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Diesel exhaust particles (DEP), an environmental pollutant,
are known to induce lung cancer in experimental animals.
To clarify whether reactive oxygen species (ROS) are
involved in its carcinogenic mechanism, we examined the
levels of 8-hydroxyguanine (8-OH-Gua), its total repair
and the repair enzymeOGG1mRNA in female Fischer 344
rat lungs, as markers of the response to ROS, after DEP
was intratracheally instilled. The 8-OH-Gua levels in both
DEP-treated groups (2 and 4 mg) were increased during
the 2–8 h following exposure to DEP. The 8-OH-Gua repair
activities in the DEP-treated groups decreased during the
period from 2 h to 2 days following DEP exposure and
then recovered to the level of the control group at 5 days
after exposure.OGG1mRNA was induced in rats treated
with 4 mg DEP for 5–7 days after administration. In
conclusion, the 8-OH-Gua level in rat lung DNA increases
markedly at an early phase after DEP exposure, by the
generation of ROS and the inhibition of 8-OH-Gua repair
activity, and induction of OGG1 mRNA is also a good
marker of cellular oxidative stress during carcinogenesis.

Introduction

Higher industrial development and increased amounts of traffic
have increased the levels of environmental pollutants, such as
nitrogen dioxide (NO2) and automobile exhaust particles (1).
Diesel exhaust particles (DEP) are the exhaust emission of
diesel engined vehicles (particularly trucks and buses) and are
known to be associated with allergic, cytotoxic, mutagenic and
carcinogenic properties. DEP contain a variety of mutagenic
and carcinogenic chemicals, such as benzo[a]pyrene (B[a]P)
(2,3), nitropyrenes (4) and 1,6- and 1,8-dinitropyrenes (DNP)
(5). In animal studies, the incidence of lung cancer was
significantly increased by direct injections of lung carcinogens,
such as 1,6-DNP and B[a]P, contained in DEP in a dose-
dependent manner (6). In addition, administration of DEP to
mice or rats induced pulmonary neoplasms in the lung,
including lymphomas, adenomas and adenocarcinomas (7,8),

Abbreviations: B[a]P, benzo[a]pyrene; DEP, diesel exhaust particles; DNP,
dinitropyrenes; 8-OH-Gua, 8-hydroxyguanine (7,8-dihydro-8-oxoguanine);
ROS, reactive oxygen species; RT–PCR, reverse transcription–polymerase
chain reaction.
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and reactive oxygen species (ROS) played a crucial role in
the carcinogenic process (8–10). In these studies, the levels of
8-hydroxyguanine (8-OH-Gua) were found to be increased in
the mouse lung DNA after the administration of DEP.

8-OH-Gua is believed to be a major form of oxidative DNA
damage (11) and a useful marker of DNA oxidation (12) and
causes mainly G·C→T·A transversions inEscherichia coli
and mammalian cells (13–16). We have measured the levels
of 8-OH-Gua produced by several carcinogens and lifestyle
factors, such as potassium bromate (17), ferric nitrilotriacetate
(18), cigarette smoking (19) and exercise (20), which are
thought to generate ROS. Repair mechanisms for 8-OH-Gua
have also been reported by several researchers. Enzymatic
activities for removing 8-OH-Gua have been found in both
bacterial and mammalian cells (21,22) and there might be
several different repair mechanisms for 8-OH-Gua (23,24).

Although several reports have indicated a relationship
between oxidative DNA damage and DEP carcinogenicity,
there have been no reports of a relationship between 8-OH-
Gua repair activity and DEP carcinogenicity. The genes for
the human and mouse glycosylase-type repair enzymes for
8-OH-Gua (hOGG1 and mOGG1) were recently cloned by
several researchers (25–31). Therefore, we examined the
induction of OGG1 mRNA in the lungs of rats treated with
DEP by a reverse transcription–polymerase chain reaction
assay (RT–PCR) to obtain more detailed information about
cellular oxidative stress during DEP-induced carcinogenesis.

In the present study, to clarify the carcinogenic mechanism
of DEP we investigated the dose- and time-dependent changes
in 8-OH-Gua, its repair and the repair proteinOGG1mRNA
level in rat lung after DEP exposure. This is the first report of
OGG1mRNA induction in mammalian cells.

Materials and methods

Animals and chemicals

Female Fisher 344 rats (Seiwa Experimental Animals, Fukuoka, Japan) of an
initial age of 7 weeks were used. Water and diet were availablead libitum.
They were housed for at least 1 week in a temperature and photoperiod
controlled room (24°C, 12 h/day) before the DEP instillation experiments.
The DNA Extractor WB Kit was purchased from Wako Biochemicals (Osaka,
Japan). Nuclease P1 and acid phosphatase (type XA, P-1435) were from
Sigma Chemical Co. (St Louis, MO). The [γ-32P]ATP (sp. act..5000 Ci/
mmol) was purchased from Amersham (Little Chalfont, UK). Other chemicals
were of the highest purity commercially available.

Preparation of DNA substrates

The oligonucleotide (59-GGTGGCCTGACG*CATTCCCCAA-39, where G*
represents 8-OH-Gua) used for the endonuclease nicking assay was prepared
by the method of Bodepudiet al. (32). The 59-end was labeled with
[γ-32P]ATP using T4 polynucleotide kinase and was annealed with its
complementary strand to produce the double-stranded DNA substrate.

Preparation and administration of DEP

The DEP were supplied by the Research Team for Health Effects of Air
Pollutants, National Institute of Environmental Studies, where they were
prepared from a light duty (2740 cc), four cylinder diesel engine as described
previously (10). The DEP were suspended in buffer (sterile 50 mM phosphate
buffer, pH 7.4, containing 0.9% NaCl and 0.05% Tween 80). This suspension
was sonicated for 5 min in an ultrasonic disrupter (model 250/450 sonifier;
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Branson Ultrasonics, Danbury, CT) at 4°C. The dispersion of the DEP was
confirmed using scanning electron microscopy. The particles had a polygonal-
like shape with a size range of ~0.3–3µm. Thus, it was confirmed that the
DEP had an appropriate size for transfer into the respiratory tract or alveoli.

After complete anesthesia with diethylether, the DEP suspension was
administered with an intratracheal cannula to female Fisher 344 rats, as
described previously (6). The rats in the control group were injected intra-
tracheally with 0.2 ml of vehicle buffer (n 5 42). The rats in the DEP group
were injected intratracheally with 0.2 ml of vehicle containing either 2
(n 542) or 4 mg DEP (n 5 32). Although intratracheal instillation is non-
physiological as compared with the inhalation mode, 2 or 4 mg instilled
instantaneously delivers what would take many days of inhalation exposure
(35). Non-treated rats of the same age were also prepared (n 5 11). They
were killed at 2 and 8 h and 1, 2, 5 and 7 days after administration of DEP.
The lungs were removed and a portion of the tissue was frozen (–80°C) until
8-OH-Gua analysis. For the nicking assay and the RT–PCR analysis, the lung
tissues were freshly processed as described below.

Determination of 8-OH-Gua level

The frozen rat lung tissues were thawed and homogenized in lysis buffer and
the nuclear DNA in the homogenate was extracted using the DNA Extracter
WB Kit (Wako), which contains NaI, an OH radical scavenger, by the
previously described method (18,33). The extracted nuclear DNA was digested
to deoxynucleosides and was analyzed with a HPLC system equipped with
an electrochemical detector (18,34). The level of 8-OH-Gua in the DNA was
expressed as the number of residues per 105 guanine.

Endonuclease nicking assay

After the intratracheal instillation of DEP, the rats were killed at each time
point under diethylether anesthesia and the lungs were immediately excised,
homogenized in buffer (50 mM Tris–HCl, pH 7.4, 50 mM KCl, 3 mM EDTA,
5 mM magnesium acetate and 3 mMβ-mercaptoethanol) containing protease
inhibitors (5 µg/ml each of antipain, chymostatin, leupeptin and pepstatin)
and centrifuged at 12 000g, as described previously (18). The supernatants
(cell-free extracts) were frozen (–80°C) until the endonuclease assay. The32P-
end-labeled double-stranded DNA substrate was incubated with the cell-free
extract and the samples were electrophoresed on a polyacrylamide gel to
analyze the cleavage of the DNA fragment at the 8-OH-Gua position. The
raw repair activity was calculated as the ratio of the excised fragment activity
to the total substrate (unexcised substrate activity plus excised fragment
activity). In this report, the average of the raw repair activity data in the
vehicle control at each time point is adjusted to 100% and each value of
the repair activity in the DEP exposure groups is shown as a percentage of
the control value.

Analysis ofOGG1mRNA induction by RT–PCR

Total RNA was prepared from fresh rat lungs and the mRNA was isolated on
an oligo(dT)–cellulose column (Pharmacia Biotech AB, Uppsala, Sweden).
The first strand cDNA was synthesized from mRNA primed with random
hexamers using M-MLV reverse transcriptase (Gibco BRL, Grand Island,
NY). Each cDNA was amplified using primers for the ratOGG1andGAPDH
genes. TheGAPDHmRNA was used as an internal standard. The primers for
rat OGG1 were designed from the consensus sequence of the human
and mouseOGG1 genes: 59-ATCTGTTCCTCCAACAACAAC-39 and 59-
GCCAGCATAAGGTCCCCACAG-39. The primers for ratGAPDH were
59-AACGGGAAGCTCACTGGCATG-39 and 59-TCCACCACCCTGTTGCT-
GTAG-39. The amplification for ratOGG1 consisted of 34 cycles at 94°C
(60 s), 70°C (95 s) and 60°C (120 s). The PCR products were separated on
a 5% polyacrylamide gel and were visualized with ethidium bromide staining.

Statistical analysis

All of the data are presented as the mean values of 5–11 independent
measurements from different rats. The differences between each group
were evaluated by applying the unpaired Student’st-test. All analyses were
performed using the StatView-J 4.5 program (Berkeley, CA).

Results

8-OH-Gua levels in the lung DNA of DEP-administered rats
At the early phase of DEP exposure, the 8-OH-Gua levels in
both DEP-treated groups increased as compared with that in
the control group (Figure 1). Especially, the 8-OH-Gua levels
at 2 h after exposure to 4 mg DEP were significantly higher
than those in the control and 2 mg DEP-treated groups (the
differences were statistically significant:P , 0.0001 andP 5
0.0043, repectively). At this time point, we observed DEP
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Fig. 1. Time course of 8-OH-Gua levels (mean6 SD) in rat lung DNA
after DEP administration.aSignificantly higher than vehicle control
(P , 0.0001) and than 2 mg DEP-treated group (P 5 0.0043).
bSignificantly higher than vehicle control (P 5 0.0025).cSignificantly
higher than vehicle control (P 5 0.0218).

phagocytosis by alveolar macrophages in the lung (data not
shown). Moreover, the 8-OH-Gua levels were also significantly
higher at 8 h after exposure to either 2 or 4 mg DEP than
that in the control group (the differences were statistically
significant:P 5 0.0218 andP 5 0.0025, repectively). There-
after, the 8-OH-Gua levels in both DEP-treated groups
decreased and there were almost no differences among all
groups at 5 and 7 days after exposure (Figure 1).

8-OH-Gua repair activities in the lungs of DEP-treated rats
The time courses of the 8-OH-Gua repair activities are shown
in Figure 2. In contrast to the 8-OH-Gua levels, the repair
activities in the DEP-treated groups showed a tendency to be
reduced as compared with that in the control group at an early
stage (2 h), until 2 days after DEP administration. The repair
activities of the groups treated with 2 and 4 mg DEP at 1 day
were significantly lower than that of the control (P 5 0.0167
and P 5 0.0169, respectively). The repair activity of the
group treated with 4 mg DEP was also significantly lower at
2 days (P 5 0.0216). The 8-OH-Gua repair activities in both
DEP-treated groups recovered by 5 days after exposure to
DEP (Figure 2).

RT–PCR analysis ofOGG1 induction
In order to determine theOGG1mRNA level, vehicle control,
non-treated and 2 (after 5 days) and 4 mg DEP-treated (after
5 and 7 days) rats were used for RT–PCR analysis. Only small
amounts ofOGG1mRNA were detected in the vehicle control,
the non-treated rats and the rat treated with 2 mg DEP, whereas
it was clearly detected in the rats treated with 4 mg DEP at 5
and 7 days after administration of DEP (Figure 3A and B).
Moreover, OGG1 mRNA induction in the rats treated with
4 mg DEP was more pronounced at 7 than at 5 days after
administration of DEP (Figure 3B).

Discussion

It has been reported that lung cancer in rats arises via an
overload phenomenon in which chronic exposure to high levels
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Fig. 2. Time course of repair activities for 8-OH-Gua (mean6 SD) in rat
lung DNA after DEP administration. Each value of the repair activity in the
DEP-exposed group is represented as a percentage of the vehicle control
group at the same time point.aSignificantly lower than vehicle control
(P 5 0.0167).bSignificantly lower than vehicle control (P 5 0.0169).
cSignificantly lower than vehicle control (P 5 0.0216).

Fig. 3. OGG1mRNA levels in rat lung DNA after intratracheal instillation
of DEP. (A) OGG1mRNA levels at 5 days after the instillation of vehicle
control and DEP (2 and 4 mg). (B) OGG1mRNA levels of non-treated rats
and at 5 and 7 days after DEP (4 mg) instillation.

of DEP overwhelm the normal clearance mechanisms (35)
resulting in an influx of inflammatoy cells (36), structural
alterations in the lung (37,38), release of cytokines (39,40),
mutagenic changes (40) and development of lung cancer (41).
Chronic exposure of rats to carbon black also produces lung
cancer, suggesting that the carbonaceous particles (either
carbon black or diesel soot) induce the cancer and that
polyaromatic hydrocarbons in the diesel soot are not essential
(38,40,42). Involvement of ROS in the pathogenesis of lung
cancer by DEP and carbon black exposure in rats has been
suggested (43). However, caution is needed in interpreting the
findings in DEP-exposed rats with regard to human risk from
DEP exposure (42,43).

In this paper we have examined the dose- and time-dependent
changes in the levels of 8-OH-Gua, its repair and the induction
of OGG1 mRNA after an intratracheal instillation of DEP.
The levels of 8-OH-Gua were significantly increased from 2
to 8 h and decreased to that of the control level by 5–7 days
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after DEP exposure (Figure 1). These results support the
previous report that hydroxyl radicals produced by phago-
cytosis of DEP contribute to an increase in the 8-OH-Gua
level (8,9). Indeed, the intake of a radical scavenger,β-
carotene, reduced the level of 8-OH-Gua (8,9). In addition to
analyzing 8-OH-Gua, it was also of interest to measure its
repair, since both the 8-OH-Gua level and its repair are known
to be induced in rat kidney and human leukocytes by oxidative
stress (18,19). No previous reports, however, have described
any changes in 8-OH-Gua repair activity associated with DEP
carcinogenesis thus far.

In the present study we found that the repair activities for
8-OH-Gua decreased from 2 h to 2 days after exposure to
DEP, as compared with that in the control group, and recovered
to the level of the control group at 5 and 7 days after exposure
(Figure 2). In addition,OGG1 mRNA levels in the DEP-
treated rats were enhanced as compared with those of the
control or non-treated rats at 5–7 days after administration of
DEP (Figure 3).

These results suggest that the inhibition of the 8-OH-Gua
repair activity is, in part, responsible for the increase in 8-
OH-Gua level in the early phase of DEP exposure. However,
the mechanism of inhibition in this early phase is not clear.
Since DEP contain several components, including mutagens
and carcinogens, some of them might react with the OGG1
protein directly and may have affected repair activity. The
other possibility is that some chemical agents in DEP inhibit
the repair action. It is also known that exposure to DEP causes
marked infiltration of inflammatory cells (44) and results in
allergic rhinitis and allergic asthma by enhanced IgE production
(45,46). The chemical mediators, such as histamines and
prostaglandins, that are involved in these processes might
affect the repair activity. On the other hand, we found that the
repair enzymeOGG1 mRNA was induced from 5 to 7 days
after administration of DEP and a concomitant recovery of
repair activity was observed during this period. However, the
exact role of OGG1 in total 8-OH-Gua repair activity is still
unclear, because the entire pathway of 8-OH-Gua repair is not
yet understood completely.

In conclusion, we found that the 8-OH-Gua level in rat lung
DNA increases after administration of DEP, partly by the
generation of ROS and partly by the inhibition of repair
activity for 8-OH-Gua. We also demonstrated thatOGG1
mRNA is a useful marker of cellular oxidative stress during
carcinogenesis, in addition to the analyses of 8-OH-Gua levels
in DNA and its repair activity.
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