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Changes in Insulin Resistance and HbA1c
Are Related to Exercise-Mediated
Changes in Body Composition in Older
AdultsWith Type 2 Diabetes
Interim outcomes from the GREAT2DO trial
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OBJECTIVEdTo investigate changes in body composition after 12 months of high-intensity
progressive resistance training (PRT) in relation to changes in insulin resistance (IR) or glucose
homeostasis in older adults with type 2 diabetes.

RESEARCHDESIGNANDMETHODSdOne-hundred three participants were random-
ized to receive either PRT or sham exercise 3 days per week for 12 months. Homeostasis model
assessment 2 of insulin resistance (HOMA2-IR) and glycosylated hemoglobin (HbA1c) were used
as indices of IR and glucose homeostasis. Skeletal muscle mass (SkMM) and total fat mass were
assessed using bioelectrical impedance. Visceral adipose tissue, mid-thigh cross-sectional area,
and mid-thigh muscle attenuation were quantified using computed tomography.

RESULTSdWithin the PRTgroup, changes inHOMA2-IRwere associatedwith changes in SkMM
(r =20.38; P = 0.04) and fatmass (r = 0.42; P = 0.02). Changes in visceral adipose tissue tended to be
related to changes in HOMA2-IR (r = 0.35; P = 0.07). Changes in HbA1c were related to changes in
mid-thigh muscle attenuation (r = 0.52; P = 0.001). None of these relationships were present in the
sham group (P. 0.05). Using ANCOVA models, participants in the PRT group who had increased
SkMM had decreased HOMA2-IR (P = 0.05) and HbA1c (P = 0.09) compared with those in the PRT
group who lost SkMM. Increases in SkMM in the PRT group decreased HOMA2-IR (P = 0.07) and
HbA1c (P, 0.05) compared with those who had increased SkMM in the sham group.

CONCLUSIONSdImprovements in metabolic health in older adults with type 2 diabetes
were mediated through improvements in body composition only if they were achieved through
high-intensity PRT.

Diabetes Care 36:2372–2379, 2013

Body composition is central to in-
sulin resistance (IR) and type 2 di-
abetes, projected to affect 435

million adults by 2030 (1). Lifestyle inter-
ventions are recommended to improve
body composition (reduce adiposity, in-
crease lean tissue) and, ultimately, to im-
prove metabolic health. One lifestyle
component is progressive resistance
training (PRT), an anabolic exercise
shown to improve body composition, as
well as IR and glucose homeostasis in type
2 diabetes (2–4). Skeletal muscle hyper-
trophy is thought to mediate metabolic
benefits of PRT by increasing the quality
and quantity of skeletal muscle available
for glucose storage. Increases in lean
tissue have been associated with im-
provements in IR and glucose homeo-
stasis (5,6).

In the Graded Resistance Exercise
And Type 2 Diabetes in Older adults
(GREAT2DO) study, we have shown
strong relationships between body com-
position and homeostasis model assess-
ment 2 of insulin resistance (HOMA2-IR)
at baseline, before randomization to ex-
perimental (power training) or control
(sham exercise) groups (7). The purpose
of this interim report was to investigate
changes in body composition after the
first 12 months of training in relation
to changes in IR or glucose homeostasis.
We hypothesized that the experimental
group would improve body composi-
tion (increased skeletal muscle mass
[SkMM] and reduced visceral adipose
tissue [VAT], reduced total fat mass
[FM], and reduced intramyocellular
lipid [IMCL]) compared with the con-
trol group. Furthermore, we hypothe-
sized that across the entire cohort,
beneficial shifts in body composition
would lead to improvements in IR and
glucose homeostasis.

RESEARCH DESIGN AND
METHODSdThe GREAT2DO study is
an ongoing trial investigating the efficacy
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of 6 years of PRT on IR and glucose
homeostasis in older adults with type 2
diabetes. The first year was a randomized,
double-blind, sham exercise controlled
trial. After the initial year, participants
were asked to continue training, with
participants in the sham exercise control
group crossed-over to high-intensity
PRT. The data presented in this report
are from the randomized controlled trial
phase. Between July 2006 and November
2009, 103 participants were randomized
to receive 12 months of high-intensity,
high-velocity PRT or sham exercise (low-
intensity, nonprogressive exercise), in
addition to usual care. An investigator
not involved with the study performed
randomization. Inclusion and exclusion
criteria are presented in the Supplemen-
tary Materials. Written informed consent
was obtained, and the protocol was ap-
proved by the Sydney South West Area
Health Service and the University of Syd-
ney Human Research Ethics Committees
(Australian New Zealand clinical trial reg.
no. 12606000436572).

Training protocol
The PRT group trained 3 days per week
under supervision using pneumatic re-
sistance equipment (Keiser Sports Health,
Fresno, CA) at two sites. A version of PRT
known as power training was used, in
which the concentric contraction (lifting)
was performed as quickly as possible,
whereas the eccentric contraction (lower-
ing) was performed over 4 s. The follow-
ing exercises targeted large symmetrical
muscle groups of the arms, legs, and
trunk: seated row, chest press, leg press,
knee extension, hip flexion, hip exten-
sion, and hip abduction. For each exer-
cise, participants performed three sets of
eight repetitions (two sets of eight on each
leg for hip flexion, hip extension, and hip
abduction). The intensity was set at 80%
of the most recently determined one-
repetition maximum, reassessed every 4
weeks. When one-repetition maximum
testing was not feasible, resistances were
increased by targeting a Borg scale rating
of perceived exertion between 15 and 18.

The sham exercise group trained on
the same equipment, 3 times per week,
under supervision from the same trainers
at different times of the day to remain
blinded to the investigators’ hypotheses,
with both interventions offered as poten-
tially beneficial. The resistance was set as
low as possible and not progressed, and
participants were instructed to perform

concentric and eccentric contractions
slowly.

Assessment protocol
Blinded outcome assessments were con-
ducted at 0 and 12 months. Participants
were required to withhold food, liquids,
and medication for 12 h before metabolic
testing. A 24-h food recall was performed
on the day of the baseline assessment, and
participants were asked to follow the
same diet before subsequent assessments
at 12 months. Assessments at 12 months
were performed 72 h after completion of
the final training session.

Anthropometry
Morning fasting stretch stature (wall-
mounted Holtain stadiometer; Holtain
Limited, Crymych Pembs, UK) and naked
weight (weight in gown [kg] 2 weight of
gown [kg]) were measured in tripli-
cate to the nearest 0.1 cm and 0.01 kg,
respectively.

Body composition
FM and SkMM were determined using
bioelectrical impedance analysis (BIA) (RJL
Systems, Clinton, MI) (8,9). Computed
tomography (GEHigh-Speed CTI Scanner;
Milwaukee, WI, used at the Royal Prince
Alfred Hospital, Sydney, Australia) was
used to quantify VAT (cm2), mid-thigh
muscle cross-sectional area (cm2), and
mid-thigh muscle attenuation (an index
of intramyocellular lipid content; see
Supplementary Materials for detailed
methodology).

IR and glucose homeostasis
Serum glucose, C-peptide, and HbA1c

were measured by a commercial pathol-
ogy laboratory using standard assays
(Douglass Hanley Moir, Sydney, Aus-
tralia). HOMA2-IR was calculated with
serum glucose and C-peptide values us-
ing the validated calculator (accessed at
http://www.dtu.ox.ac.uk). C-peptide
was used to avoid potential effects of
fatty liver on insulin clearance in this co-
hort, which might distort HOMA2-IR
calculations based on insulin (10). Six-
teen participants were omitted from
HOMA2-IR calculations because of in-
sulin therapy, as it has not been vali-
dated in this cohort (11).

Analyses of changes in SkMM and
VAT and changes in HOMA2-IR
and HbA1c

Participants were stratified by change in
SkMM over 12 months. Any change .0

was considered an increase (favorable); a
change #0 was considered unfavorable.
Participants also were stratified by change
in VAT over 12 months. A change of ,0
was considered a decrease (favorable),
whereas a change of $0 was classified as
unfavorable.

Statistical analyses
Normally distributed data are presented
as mean 6 SD and non-normally distrib-
uted data as median (range) or frequencies.
Non-normally distributed data were log-
transformed for use with parametric sta-
tistics. Comparisons of variables between
groups were performed using a one-way
ANOVA. A two-tailed repeated-measures
ANOVA was used to determine time effect
and group 3 time interaction. After this,
ANCOVAmodels were constructed to de-
termine the effects of group allocation and
change in body composition (increase/
decrease in SkMM or VAT) on changes
in either HOMA2-IR or HbA1c (dependent
variables). Potential confounders were
identified as variables that were statisti-
cally different between groups at baseline
(P, 0.05) and were related to the depen-
dent variable of interest. Linear regres-
sions were performed to determine
relationships between the change scores
of continuous variables and stratified by
group allocation. Linear regressions were
performed with potential confounders as
the independent variables to determine if
theymay have had any significant effect on
the changes in HOMA2-IR and HbA1c.
Multiple linear regression and ANCOVA
models were constructed with potential
confounders as additional independent
variables as needed. All available data
from participants who completed their
12-month assessment, regardless of com-
pliance, were used for analysis. A P, 0.05
indicated statistical significance, because
all hypotheses were specified a priori. Stat-
view 5.0 (SAS Institute, Cary, NC) was
used. Effect sizes were calculated using
G*Power 3.1.2 (Kiel, Germany) (12).

RESULTSdParticipant flow through
the study can be found in the CONSORT
flowchart in Supplementary Fig. 1. Partic-
ipant characteristics can be found in
Supplementary Table 1. Baseline relation-
ships betweenHOMA2-IR and body com-
position have been previously reported (7).
Three participants withdrew before com-
mencing the intervention and thus were
excluded from the analyses. At base-
line, no differences were observed be-
tween the PRT group and sham group
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for HOMA2-IR (P = 0.14) or any body
composition parameters (P = 0.38–79).
The sham group tended to have higher
HbA1c (P = 0.07), older age (P = 0.09),
and longer duration of type 2 diabetes
(P = 0.07). Overall, 86participants attended
the 12-month assessment, resulting in a
drop-out rate of 14%. Compliance for
the intervention was 78 6 15%, with no
significant difference observed between
the PRT and sham group (P = 0.16).

Changes in body composition
Body composition changes are shown in
Table 1. As hypothesized, mid-thigh
cross-sectional area increased signifi-
cantly in the PRT group compared with
the sham group (P , 0.01). Contrary to
our hypotheses, there were no differences
between the PRT and sham groups for
changes in body weight, SkMM, FM, or
VAT (P = 0.14–8). Over time, both groups
showed similar significant reductions in
FM and similar improvements in mid-
thigh muscle attenuation (P , 0.0001).

Within the whole cohort, participants
who increased SkMM significantly in-
creased their body weight (+0.76 3.7 kg)
compared with those who had decreased
SkMM (21.4 6 3.2 kg) (P , 0.05), with
no effect of group allocation (P = 0.37).
Participants who had increased and de-
creased SkMM showed a reduction in

VAT (22.7 6 46.1 cm2 and 28.5 6
26.7 cm2, respectively), again with no
group difference (P = 0.13). However, af-
ter stratifying by change in SkMM (in-
crease versus decrease), participants in
the PRT group who increased SkMM
tended to show a significant reduction in
VAT (217.3 6 53.7cm2) compared with
participants in the sham group who also
had increased SkMM (+9.2 6 35.9 cm2;
P = 0.06).

Relationships between changes in
body composition variables
Changes in FM and VAT were directly
related in the PRT group (r = 0.69; P ,
0.0001), but this relationship was atten-
uated and nonsignificant in the sham
group (r = 0.26; P = 0.08) (Supplementary
Fig. 2A and B).

Regression models
Relationships between changes in
body composition and changes in
HOMA2-IR. Results are presented in
Supplementary Table 2. Changes in
SkMM were inversely related to changes
in HOMA2-IR within the PRT group (r =
20.38; P = 0.04) (Fig. 1A), but not in the
sham group (P = 0.35) (Fig. 1B). Further-
more, in the PRT group, changes in
HOMA2-IR were directly related to
changes in FM (r = 0.42; P = 0.02), as

hypothesized (Fig. 1C). This relationship
again was not present in the sham group
(P = 0.51) (Fig. 1D). Finally, changes in
VAT tended to be directly related to
changes in HOMA2-IR in the PRT group
(r = 0.31; P = 0.09) and inversely related
in the sham group (r = 20.28; P = 0.1).
No other body composition relationships
were present (P = 0.15–79).

Relationship between changes in
body composition and changes in
HbA1c

Results are presented in Supplementary
Table 2. As hypothesized, there was a di-
rect relationship between increases (wors-
ening) of mid-thigh muscle attenuation
and HbA1c within the PRT group (r =
0.52; P = 0.001) (Fig. 2A), but this was
not present in the sham group (P = 0.98)
(Fig. 2B). No other body composition re-
lationships were observed (P = 0.15–96).

ANCOVA models
Changes in SkMM and changes in
HOMA2-IR. An ANCOVA was per-
formed with HOMA2-IR as the depen-
dant variable, with exercise group
allocation (PRT versus sham) and change
in SkMM (increase versus decrease) as the
grouping variables. Unexpectedly, no ex-
ercise group 3 change in SkMM interac-
tion was present (P = 0.36). An ANCOVA

Table 1dChanges in participant characteristics

PRT group Sham group

Before After Before After

n Mean 6 SD Mean 6 SD n Mean 6 SD Mean 6 SD
Mean

difference
CI (lower,
upper) P, T P, GxT

Changes in health status
Metformin (mg/day) 36 1,132 6 910 1,126 6 1005 48 1,128 6 954 1,114 6 1005 9 2309 to 327 0.89 0.95
HOMA2-IR 31 2.73 6 0.95 2.77 6 1.05 37 3.09 6 1.26 3.22 6 1.43 0.04 20.52 to 0.6 0.56 0.74
HbA1c (%) 36 6.83 6 1.01 6.75 6 0.89 48 7.42 6 1.26 7.23 6 1.05 0.11 20.29 to 0.50 0.17 0.59
HbA1c (mmol/mol) 36 51 6 11 50 6 9.7 48 58 6 13.8 56 6 11.5 1.2 23.2 to 5.5 0.17 0.59

Changes in measures of body composition
Body weight (kg) 36 89.2 6 15.1 88.6 6 15.1 48 89.1 6 19.5 88.7 6 19.1 20.22 21.8 to 1.4 0.2 0.79
BMI (kg/m2) 36 31.0 6 4.6 30.8 6 4.9 48 31.6 6 6.3 31.5 6 6.3 20.1 20.6 to 0.5 0.27 0.84
Skeletal muscle mass (kg) 36 30.7 6 4 30.9 6 3.8 46 30.5 6 3.8 30.6 6 3.8 0.08 20.5 to 0.7 0.3 0.8
Total fat mass (kg) 36 31.4 6 10.6 30.4 6 10.3 46 31.4 6 10.6 31.0 6 13.1 20.6 22.0 to 0.8 0.04 0.39
VAT (cm2) 37 215.0 6 81.8 202.3 6 73.3 46 211.3 6 93.9 210.7 6 95.9 212.1 228.4 to 4.1 0.11 0.14
Mid-thigh CSA (cm2) 37 112.5 6 25.8 117.8 6 30.1 47 109.8 6 21.7 109.4 6 22.4 5.6 1.3–9.9 0.02 ,0.01
Mid-thigh muscle
attenuation 37 84.1 6 2.2 82.8 6 2.3 47 84.2 6 2.4 83.2 6 2.6 20.3 21.1 to 0.5 ,0.0001 0.50

Normally distributed data presented as mean6 SD. Non-normally distributed data presented as median (range). Difference between groups was assessed via one-way
ANOVA. Non-normally distributed data were log-transformed before use with parametric statistics. Mid-thigh muscle attenuation is a measure of intramyocellular
lipid accumulation. Higher mid-thigh muscle attenuation (unitless measure based on optical density gradient from image analysis of computed tomography scans)
indicates greater intramyocellular lipid. Sixteen participants were excluded from HOMA2-IR analyses because of insulin therapy. CSA, cross-sectional area; GxT,
group 3 time interaction; HbA1c, glycosylated hemoglobin; T, time.
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model was then constructed with change
SkMM (increase versus decrease) alone as
the grouping factor, and then stratified by
exercise group allocation (PRT versus

sham). In this model, only those in the
PRT group who had increased SkMM
tended to have a decrease in HOMA2-IR
(P = 0.05; effect size = 0.83) (12). No such

relationship was observed in the sham
group (P = 0.92). Finally, a third
ANCOVA model was constructed with
exercise group allocation (PRT versus
sham) as the grouping factor, and then
stratified by change in SkMM (increase
versus decrease). In this model, those in
the PRT group who had increased SkMM
tended to have a decrease in HOMA2-IR
compared with those who had increased
SkMM in the sham group (P = 0.07). No
such relationship was present in those
who had decreased SkMM (P = 0.92)
(Fig. 3A, depicted as percent change in
HOMA2-IR).
Changes in SkMM and changes in
HbA1c. AnANCOVAwas performedwith
HbA1c as the dependant variable, with ex-
ercise group allocation (PRT versus sham)
and change in SkMM (increase versus de-
crease) as the grouping variables. A trend
for an exercise group 3 change SkMM
interaction was present (P = 0.08). An
ANCOVA model was then constructed
with change SkMM (increase versus de-
crease) as the grouping factor, and strati-
fied by exercise group allocation. As
hypothesized, those who increased
SkMM in the PRT group tended to reduce
HbA1c compared with those in the PRT
group who lost SkMM (P = 0.09). No
such relationship was observed in the
sham group (P = 0.32). Finally, a third
ANCOVA model was constructed with
exercise group allocation as the grouping
factor, stratified by change in SkMM (in-
crease versus decrease). As hypothesized,
those in the PRT group who increased
SkMM significantly reduced HbA1c com-
pared with those who increased their
SkMM in the sham group (P , 0.05).
No relationship was found for those
who decreased SkMM (P = 0.31) (Fig. 3B).
Changes in VAT and changes in
HOMA2-IR. An ANCOVA was per-
formed with HOMA2-IR as the depen-
dant variable, with exercise group
allocation (PRT versus sham) and change
in VAT (decrease versus increase) as the
grouping variables. A significant exercise
group 3 change in VAT interaction was
present (P = 0.03). An ANCOVA model
was then constructed with change in VAT
(decrease versus increase) alone as the
grouping factor, and then stratified by ex-
ercise group allocation. In this model,
those who had decreased VAT in the
PRT group tended to reduce HOMA2-IR
compared with those who had increased
VAT within the PRT group (P = 0.11). No
relationship was observed in the sham
group (P = 0.16). Finally, a third

Figure 1dChanges in body composition vs. changes in HOMA2-IR. A: Change in skeletal muscle
mass and change in HOMA2-IR in the PRT group. B: Change in skeletal muscle mass and change
in HOMA2-IR in the sham group.C: Change in total fat mass and change in HOMA2-IR in the PRT
group. D: Change in total fat mass and change in HOMA2-IR in the sham group.
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ANCOVA model was constructed with
exercise group allocation as the grouping
factor, and then stratified by change in
VAT (decrease versus increase). In this
model, those in the PRT group who had
decreased VAT had significantly reduced
HOMA2-IR compared with those who
had decreased VAT in the sham group
(P = 0.04). No such relationship was pres-
ent in those who had increased VAT (P =
0.38) (Fig. 3C; depicted as percent change
in HOMA2-IR).
Changes in VAT and changes in
HbA1c. AnANCOVAwas performedwith
HbA1c as the dependant variable, with ex-
ercise group allocation (PRT versus sham)
and change in VAT (decrease versus in-
crease) as the grouping variables. No ex-
ercise group3 change in VAT interaction
was present (P = 0.99). Using ANCOVA
models as described previously, no differ-
ential effect on HbA1c was observed be-
tween those who had decreased VAT in
the PRT group and those in the PRT group
who had increased VAT (P = 0.64). Sim-
ilarly, there was no effect of VAT change
on HbA1c change in the sham group (P =
0.24). Furthermore, no effect on HbA1c

was observed in those in the PRT group
who had decreased VAT compared with
those who had decreased VAT in the

sham group (P = 0.89). Similarly, increa-
ses in VAT did not influence changes in
HbA1c between the PRT and sham groups
(P = 0.38) (Fig. 3D).

CONCLUSIONSdWe have shown
that clinically relevant improvements in
IR and glucose homeostasis in older
adults with type 2 diabetes were predicted
by improvements in body composition,
but only if achieved via high-intensity
PRT. Specifically, increases in SkMM
achieved through high-intensity PRT
were significantly associated with reduc-
tions in HbA1c and showed a similar trend
for HOMA2-IR. Additionally, reduc-
tions in VAT achieved via PRT were
strongly associated with improvements
in HOMA2-IR. By contrast, these changes
in body composition did not result inmet-
abolic benefit if they occurred after sham
(low-intensity) exercise. To date, this is
the largest randomized controlled trial in-
vestigating the effects of PRT in older
adults (older than 60 years) with type 2
diabetes. Previous studies in older His-
panic (2,3) and older Australian (4) adults
were performed in smaller cohorts of 66
and 36 participants, respectively. In con-
trast to these particular studies, however,
we show no significant reductions in
HOMA2-IR or HbA1c associated with
PRT at 12 months. However, the partici-
pants within our investigation had con-
siderably lower HbA1c values (7.11%;
54 mmol/mol) compared with those partic-
ular investigations (7.8% and 62 mmol/mol
[4]; 8.5% and 69 mmol/mol [2,3]). Inter-
estingly, our regression and ANCOVA
models show that improvements in HbA1c
and IR were not dependant on changes in
body weight, but rather improvements
in body composition, notably, increases
in SkMM and reductions in VAT and re-
ductions in IMCL (for HbA1c). This is in
agreement with a meta-analysis showing
that improvements in glycemic control
in individuals with type 2 diabetes can oc-
cur independently of weight loss (13).

Role of SkMM in HbA1c

Reductions inHbA1c of a clinicallymeaning-
ful magnitude (20.38%; 24.2 mmol/mol)
were seen only in those who had in-
creased SkMM after high-intensity PRT,
compared with those who did not have
increased SkMM despite being in the same
exercise group (+0.15%; +1.6 mmol/mol).
In addition, those who gained skeletal
muscle in the sham exercise group did
not have improved glucose control either
(HbA1c change +0.11%; +1.2 mmol/mol).

These results suggest that increases in
SkMM improved the metabolic health of
participants, but only if they achieved this
through high-intensity PRT. A 1% reduc-
tion in HbA1c has been associated with
reductions in risk of diabetes complica-
tions of 21%, a 15% reduction in risk of
future myocardial infarction, and a 37%
reduction in microvascular complications
(14). The reduction of 20.38% (24.2
mmol/mol) after PRT is similar in mag-
nitude to that recently reported in indi-
viduals prescribed a sulphonylurea
(glimepride) in addition to their usual
metformin dosage (20.36%; 23.9 mmol/
mol) (15). Dunstan et al. (4) showed signif-
icant reductions in HbA1c in individuals
who participated in PRT in combination
with a weight-loss diet compared with a
weight-loss diet alone. Interestingly, both
groups in that trial showed similar signifi-
cant reductions in body fat; however, the
group only using the weight-loss diet also
showed reductions in lean bodymass. This
is in agreement with our data, which sug-
gests that maintaining or improving SkMM
through the use of high-intensity PRT is
key to improving the metabolic health of
older adults with type 2 diabetes.

Role of SkMM in IR
A nearly significant relationship between
increases in SkMM and reductions in
HOMA2-IR also was present. Post hoc
power calculations show a large effect size
of 0.83 for those who had increased
SkMM in the PRT group versus decreases
in SkMM in the PRT group. Regression
analyses (Fig. 1A and B), notably, show that
increases in SkMM were related to reduc-
tions in HOMA2-IR within the PRT group
only (r = 20.38). Similar findings were
reported by Brooks et al. (2), who found
that improvements in HOMA-IR were
related to increases in type 1 fiber cross-
sectional area in those who participated in
PRT (r = 20.5), with no relationship ob-
served in those randomized to a nonexer-
cise control group. These findings suggest
that improvements in hepatic IR are de-
pendent on the amount of increase in
SkMM.

Because HOMA2-IR is a measure of
hepatic IR, reductions in HOMA2-IR
through increases in SkMM are likely to
be less direct than those seen with HbA1c.
The HOMA index is clinically relevant be-
cause it has been shown to reflect whole-
body insulin sensitivity as measured in
clamp studies (16,17), and fasting hyper-
glycemia is predictive of cardiovascular

Figure 2dChange in mid-thigh muscle at-
tenuation and change in HbA1c. A: Change in
mid-thigh muscle attenuation and change in
HbA1c in the PRT group. B: Change in mid-
thigh muscle attenuation and change in HbA1c

in the sham group.
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morbidity (18). Therefore, further inves-
tigations into the mechanism by which
increases in SkMM lead to reductions in
HOMA2-IR are needed. IR in skeletal
muscle has been shown to directly cause

an increase in hepatic de novo lipogenesis
independent of VAT (19), potentially
contributing to the development of non-
alcoholic fatty liver disease, whereas im-
provements in skeletal muscle IR through

exercise have been shown to ameliorate
de novo lipogenesis (20).

Role of IMCL
Despite similar reductions in IMCL ob-
served within the PRT and sham groups
(Table 1), reductions in IMCL were only
related to improvements in HbA1c in the
PRT group (Fig. 2A), not in the sham
group (Fig. 2B). Notably, 28% of the var-
iance in the reduction in HbA1c was ex-
plained by reduction in IMCL within the
PRT group. Impaired fatty acid oxidation
can lead to accumulation of metabolites
(21–23), which are known to impair
insulin signaling. It is possible that the re-
duction in IMCL through the use of high-
intensity PRT improved insulin signaling
within skeletal muscle, and thus contrib-
uted to the improvements in glycemic
control. Because the magnitude of the
reduction in IMCL between the PRT
and sham groups was not different, it
again suggests that there was an exercise-
dependent effect on reductions in IMCL
and subsequent reductions in HbA1c.
It is possible that high-intensity PRT
increased mitochondrial oxidative capac-
ity, consequently improving fatty acid
oxidation (24). Together with the height-
ened metabolic demand of high-intensity
PRT, this may have resulted in a reduction
in IMCL via a different pathway than that
seen within the sham group.

Role of adipose tissue
Reductions in FM also were related to
improvements in IRwithin the PRT group
only (Fig. 1C andD), despite similar reduc-
tions in FM in both groups. It is likely that
this was mediated through preferential
loss of VAT within the PRT group. The
PRT group had significantly reduced
VAT compared with the sham group (Ta-
ble 1); also, reductions in VAT within the
PRT group predicted reductions in FM (r =
0.69), although this relationship was not
significant in the sham group (Supple-
mentary Fig. 2A and B). This highlights a
preferential loss of VAT, rather than pe-
ripheral depots, with high-intensity PRT.
Furthermore, Fig. 3C shows that those
with reductions in VAT within the PRT
group had significantly reduced IR com-
pared with those who had increased VAT
within the PRT group. VAT has been
shown to correlate with hepatic steatosis
(25) and systemic inflammation, both of
which are related to hepatic IR (26,27).
These pathways may explain the observed
relationship between decreased VAT after
PRT and improvements in hepatic IR.

. 3A and C).

Figure 3dChange in body composition and changes in HOMA2-IR and HbA1c. A: Changes in
skeletal muscle mass and changes in HOMA2-IR. B: Changes in skeletal muscle mass and changes in
HbA1c. C: Changes in VAT and changes in HOMA2-IR. D: Changes in VAT and changes in HbA1c.
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Limitations and future directions
The most interesting finding from this
investigation is that despite similar
changes in SkMM in the participants
within the PRT and sham groups, im-
provements in IR and HbA1c were only
present in those randomized to the PRT
group. The exercise intensity within the
sham group was likely insufficient to pro-
mote hypertrophy; therefore, gains in
SkMM within these participants would
be attributed to other factors, most prob-
ably overnutrition. In support of this,
those who gained SkMM within the
sham group increased their VAT by
9.2 cm2, compared with individuals in
the PRT group who gained SkMM, and
showed a reduction in VAT of 217.3 cm2.
Thus, favorable alterations in both skeletal
muscle and adipose tissue mass and dis-
tributionmediated through high-intensity
PRT can result in improvements in the
metabolic health of individuals with type
2 diabetes. However, the mechanistic
pathways require further examination
and were beyond the scope of this in-
vestigation. Perhaps most importantly,
50 and 41% of participants did not
have beneficially modified SkMM and
VAT, respectively, in response to high-
intensity PRT. Identifying responders to
high-intensity PRT may allow for indi-
vidually tailored lifestyle interventions
in the future and development of coin-
terventions to optimize favorable body
composition adaptations. The presence
of a sex effect is also possible. However,
the current investigation was not suffi-
ciently powered to warrant investigation
into any sex-specific adaptations, but
they should be considered in future in-
vestigation. Finally, consideration of
the potential adverse effects of PRT is
warranted, including the possibility of
increases in arterial stiffness, a signifi-
cant predictor of future cardiovascular
mortality (28). However, a recent meta-
analysis has shown that PRT only affects
arterial stiffness in younger adults, with
these effects not present among older
adults (29).

It remains unclear why participants
randomized to the sham group, who lost
skeletal muscle mass, showed reductions
in HbA1c (Fig. 3B). Additionally, the
mechanism behind the loss in IMCL
within the sham group (Supplementary
Table 2) and why this was not associated
with improvements in HbA1c or IR re-
quire investigation. It is possible that di-
etary factors or changes in habitual levels
of physical activity may explain these

findings. Data analysis regarding these
variables is in progress.

Because of funding constraints and
equipment availability, whole-body
SkMM and fat mass were estimated using
BIA, although regional body composition
was performed using state-of-the-art
computed tomography methodology.
Furthermore, IR was determined using
HOMA2-IR, reflective of hepatic IR, as
opposed to a whole-body measure. Ap-
propriately powered studies of similar de-
sign should be used that utilize more
direct measures of whole-body composition
(such as dual-energy X-ray absorptiome-
try) and IR (hyperinsulinemic-euglycemic
clamp).

In conclusion, both increases in
SkMM and reductions in VAT and
IMCL achieved through high-intensity
PRT improved IR and glucose homeosta-
sis in a cohort of older adults with type 2
diabetes. Notably, increased SkMM or
decreased VAT and IMCL accumula-
tion achieved without anabolic exercise
did not have the same metabolic benefit.
Future investigations should be directed
toward understanding the heteroge-
neity in body composition adaptations
to anabolic exercise in older adults with
type 2 diabetes and to developing strat-
egies to maximize these beneficial
changes to improve metabolic health
and future disease risk in this vulnerable
cohort.
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