly, levodopa equivalent dose influenced the correlation of taxa

with disease duration, while motor impairment did not. Applying different statistical

tests, and after propensity score matching to control for NMS burden, constipation

and coffee consumption, Faecalibacterium and Ruminococcus were most consistently

reduced in PD compared to controls. Taken together, similar to previous studies,

alterations of several taxa were observed in PD. Yet, further controlling for PD associated

covariates such as constipation and coffee consumption revealed a pivotal role of these

covariates. Our data highlight the impact of these PD associated covariates onmicrobiota

composition in PD. This suggests that altered microbiota may mediate the protective

effect of i.e., coffee consumption and the negative effect of constipation in PD.
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INTRODUCTION

In recent years, the perception of Parkinson’s disease (PD)
has transformed from a movement disorder into that of a
multisystem disorder of the central nervous system (CNS) (1).
Non-motor symptoms (NMS) such as constipation, REM-sleep-
behavior disorder (RBD), and hyposmia have been recognized
as surrogate parameters, often preceding motor symptoms
by years. NMS are used to define prodromal stages of
PD for research purposes (2). Among them, gastrointestinal
impairment proceeds motor symptoms potentially by decades
(3) and deteriorates with disease progression (4). Accordingly,
accumulating evidence suggests that the enteric nervous system
(ENS) may be the initial site of alpha-synuclein aggregation,
eventually representing the onset of PD. However, alpha-
synuclein positivity is observed in colon tissue of control subjects
with prevalences ranging from 26% to even 91% across different
studies (5, 6). Due to the ENS’s close proximity to the gut lumen,
and the huge surface of the mucosal barrier to the gut, significant
interactions with the residing microbiota occur. This may be
particularly relevant in altering or triggering neurodegenerative
processes in PD, as it has already been proposed for a variety of
other CNS diseases (7, 8). Two pathways by which the microbiota
may induce neurodegeneration in PD have been proposed. One
hypothesis is that dysbiotic gut microbial composition leads
to increased gut leakiness. Consecutive gut inflammation fuels
the accumulation of alpha-synuclein in the ENS, which is then
propagated via a prion-like mechanism across the vagal nerve to
the CNS (7). This propagation has recently been demonstrated
in two murine studies (9, 10). This hypothesis is in line with the
Braak Stages (11). In this scenario, a “disease causing” or “risk”
microbiome, present already in prodromal and early disease
stages may be a causative factor. A second hypothesis is that
the gut microbiota’s interaction with the ENS immune system
may shape Th17 response, which has been shown for multiple
sclerosis (MS) (12), leading to increased inflammation fueling PD
progression (13).

Several cross-sectional studies observed an altered gut
microbiota in PD patients (14), suggesting that it may serve
as a biomarker for premotor PD or constitute a trigger for
disease progression. Changes in microbial communities are also
observed in atypical parkinsonism (MSA and PSP) (15). One
study found gut microbiota alterations in subjects suffering
from the PD prodrome iRBD compared to healthy controls
(16). Yet, alterations in microbiota composition vary between
studies. Also, it is currently not well-understood how disease
duration and stage, and motor impairment affect microbiota
composition in PD. Summaries of observed changes and the
methods used in previous studies have been published, recently
(14, 17). While dysbiosis has been shown in all studies, a
consistent picture of a “PD specific microbiome composition”
is debatable.

Microbiota are influenced by a vast variety of covariates such
as regional lifestyle factors like nutrition (18), and importantly
constipation, a prominent NMS in PD which worsens during
disease progression (4). In addition, the interaction between
gut microbiota and dopaminergic medication as well as

anticholinergics has recently been recognized. Significant
differences in gut microbiota as a result of treatment with
catechyl-o-methyl transferase inhibitors (iCOMT) and
anticholinergics as well as metabolism of levodopa by gut
microbiota have been shown (19, 20). These covariates along
with different methodological approaches used across studies
may profoundly influence results. Moreover, consensus criteria
on how to conduct a microbiome study are already 5 years
old (21). Thus, there is currently no up-to-date consensus in
this rapidly developing field that standardizes methods and
provides guidelines on how to control for technological and
procedural covariates.

This study aimed to provide further evidence for altered
gut microbiota in PD in a southern German cohort, focusing
on the effect of disease stage and duration, and in particular
the influence of PD associated covariates like NMS burden,
constipation, and coffee consumption.

MATERIALS AND METHODS

Study Population and Inclusion Criteria
This observational study consisted of 179 participants, in
total. All participants were recruited in the outpatient clinic
of the Department of Molecular Neurology of the University
Hospital Erlangen. We recruited patients’ spouses and relatives
as controls. The study was approved by the local ethics
commission (No. 284_16 B), and all participants gave written
informed consent.

PD was diagnosed by a movement disorder specialist
according to the MDS clinical diagnostic criteria for PD (22).
Motor symptoms were measured using part III of the Unified
Parkinson’s Disease Rating Scale (UPDRS III), and disease
staging followed the original Hoehn + Yahr scale (H&Y)
(23, 24). NMS burden was assessed using the Non-Motor
Symptoms Scale (25). Constipation and associated symptoms
were measured using the Cleveland Clinic Constipation Score
(Wexner Constipation Score) (26). Signs of iRBD were analyzed
using the REM Sleep Behavior Disorder Screening Questionnaire
(RBDSQ) (27). Screening for depressive symptoms was
performed using the 30-Item Geriatric Depression Scale
(GDS30) (27, 28). Control subjects had no clinical signs
of neurodegenerative disorders or symptoms suggestive of
prodromal PD (2). Patients with monogenic forms of PD or
more than one relative with PD were excluded, as were patients
in H&Y stage 5.

Since no definitive consensus on inclusion and exclusion
criteria in microbiome studies exists, we designed the study
protocol to cover a wide range of the exclusion criteria used in
a previous study in PD (29), and followed previously suggested
consensus criteria (21). Briefly, for all participants, active or
persistent primary disease of gastrointestinal tract, previous
abdominal or anorectal surgery, previous vagotomy, antibiotic
treatment within the last month and regular use of opioids were
considered exclusion criteria. Inclusion and exclusion criteria
were assessed by a self-report questionnaire, including a variety
of nutritional factors, and in particular, coffee consumption on
ordinal scale variables. Physical activity was measured as hrs
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per week of easy, moderate, and demanding physical activity.
In case of unprecise reports, clarification was achieved by either
telephone or interview during a regular outpatient visit. An
English version of the questionnaire is provided within the
Supplementary Material. A detailed table of all exclusion criteria
is provided in Supplementary Table 1.

Analysis of Fecal Microbiota
All participants collected fecal samples in a DNA stabilizing
solution (Stool Collection Tubes with Stool DNA Stabilizer;
Stratec R©, StratecMolecular, Berlin, Germany) at home, following
a precise protocol provided with the Stool collection tubes,
including the use of a feces collection paper in order to minimize
contamination. Samples had to be transferred to the laboratory
within 3 days and were immediately stored at −80◦C upon
arrival until further processing. Thus, only samplers arriving
within a time frame of 72 h after collection were included. It
is important to note that DNA stabilizing solutions are able
to preserve microbiome profiles for up to 7 days at room
temperature (30).

DNA Extraction, PCR and Sequencing
Bacterial genomic DNA from stools was isolated using PSP R©

Spin Stool DNA Plus Kit (Stratec Molecular, Berlin,
Germany) including a bead-beating step, following the
manufacturers protocol. DNA was subsequently quantified
using a Qbit device (Thermo Fisher Scientific). The V3+4 region
of the 16S rRNA gene was amplified using 10 ng of bacterial
template DNA with degenerate region-specific primers (341F:
5′-ACTCCTACGGGAGGCAGCAG-3′; 806R: 5′-GGACTAC
HVGGGTWTCTAAT-3′) containing barcodes and Illumina
flow cell adaptor sequences (31) in a reaction consisting of 25
PCR cycles (98◦C 15 s, 58◦C 20 s, 72◦C 40 s) using the NEBNext
Ultra II Q5 Master Mix (New England Biolabs, Ipswich, MA).
Amplicons were purified with Agencourt AMPure XP Beads
(Beckmann Coulter, Brea, CA), normalized and pooled before
sequencing on an Illumina MiSeq device using a 600-cycle
paired-end kit and the standard Illumina HP10 and HP11
sequencing primers. For bioinformatic processing, the terminal
15 bases of both forward and reverse reads were removed before
merging and quality filtering using the fastq_mergepairs and
fastq_filter_options from Usearch 10 (32). Subsequently, merged
fastq files were demultiplexed and trimmed using Cutadapt (33).
16S taxonomic sequence clustering (ASV table generation) and
classification was performed with the Unoise3 (34) and Sintax
(35) algorithms within Usearch using the greengenes 16S rRNA
database v13.5.

Statistical Analysis
Statistical analysis of clinical variables was performed using
SPSS R© Statistics Version 21 (IBM Corp.). Normal distribution
was assessed by a Kolmogorov-Smirnov test. Group differences
of normally distributed variables were analyzed using a t-test,
non-parametric variables were assessed by a Mann-Whitney U-
test. Differences in binary variables were tested using Fisher’s
exact test. Differences regarding all other categorical variables
were tested using z-test followed by Bonferroni correction.

For multiple comparisons of normally distributed variables, we
used ANOVA with Bonferroni correction. For non-parametric
variables, a Kruskal Wallis test followed by Bonferroni correction
was used.

Statistical analysis of microbiome data was performed using
marker-gene data profiling in MicrobiomeAnalyst (Xia Lab,
McGill University, Quebec, Canada) (36). We followed recently
published methods on data processing, normalization, and
profiling (37). A low count filter was used to filter all features
with <4 counts in at least 20% of values. Features with
<10% variance, based on the inter-quartile rank, between
experimental conditions (PD vs. controls, PD vs. H&Y) were
filtered using a low variance filter. All samples were rarefied
to even sequencing depth using the minimum library size
(3,537 reads). Finally, for data scaling, total sum scaling
was applied.

Diversity measures to calculate alpha diversity were Chao1
(richness of a group) as well as Shannon, and Simpson (richness
and evenness of a group) using a t-test. In order to calculate
beta diversity, distance methods used were Bray-Curtis Index
using PERMANOVA. Since results based on sequencing of the
V3 and V4 regions of the bacterial 16S ribosomal RNA gene
are not reliable for species level (38), we did not pursue analysis
for this taxonomic level. Moreover, altered bacterial taxa with
<10 absolute counts were considered as not biologically relevant
and excluded.

To analyze differences in the abundances of individual
taxa on five major taxonomic levels (class, order, family, and
genus) between controls vs. PD, or controls vs. disease stages
H&Y1, H&Y2, H&Y3, H&Y4, we first performed classical group
comparison using a Kruskal Wallis test in MicrobiomeAnalyst.
In addition, a Wilcoxon signed rank test was used to assess
differences between PD and controls, and results are displayed
using heat tree analysis (39). To further delineate, which genera
constitute the most important differentiating factors between
PD and controls, we performed random forests classification in
MicrobiomeAnalyst, as described previously (37). To assess the
correlation of disease duration and abundance of genera, and the
influence of UPDRS-III and levodopa equivalent dose (LEDD),
we used the processed, normalized and scaled abundances from

MicrobiomeAnalyst in IBM SPSS statistics version 24.0 (IBM©).
A partial correlation was performed with a significance level of
0.05, two-tailored using zero-order correlations with UPDRS-III
and LEDD as covariates.

As microbiome data are compositional, analyzing differences
between groups using classical statistical testing may lead to
false assumptions of differences in microbiome composition,
a factor that may be large in some datasets, and small in
others (40). To further substantiate our findings, we used the
pattern search feature of MicrobiomeAnalyst. We specified either
group (ctrl vs. PD) or disease stage (controls vs. H&Y1 vs.
H&Y2 vs. H&Y3 vs. H&Y4) as a feature. Sparse Correlations for
Compositional data (SparCC) (40) was used as distance measure
of taxa between features. As SparCC assumes a sparse network
and uses log-ratio transformed data and performs iterations to
identify correlations that are distinct from correlations resulting
from network changes within a compositional dataset, the results
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FIGURE 1 | Recruitment process and main exclusion criteria.

of this pattern search approach take the compositional character
of our data into account.

Finally, to analyze confounders such as by coffee
consumption, NMS, and in particular constipation, we
performed propensity score matching using the balanced,
parallel, variable ratio (1:n) nearest-neighbor approach
(41) in SPPS R© and R (V 2.14.2; The R Foundation for
Statistical Computing, Vienna, Austria). Matching was
performed to control for the covariates total NMS score, NMS
constipation item, coffe consumption, and Wexner Constipation
Score. Matched groups were analyzed for differences in
microbiota composition in MicrobiomeAnalyst, analog to
unmatched groups.

RESULTS

Demographics and Clinical Data
Between November 2016 and June 2018 176 subjects were
recruited. Of these, 101 (70 PD, 31 controls) fulfilled the
inclusion criteria (Figure 1). There was no difference in gender

distribution between groups (patients 45.7% females; controls
45.2% females). In addition, mean age (PD: 65.3 yrs ± 10.2;
controls: 64.3 yrs ± 8.9) did not differ between groups. Mean
disease duration of the PD group was 7.4 years (±5.7 yrs)
and mean H&Y was 2.2 (±1.0). Mean LEDD was 660.9mg
(±563.9mg) per day (Table 1). As expected, overall NMS
score was significantly higher in PD patients than in controls
(7.1 ± 4.8 vs. 2.7 ± 2.2; p < 0.001), as was the frequency of
constipation reported in the NMS questionnaire (32.9 vs. 6.5%,
p = 0.005). Also, Wexner Constipation Scores were significantly
higher in PD patients than in controls (4.2 ± 3.8 vs. 2.3 ± 1.9;
p= 0.034). Changes in frequency of incomplete bowel emptying,
as reported in the NMS questionnaire was altered, however
bordered significance, only (22.9 vs. 6.5%; p = 0.053). Half of
PD patients and 0% of controls were screened positive for iRBD
(Table 1). Patients and controls did not differ in smoking, use of
alcohol, intake of prebiotic and probiotic supplements as well as
consumption of probiotic yogurt, regular yogurt and natural food
sources occurring in Western diet, containing a relevant amount
of the prebiotics inulin and oligofructose (42). Both groups
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TABLE 1 | Demographics, lifestyle factors and comorbidity PD vs. controls.

PD Control P-value

N 70 31

Female subjects 45.7% 45.2% 1.000a

Mean age 65.3 ± 10.2 64.3 ± 8.9 0.651b

Mean weight [kg] 76.4 ± 15.6 77.8 ± 14.1 0.670b

Mean height [cm] 171.1 ± 10.5 170.1 ± 7.7 0.700c

Mean H&Y stage 2.2

Mean disease duration 7.4 years

Mean LEDD 660.88mg

Severity of NMS

mean NMS Score 7.1 ± 4.8 2.7 ± 2.2 <0.001c

NMS item “constipation” 32.9% 6.5% 0.005a

NMS item “bowel emptying

incomplete”

22.9% 6.7% 0.053a

Degree of constipation symptoms

(Wexner)

4.2 ± 3.8 2.3 ± 1.9 0.034c

Lifestyle factors

Smoking 1.4% 6.5% 0.222a

Coffee consumption >2 cups per day 18.6% 58.1% <0.001a

Alcohol consumption ≥ twice a week 45.7% 56.7% 0.385a

Probiotic supplement consumption 4.3% 3.2% >0.05d

aFisher’s exact test; bt-test; cMann-Whitney U-test; dChi-square test with

Bonferroni correction.

TABLE 2 | Antiparkinsonian medication intake in PD vs. controls.

Antiparkinsonian medication PD Controls P-value

Levodopa 71.4% 0.0% < 0.001a

COMT inhibitor 15.7% 0.0% 0.017a

Dopamine agonist 78.6% 0.0% < 0.001a

MAO-B inhibitor 62.9% 0.0% < 0.001a

Amantadine 18.6% 0.0% 0.008a

Anticholinergic 0.0% 3.2% 0.304a

aFisher’s exact test (COMT, Catechyl-O-methly transferase; MAO-B,

Monoaminooxidase-B).

showed no difference in self-reported consumption of additional
salt during meals. However, PD patients showed a significantly
lower coffee intake compared to controls (p < 0.001). Moreover,
PD patients and controls were similarly active regarding easy to
moderate physical exercise. A detailed summary of the assessed
covariates is provided in Supplementary Table 2. As expected,
control subjects were more involved in demanding physical
activity than PD patients. Except for dopaminergic medication,
there was no difference between groups in medication
intake (Tables 2, 3).

There was no difference between controls and different
H&Y stages regarding gender distribution, weight and height.
Patients in H&Y stage 1 were younger than patients in more
advanced disease stages and controls. Neither frequency of
constipation reported in the NMS questionnaire nor absolute
Wexner Constipation Score showed overall differences between

TABLE 3 | Antiparkinsonian medication intake in different H&Y stages vs. controls.

Antiparkinsonian

medication

H&Y 1 H&Y 2 H&Y 3 H&Y 4 Controls P-value

L-Dopa 26.7%a 78.8%ab 83.3%ab 100%ab 0.0%c
<0.0011

COMT inhibitor 0.0%a 12.1%a 8.3%a 60.0%b 0.0%a
<0.0011

Dopamine agonist 86.7%a 78.8%a 75.0%a 70.0%a 0.0%b
<0.0011

MAO-B inhibitor 73.3%a 69.7%a 50.0%a 40.0%a 0.0%b
<0.0011

Amantadine 6.7%a 18.2%a 25.0%ab 30.0%ab 0.0%c 0.0101

Anticholinergic 0.0% 0.0% 0.0% 0.0% 3.2% 0.6701

1Fisher’s exact test with Bonferroni correction. Letters a, b, and c indicate groups that do

not differ on a 0.05 significance level.

H&Y stages. Also, coffee consumption did not differ between
different disease stages. See Supplementary Table 3 for details on
assessed covariates regarding overall group differences between
controls and different H&Y stages.

Diversity Measures of the Microbiota
There were no differences in Shannon (p: 0.10879; t: 1.6207),
and Chao1 (p: 0.83138; t: −0.21396) alpha-diversity indices.
Simpson index showed a significantly reduced alpha diversity
(p: 0.0080764; t: 2.7035) between controls and PD patients
(Supplementary Figure 1). There were no differences in alpha-
diversity between controls and H&Y stages 1–4 (data not shown).
A difference in beta-diversity (Bray Curtis index) was observed
between controls and PD (PERMANOVA: F:1.7844; p < 0.047;
Supplementary Figure 1), and when comparing H&Y stages 1–
4 and healthy controls (PERMANOVA: F:1.5651; p < 0.008;
Supplementary Figure 2).

Altered Gut Microbiota in PD Patients on
Different Taxonomic Levels
Using classical group comparison, PD patients displayed
several alterations of individual taxa (summarized in
Supplementary Figure 3). Using a Wilcoxon-signed rank
test (using heat tree analysis in MicrobiomeAnalyst), we
solely observed a decreased abundance of Firmicutes on
phylum level (p < 0.042). We observed an altered microbiota
composition within the class Clostridia (p = 0.0301), order
Clostridiales (p = 0.0301), family Lachnospiraceae (p = 0.0079),
and family Clostridiaceae (p = 0.0491). Within the family
of Ruminococcaeceae (p = 0.161), the genus Ruminococcus
was not altered significantly (p = 0.067), however the genus
Faecalibacterium (p = 0.017) was significantly altered, as well as
Oscillospira (p = 0.0421). Within the class Betaproteaobacteria
(p = 0.0038), order Burkholderiales (p = 0.0038), family
Alcaligenaceae (p = 0.0038), the genus Sutterella (p = 0.0038)
was significantly altered in PD (Figure 2A). Random forests
classification (OOB error = 0.0337, classification error for
PD = 0.0714) further substantiated a role of Faecalibacterium,
Sutterella, Oscillospira, Ruminococcus, and Blautia as the
5 most important differentiating factors, separating PD
microbiota from controls (Figure 2B). Using pattern search in
MicrobiomeAnalyst with SparCC as distance measure, we did
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FIGURE 2 | (A) Heat tree analysis depicting alterations in microbiota composition between PD and controls. Significantly altered taxa are displayed by name at the

corresponding node. Nodes indicate the hierarchical structure of taxa. A red branch indicates an increase in PD compared to controls, while a blue branch indicates a

decrease. (B) Unsupervised random forests classification using PD and controls as classes and abundances as classifiers along a decision tree. Y-axis: 10 most

important classifying variables, z-axis: mean decrease accuracy (MDA) is a measure of loss of accuracy if the classifier on the y-axis is removed from the classification.

Mini heatmap (Blue or red squares) on the right indicate the abundance in the groups (red indicates high abundance, blue low abundance).

not observe any correlation of a certain phylum with the feature
group (controls vs. PD). Using this method, on class level, only
Gammaproteobacteria were significantly correlated with PD
(r = 0.5355; p = 0.0297; Supplementary Figure 4). On family
level, Bacteroidaceae (r = 0.6794, p= 0.0099), Ruminococcaceae
(r = 0.5249, p = 0.099), Streptococcaceae (r = 0.4216,
p= 0.0099), and Veillonellaceae (r= 0.3377, p= 0.0297), showed
positive correlations with groups, whereas Clostridiales incerte
sedis XII (r = −0.2625, p = 0.0396) and XIII (r = −0.2113,
p = 0.0495) were negatively correlated with groups (Figure 3A).
On genus level,Clostridium (r=−0.291, p= 0.0198), Bacteroides
(r = 0.4652, p = 0.0297), Streptococcus (r = 0.2704, p = 0.0297),
Veillonella (r= 0.2646, p= 0.0297), Faecalibacterium (r=−0.27,
p = 0.0396), and Coprococcus (r = −0.2532, p = 0.0495)
(Figure 3B) were correlated with PD. In summary, using
several statistical methods to address alterations in PD,
Faecalibacterium was the most consistently altered taxon
across tests.

The Influence of Disease Stage on the
Abundance of Different Genera
Using classical non-parametric group comparison, there were
significant differences in the abundance of several bacteria on
different taxonomic levels between controls and individual H&Y
stages (Supplementary Table 4). Pattern search using disease
stage as factor and SparCC as distance measure revealed that
on class level Gammaproteobacteria was correlated with disease
stage. On genus level, in addition to Faecalibacterium, also
Bacteroides, Clostridium, Phascolarctobacterium, Coprococcus,

Odoribacter were correlated with disease stage. On family level,
Bacteroidaceae and Turicibacteraceae correlated with disease
stage (Table 4).

The Influence of Disease Duration on the
Abundance of Different Genera Depicts an
Important Contribution of Dopaminergic
Medication
Disease duration correlated with Faecalibaterium (p < 0.043,
r = −0.244), Parabacteroides (p < 0.016, r = 0.29), and
Turicibacter (p < 0.041, r = 0.247; Table 5A). Since disease
duration leads to increasing doses in dopaminergic medication
and is associated with increased motor impairment, we
performed a partial correlation analysis to assess the effect of
the LEDD (Table 5B), UPDRS III (Table 5C) as well as LEDD
and UPRDS III (Table 5D) on the correlation of disease duration
with genera. LEDD, UPDRS III, and LEDD + UPDRS III
differently impacted correlation. While the significant positive
correlation of Parabacteroides and Turicibacter with disease
duration was maintained after controlling for LEDD, UPDRS
III and the combination of both, correcting for LEDD led
to a loss of significance for Faecalibacterium. Correcting for
the covariate UPRDS III did not affect correlations. For
Sutterella, correcting for the LEDD strengthened the correlation,
bordering significance. Thus, dopaminergic medication, but not
motor impairment may influencemicrobiome composition upon
disease progression.
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FIGURE 3 | To further strengthen the described alterations via a compositionally aware method, we used pattern search in Microbiomeanalyst with SparCC as

distance measure to identify correlations of individual taxa with groups. (A) Bars indicate the value for the correlation coefficient of a significantly correlated taxon with

PD on (A) family level and (B) genus level. Correlation coefficients are depicted as positive (red) or negative correlations (blue). In example, on family level, a correlation

coefficient of 0,679 between Bacteriellaceae and PD was observed, this correlation was significant (p = 0.0099).

The Influence of Constipation and Coffee
Consumption
Given that microbiota composition is influenced by a multitude
of factors other than disease duration and motor impairment,
this study was designed to include participants based on
stringent inclusion criteria, already controlling for a large variety
of covariates upon enrollment. Yet, PD associated covariates
cannot be controlled for a priori. To investigate the influence
of these covariates on microbiota composition, we preformed
propensity score matching of PD patients and controls for
those covariates that showed significant differences between
controls and PD, NMS score, Wexner Constipation Score and
coffee consumption. Matching led to two study groups not
differing concerning these covariates (PD n = 28; controls
n = 19; Table 6). Also, matched groups did not differ in
demographics and clinical data apart from RBDSQ ratings and
dopaminergic medication (see Supplementary Table 5). After
matching, one bacterial genus was significantly altered using
Mann-Whitney U (p < 0.05, Figure 4A), and Wilcoxon signed
rank test (p = 0.0187, Figure 4B): Ruminococcus was reduced
in PD patients compared to controls, and could was identified
as the most important classifier (Figure 4C). Using groups

(controls vs. PD) as a factor in pattern search, and SparCC
as distance measure, we observed a correlation of PD with
Bacteroides (r = 0.4924, p = 0.0396), and Faecalibacterium
(r = −0.2827, p = 0.0099), only. Ruminococcus (r = −0.3926,
p = 0.1386) did not show a significant correlation with PD
(Figure 4D). Thus, PS matching lead to a loss of significance
as well as correlation of most taxa. This indicates, that PD
associated covariates have a profound impact on microbiome
composition, likely contributing to the observed alterations in
microbiota in PD.

DISCUSSION

We provide further evidence for altered abundances within
the gut microbiota in PD. We demonstrate that disease stage
and duration impact microbiota composition. PD associated
NMS profoundly impact the microbiota as evidenced by the
very limited residual differences in microbiota composition
after controlling for these covariates. Overall, Faecalibacterium
was the most consistently decreased taxon in PD across all
tests used in this study. Our results especially highlight the
pivotal influence of constipation and coffee consumption on
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TABLE 4 | Significant correlations of microbiota with disease stage.

Correlation P-value c, 1, 2, 3, 4

Class

Gammaproteobacteria 0.541 0.0198

Family

Bacteroidaceae 0.3616 0.0495

Turicibacteraceae 0.2205 0.0495

Genus

Bacteroides 0.4491 0.0198

Faecalibacterium −0.3854 0.0198

Clostridium −0.297 0.0297

Phascolarctobacterium 0.2442 0.0297

Coprococcus −0.2965 0.0495

Odoribacter −0.2441 0.0495

Correlations coefficients, and p-values are given. The third column shows a mini heatmap

(37). Colors indicate high (red spectrum) or low abundances (blue spectrum) of the taxon in

the corresponding disease stage. c, ctrls 1,2,3,4 represent corresponding H&Y stages. In

example, on genus level, Faecalibacterium was negatively correlated with disease stage.

Thus, mini heatmap shows high abundances in c, and low abundances in H&Y stages 3

and 4.

microbiota composition. Prior to matching, groups also differed
in the practice of demanding physical activity known to
impact the gut microbiota (43). Yet, matching also ameliorated
this covariate.

There is growing evidence of the interaction of gut microbiota
and dopaminergic medication (19, 20). Also, differences in the
gut microbiota as a function of anticholinergics have been
described before (19). Thus, one major limitation of comparing
PD patients to controls is the fact that the effect of dopaminergic
medication cannot be controlled for. In this regard, two studies
have investigated the microbiome composition in drug naïve
PD, so far. Both studies revealed altered gut microbiota (15,
44). In our cohort, there was a difference in the intake
of dopaminergic medication including iCOMT and Levodopa
(Tables 2, 3). Alterations of iCOMT (19) and Levodopa (20)
via the microbiota have recently been studied, indicating that
in particular Enterococcus faecalis metabolizes Levodopa. Thus,
Levodopa intake may result in a relative overgrowth of this
taxon. We show that LEDD is an important covariate influencing
correlation of abundances between genera and disease duration,
however no difference in the abundance of Enterococcus faecalis
was observed. Since Levodopa metabolism takes place in the
upper small intestine, the reliability of stool samples to address
the interplay of medication on microbiome composition may
be further limited. This is of particular importance since
there are intraindividual differences between mucosal and fecal
compositions of microbiota (45), also in PD (46). Thus, a
major limitation of this study is the lack of analysis of
mucosal microbiota composition via gastrointestinal biopsies.

As observed alterations in stool microbiome composition may
not reflect mucosal microbiome composition sufficiently, results
on the effect of taxa on gut i.e., medication metabolisms,
and gut inflammation, appearing at distinct sites within
the gut must be interpreted with caution. In this regard,
Keshavarzian et al. observed an increase of anti-inflammatory
butyrate-producing bacteria in fecal samples compared to
mucosal samples (46). Thus, it is important to further
understand which role adherent mucosal compared to fecal
microbial communities in the gastrointestinal tract play and how
they interact.

Methodological Considerations
For this study, the criteria of the human microbiome project
from 2013 were followed. Also, this study was designed to be in
analogy with the pilot study by Scheperjans et al., well knowing
that for such a highly active field of research, criteria have
already advanced. The field of microbiome research has been
made possible by recent advances in sequencing technologies and
undergoes constant developments and advances. In this context,
decreasing costs for metagenomic shotgun sequencing and
the increasing transportability of sequencing technology (e.g.,
nanopore sequencing R©) may enable large-scale, high quality
microbiota research overcoming the heterogeneity of current
sequencing approaches as well as the remaining shortcomings
of 16s RNA sequencing, especially on species level (38). This
is currently the most common method used and relies on
sequencing of variable regions within bacterial 16s rRNA.
Since several variable regions of the 16s rRNA can be used
for taxonomic assignment, differences may occur due to the
variable regions selected. Regarding microbiome studies in PD,
13 studies used high throughput 16s rRNA gene sequencing.
Of these, six studies used the V3–V4 region (15, 47–51), one
relied on V3–V5 (52), one on V1–V2 (53), four on V4 only
(16, 19, 46, 54), and one used the V1–V3 (29) region for
taxonomic classification. Two studies used quantitative RT-
PCR (55, 56), one used metagenomic shotgun sequencing (44).
In this regard, results using Illumina MISeq sequencing V3–
V4 region are probably the most comparable to the results
reported in this study. However, the six studies using the
V3–V4 region for sequencing mentioned above varied in
stool collection methods, e.g., use of stabilizing solution and
storage temperature. Furthermore, no information is provided
on how participants were instructed to gain the sample, e.g.,
use of a stool collection aid to prevent contamination as
used in this study. Delineating the influence of the collection
method and the rRNA sequencing approach on microbiome
composition in PD would give important insights for planning
of future trials on microbiota composition in PD. Despite
these methodological differences, two recent reviews suggest
an increasing comparability of microbiota composition across
studies (14, 17). In addition to sample collection and sequencing,
in particular statistical methods used to analyze microbiome
data have a profound impact. Since microbiome data are
compositional (57), the most reliable method used in our
study is probably pattern search using SparCC to assess
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TABLE 5 | Partial correlation between (A) genera and disease duration (in years), assessing the effects of covariates (B) levodopa equivalent dose (LEDD), (C) motor

impairment (UPDRS III), and (D) the combination of LEDD and UPDRS III.

Disease duration

Covariates (A) (B) LED (C) UPDRS-III (D) LED + UPDRS-III

r p-value r p-value r p-value r p-value

Akkermansia 0.077 0.530 0.050 0.687 0.074 0.546 0.050 0.690

Blautia −0.100 0.414 0.020 0.871 −0.120 0.327 0.021 0.869

Clostridium −0.193 0.112 −0.151 0.220 −0.187 0.125 −0.150 0.225

Faecalibacterium −0.244 0.043 −0.159 0.194 −0.265 0.028 −0.160 0.197

Lachnospira −0.132 0.279 −0.053 0.665 −0.130 0.286 −0.053 0.670

Oscillospira −0.074 0.544 0.103 0.405 −0.060 0.624 0.107 0.390

Parabacteroides 0.290 0.016 0.245 0.044 0.279 0.020 0.247 0.044

Prevotella 0.089 0.469 0.001 0.991 0.095 0.437 0.002 0.986

Roseburia −0.235 0.052 −0.138 0.263 −0.232 0.055 −0.137 0.268

Ruminococcus 0.121 0.322 0.110 0.370 0.101 0.409 0.111 0.370

Sutterella –0.213 0.079 –0.231 0.058 –0.207 0.088 –0.231 0.060

Turicibacter 0.247 0.041 0.296 0.014 0.248 0.040 0.296 0.015

r, pearson’s correlation coefficient. Bold letters: indicates significant changes; italic letters: has no meaning.

TABLE 6 | Demographics, lifestyle factors and comorbidity of PD vs. controls after

propensity score matching for NMS score, NMS item constipation, Wexner

constipation score, and coffee consumption.

Patients Controls P-value

N 28 19

Female subjects 50.0% 52.6% 1.000a

Mean age 62.6 ± 12.1 64.7 ± 10.7 0.556b

Mean weight [kg] 76.3 ± 17.7 78.9 ± 15.6 0.610b

Mean height [cm] 170.9 ± 11.6 169.7 ± 7.6 0.683b

Lifestyle factors

Smoking 3.7% 10.5% 0.561a

Coffee consumption >2 cups

per day

32.1% 52.6% 0.228a

Alcohol consumption ≥ twice a

week

53.6% 52.6% 1.000a

Probiotic supplement

consumption

7.1% 0.0% >0.05d

Comorbidities

Mean NMS score 3.6 ± 3.0 3.4 ± 2.3 0.879c

NMS item “constipation” 10.7% 10.6% 1.000a

Degree of constipation

symptoms (Wexner score)

2.5 ± 2.7 2.4 ± 2.3 0.996c

aFisher’s exact test; bt-test; cMann-Whitney U-test; dChi-square test with Bonferroni

correction.

differences in taxa between PD and controls or between disease
stages (40).

Alterations of Diversity Indices Are Not a
Major Feature in PD
Diversity indices are core features of microbiome analysis,
addressing global features of microbiota composition. Overall,
alpha-diversity as a measure for number of bacterial taxa

in individual stool samples did not clearly differ in PD vs.
controls, a common finding across most microbiome studies
in PD apart from the studies by Kesharvazian et al. (46),
Baricella et al. (15), and Qian et al. (50) reporting decreased
alpha-diversity, and one single study by Petrov et al. reporting
increased alpha diversity (47). Therefore, a simple change in
microbiota diversity does not appear to be a key feature of
PD. Beta diversity, as a measure of similarity of microbiota
composition within a group was not changed between controls
and PD. In total, 13 studies have reported differences in ß-
diversity before (15, 16, 19, 29, 44, 46–48, 50–54). In this study
a significant, yet small increased beta-diversity was observed
between controls and PD. Most of this effect appears to be
attributable to H&Y stages 1–2 vs. controls and H&Y stage 4
(Supplementary Figure 2). This indicates that at these stages,
the microbiota composition amongst PD patients is more
dissimilar than in controls, which points toward a subordinated
role of a specific composition of gut bacteria in PD, which
would be associated with lower beta-diversities, but is in favor
of external factors influencing microbiota composition in PD.
A variety of PD related factors that differ across disease stages
may account for these differences (Supplementary Table 3),
yet analyzing their individual contribution to
dissimilarity by i.e., factor analysis or MANCOVA would
deliver robust results only with a higher number of
data points.

Increasing Comparability Across
Microbiota Studies
Several findings in this study are in line with previously
published data. We observed a decreased abundance for the
genus Ruminococcus, which remained significant after propensity
score matching, making it one of the consistently altered
parameter across all tests performed in this study. Reduced
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FIGURE 4 | Differences in microbiota after matching for obstipation and coffee consumption. (A,B) Ruminococcus remains the only reduced genus after propensity

score matching using non-parametric statistics. (C) Random forests classification supports this finding. (D) To further strengthen these results, we used pattern

search in Microbiomeanalyst with SparCC as distance measure. With this approach, Ruminococcus (r = 0.3926) is not correlated significantly with PD, while

Bacteroides and Faecalibacterium are. * indicates p < 0.05.

abundances of the genus Faecalibacterium, belonging to the
family Clostridiaceae have been reported in four studies: one
North American study (19), one Russian (47), and two Chinese
studies (52, 54), indicating a regionally independent influence in
PD. In our study this taxon was consistently reduced in PD across
all tests used in this study. We observed a significant correlation
with disease duration and a prominent influence of H&Y stage
4, suggesting a role of covariates appearing in late PD. Thus, this
study adds evidence to alterations in these taxa, particularly in
late PD.

Even though we observed several taxa to be altered within
the phylum Bacteroidetes, and Proteobacteria, we did not
observe changes on phylum level in PD, apart from differences
in Firmicutes. Taken together, certain bacterial families are
consistently altered in PD across different studies. In particular
decreased abundances in the phylum Firmicutes, class Clostridia,
order Clostridiales are repeatedly reported. On the contrary,
Proteobacteria, namely the family of Enterobacteriaceae
and Sutterellaceae appear to be increased in PD. Our data
indicate that disease duration and disease stage significantly
influence these alterations. Amongst the variety of covariates
influencing the microbiota, PD associated alterations cannot
be controlled for a priori. To assess the contribution of these
covariates we chose to perform propensity score matching,
controlling for total NMS score, NMS constipation item,
Wexner Constipation Score and coffee consumption, since
these were altered compared to controls in our cohort.

Since only Bacteroides, Faecalibacterium, and probably
Ruminococcus remained reduced after matching, these taxa
may be altered in PD independent of coffee consumption
and obstipation.

Clinical Relevance and Future Perspectives
In summary, changes in microbiota composition occur in
PD. Even though studies vary in power, inclusion criteria,
methodology and regionality, several taxa are similarly altered
across studies. Yet, a consistent picture is still missing. We
focused our study on the influence of covariates on microbiome
composition in PD, and show that disease duration and disease
stage influence microbiota. The effect of disease stage and
duration is noteworthy, since future studies should focus on
early disease stages (H&Y < 2) to obtain more robust data on
microbiota alterations that may be susceptible to modification
strategies. Here, follow-up results on microbiota in iRBD
converting to early PD (16) would be of particular interest.
Pipelines for analyzing longitudinal changes of microbiota
composition are under development (58), but their interpretation
still poses problems. In addition, we describe a crucial role of the
PD associated covariates constipation and coffee consumption,
as well as dopaminergic medication. Even though these results
are not novel, they highlight the need to take these covariates
into account when designing future studies on microbiome
composition in PD. While coffee consumption and constipation
may be controlled for by inclusion criteria and subsequent

Frontiers in Neurology | www.frontiersin.org 10 September 2020 | Volume 11 | Article 1041

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Cosma-Grigorov et al. PD Microbiome, Role of Covariates

matching, the effect of dopaminergic medication can only be
addressed by including drug naïve PD cohorts into microbiome
studies. Even more so, mechanistic information to determine the
effective role of the microbiota in PD is necessary to identify
putative treatment options under discussion (59). This is one
major limitation of microbiome studies, which are solely based
on 16s rRNA sequencing data. Recent studies have started to
overcome these limitations by combining classical 16s RNA
microbiome analysis with PCR analysis from stool for key
enzymes of metabolic pathways and metabolome analysis of
serum levels to assess functional consequences (60). Yet, the most
stringent proof for a functional role of microbiota in PD would
be the functional prediction of shotgun sequencing data derived
from mucosal biopsies in drug naïve PD and parallel stool and
serum metabolome analysis.
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