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Abstract

Altered metabolism of lipids is currently considered a hallmark characteristic of many malignancies, including colorectal
cancer (CRC). Lipids are a large group of metabolites that differ in terms of their fatty acid composition. This review
summarizes recent evidence, documenting many alterations in the content and composition of fatty acids, polar lipids,
oxylipins and triacylglycerols in CRC patients’ sera, tumor tissues and adipose tissue. Some of altered lipid molecules
may be potential biomarkers of CRC risk, development and progression. Owing to a significant role of many lipids in
cancer cell metabolism, some of lipid metabolism pathways may also constitute specific targets for anti-CRC therapy.
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Introduction

Finding a disease, the course of which is not related to lipid

alterations can be challenging. Lipids raise a growing inter-

est as potential biomarkers in many clinical conditions.

This highlights the importance of lipidomic studies in un-

derstanding, diagnosing and treating numerous human

pathologies, among them cancer; the use of lipidomics

could create an opportunity to design targeted therapies,

prognostic or screening biomarkers [1]. In everyday clinical

practice, lipid status is estimated based on serum concen-

trations of total cholesterol (TC), high density lipoprotein

(HDL), low density lipoprotein (LDL) and triacylglycerols

(TGs). While only a limited information can be obtained

from the analysis of those lipid fractions, other currently

available techniques, e.g. mass spectrometry, may provide a

detailed insight into the structure and function of some

specific lipid species. In this review paper, we discuss lipid

alterations associated with colorectal cancer (CRC), with

special emphasis on fatty acids (FAs) and their potential

therapeutic and diagnostic applications in patients with this

malignancy.

Most cancers found in the colon or rectum are adeno-

carcinomas arising from pathological lesions in the epithe-

lial cells of colorectal mucosa [2]. Vast majority of CRCs

are thought to evolve from conventional adenomas

through as a result of several dozens of mutations; this

process is referred to as the adenoma-to-carcinoma se-

quence [3]. Most CRCs are sporadic malignancies and are

not associated with inherited mutations in established

cancer-related genes [4]. However, about 20–30% CRC

may be associated with inherited mutations [5]. A pro-

gressive accumulation of multiple genetic mutations con-

tributes to transition from normal mucosa to benign

adenoma, severe dysplasia, and eventually, a frank carcin-

oma. It is estimated that approximately 15% of sporadic

colon cancers are a consequence of malfunction in mis-

match repair genes, whereas other 80–85% are associated

with mutations in adenomatous polyposis coli (APC)

gene. Furthermore, colon cancer may develop as a conse-

quence of inflammatory bowel disease, on a different, yet

uncharacterized pathway. Malignant transformation re-

quires further genetic alterations [6]. Less than 50% of

colon cancers harbor mutated KRAS, a protein that is in-

volved in intracellular signal transduction [7, 8]. Approxi-

mately 50% of colonic lesions with high-grade dysplasia

and about 75% of frank cancers may carry p53 mutations

[6, 7]. A neoplastic disease cannot be effectively managed

without the understanding of distinctive characteristics of

cancer cells that contribute to tumor development. One of

them is enhanced proliferation [9]. Two main genetic de-

fects found in CRC, KRAS and p53 mutations, are both

associated with enhanced proliferation [10, 11]. Intensively

proliferating cancer cells display some unique metabolic

patterns due to which they may obtain enough energy for
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new biomass synthesis. Cancer cells have a unique ability

to generate energy in a nutrient-deficient environment.

Since the preference of cancer cells for glycolysis rather

than oxidative phosphorylations (OXPHOs) when oxygen

is not limited has been demonstrated by Otto Warburg

[12], the aberrant glucose metabolism became one of the

hallmarks of cancer. However there has been a paradigm

shift towards so called reversed Warburg effect, since re-

search showed that each cancer has its unique metabolic

features, and some may synthesize ATP by means of

OXPHOs [13]. A recent evidence suggests that CRC cells

rely on the reversed Warburg effect [14, 15], which

opened new perspectives for the identification of new mo-

lecular therapeutic targets, among them FA oxidation

[16]. Another frequently observed characteristic of cancer

cells is their dependence on exogenous glutamine. Many

oncogenic mutations seem to affect glutamine metabol-

ism, which may open new therapeutic perspectives [17,

18]. Aside from the switch in glucose and glutamine me-

tabolism, lipids may also play a role in the adaptation of

cancer cells. It is well known that cancer cells show alter-

ations of lipid metabolism. This may lead to structural

changes in their membranes, disruption of energy homeo-

stasis, cell signaling, gene expression and protein distribu-

tion, affecting a number of cell functions, such as

apoptosis, autophagy, necrosis, proliferation, differenti-

ation, growth, drug and chemotherapy resistance [19–22].

The role of lipids and their metabolism in cancer develop-

ment and spread raises a growing interest of researchers,

as shown in previous reviews [23–25]. The lipid meta-

bolic pathways that have been affected in CRC cells

include synthesis, desaturation, elongation and mito-

chondrial oxidation of the FAs. CRC belongs to the

three leading causes of mortality in both male and fe-

male cancer patients [26, 27]. Non-invasive tests for

CRC, such as guaiac-based fecal occult blood test

(gFOBT), as well as more sensitive, fecal immuno-

chemical test (FIT) and stool DNA test, are usually

conducted on stool samples [28, 29]. Colonoscopy is

an invasive screening method, considered a gold

standard for the detection of colorectal neoplasms.

Other screening instruments include flexible sigmoid-

oscopy and newer techniques, such as colon capsule

endoscopy and magnetic resonance colonography [30].

However, all these techniques are invasive, and hence,

both patients and researchers await easy to determine

and accurate blood-derived biomarkers. Typically, bio-

logical material used for research purposes includes

biopsy specimens of colorectal mucosa, surgical speci-

mens of colonic lesions, blood serum or plasma and

red blood cells (RBCs). However, this is blood which

is particularly useful from the perspective of bio-

marker research, as it can be obtained more easily

and less invasively than other biological materials.

The lipidome changes in colorectal cancer patients

Lipidomics, a distinct branch of metabolome studies,

provides information about the role of lipid dysregula-

tion in various pathological conditions, such as meta-

bolic syndrome [31], obesity [32], non-alcoholic fatty

liver disease [33], diabetes [34] and cardiovascular dis-

eases [35]. A growing number of studies analyzed the re-

lation between lipids and various malignancies: breast

cancer [36, 37], prostate cancer [38, 39], ovarian cancer

[40, 41], hepatocellular carcinoma [42], lung cancer [43],

pancreatic cancer [44] or bladder cancer [45]. Under-

standing the link between the disease and lipidome not

only provides a better insight into its pathogenesis but is

also vital for the development of novel biomarkers and

therapeutic strategies.

Lipids are a diverse group of compounds belonging to

various species. LIPID MAPS [46] classified them into

eight groups based on the presence of ketoacyl and iso-

prene groups: FAs, glycerolipids, glycerophospholipids,

sphingolipids, sterol lipids, prenol lipids, saccharolipids

and polyketides [47]. The properties of various lipids

and their biological functions change depending on the

head-group [48]. The main structural component of

each lipid group are fatty acids. FAs are structural com-

ponents of complex lipids and play a wide range of roles

in human body. FAs building phospholipids (PHLs) con-

stitute the main fraction of lipid bilayer. Aside from

serving as structural components, FAs, in form of gly-

cerol esters (i.e. TGs), serve also as an energy reservoir

in adipose tissue. Upon release from TGs by adipose tis-

sue lipases, they are delivered to various organs as circu-

lating free fatty acids (FFAs) [49]. FAs can be classified

into three groups: saturated FAs (SFAs), without double

bonds in acyl chain, monounsaturated FAs (MUFAs),

with one double bond, and polyunsaturated FAs

(PUFAs), with more than one double bond in acyl chain.

Furthermore, they can be classified based on the number

of carbon atoms, as short-chain FAs (SCFAs), with up to

6 carbons, medium-chain FAs (MCFAs), with 6 to 12

carbons, and long-chain FAs (LCFAa), with more than

12 carbons [50]. FAs can be both endo- and exogenous.

De novo synthesis of palmitic acid from acetyl-CoA

(acetyl-coenzyme A) is catalyzed by fatty acid synthase

(FASN) [20] and other enzymes, among them those re-

sponsible for converting citrate to oxaloacetate and

acetyl-CoA, and for carboxylation of acetyl-CoA. To

enter bioactive pool, FAs needs to be activated, as

FA-CoA. SFAs are converted into MUFAs by

stearoyl-CoA desaturase 1 (SCD-1, Δ-9-desaturase) [24,

25] and their chains are elongated by elongases

(ELOVLs) [51]. The activated FAs may serve as sub-

strates for the synthesis of TGs and PHLs or are trans-

ported to mitochondria whereby they undergo oxidation.

The synthesis of endogenous FAs and their metabolism
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are presented schematically in Fig. 1. Some FAs cannot

be synthetized by human cells and must be provided

with the diet. Both 18:3 n-3 FAs found in some plant oils

(flaxseed, rapeseed, canola), walnuts and leafy greens,

and 18:2 n-6 FAs contained in meat, poultry, cereal

products and oil, are essential fatty acids [52, 53]. They

act as precursors for the synthesis of longer n-3 and n-6

PUFAs, competing for the same enzymes [54].

Long-chain n-3 PUFAs can be also provided with fish

products, the global consumption of which is generally

too low [55]. The activity of FAs and complex lipids they

build is determined by their structure. The length of acyl

chain and the degree of its saturation determine various

functions of FAs, e.g. the rigidity of plasma membranes

and biological effects in humans. SCFAs synthesized by

gastrointestinal microbiota, especially butyrate, are the

primary energetic substrate for colonocytes, promote

colonic health and have anti-inflammatory properties

[50]. The degree of unsaturation determines the suscep-

tibility of unsaturated FAs to oxidation; PUFAs are gen-

erally more prone to oxidation due to the presence of

multiple double bonds [56]. Also position of the double

bond within the PUFA molecule is vital from the func-

tional perspective, since n-6 PUFA metabolites are gen-

erally proinflammatory whereas n-3 PUFAs act as

anti-inflammatory compounds. Therefore, the role of

lipids in various pathological conditions should be ana-

lyzed not only at the group level, but also at the species

level. Concentration of circulating non-esterified fatty

acids (NEFAs), also referred to as FFAs, may be a pre-

dictor of metabolic status in various conditions associ-

ated with obesity [57]. Available evidence suggests that

obesity may be associated with increased risk of CRC

[58, 59]. Elevated level of FFAs in serum may be a

marker of oxidative stress [60], enhanced lipotoxicity

[61] or hypertriglyceridemia.

Alterations of saturated fatty acids in CRC

Dietary and endogenous saturated fatty acids

The tumor development is associated with enhanced

lipogenesis [24, 62–64]. De novo lipogenesis was shown

to be associated with enhanced saturation of membrane

lipids in colorectal cancer cell line, HCT116. SFAs,

abundant due to increased activity of FASN, are incorpo-

rated into membrane PHLs, making the cells less sus-

ceptible to free radicals and penetration of therapeutics

[65]. Increased activity of FASN is also associated with

β-oxidation of endogenous lipids and promotion of cel-

lular respiration [20]. These processes are induced by

mammalian target of rapamycin kinase (mTOR kinase)

signaling pathway, which activates the synthesis of pro-

teins being responsible for growth, division or angiogen-

esis during tumorigenesis [66, 67] and metastasis [68].

Wang et al. demonstrated that FASN knockdown results

in downregulation of cancer invasion and spread in cell

lines [69]. While cancer cells generally show preference

for endogenous FAs, some malignancies may also re-

quire provision of exogenous fatty acids [70].

According to one hypothesis, an increase in the inci-

dence of CRC in eastern populations may result from a

change in dietary preferences in favor of SFA-rich west-

ern style diet [71]. A primary dietary source of SFAs are

animal products. High dietary intake of SFAs has been

implicated in obesity-associated gene expression profile

and metabolic syndrome [72, 73] and was shown to im-

pair white adipose tissue function [74] and to induce in-

sulin resistance [75]. The supplementation of monocytic

cell lines with SFAs may activate nuclear factor κB, up-

regulate cyclooxygenase-2 and toll-like receptors 2 and 4

(TLR2 and TLR4) [76]; the TLRs are known to play a

role in carcinogenesis associated with inflammation [77].

Fig. 1 Overview of endogenous metabolism of fatty acids at the cellular
level. Modified from Currie et al. (2013) [24]. DG: diacylglycerol, FA: fatty
acid, LPA: lysophosphatidic acid, MAG: monoacylglycerol, MUFA-CoA:
monounsaturated fatty acid-coenzyme A, TG: triacylglycerol, ACC: acetyl-
CoA carboxylase, ACS: acetyl-CoA synthetase, ACLY: ATP citrate lyase,
FASN: fatty acid synthase, MAGL: monoacylglycerol lipase, MCD: malonyl-
CoA decarboxylase, AGPAT: 1-acylglycerol-3-phosphate-O-acyltransferase,
ATGL: adipose triglyceride lipase, CPT1: carnitine palmitoyltransferase I,
DGAT: diacylglycerol O-acyltransferase, GPAT: glycerol-3-phosphate
acyltransferase, HSL: hormone sensitive lipase, PAP: phosphatidate
phosphatase
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Dietary intake of SFAs has also an impact on serum lipo-

proteins. Substitution of cis-PUFAs and MUFAs with an

equivalent amount of energy from dietary SFAs contrib-

uted to an increase in serum levels of total cholesterol,

HDL-cholesterol, LDL-cholesterol and triglycerides, al-

though this effect was statistically significant only in the

case of PUFA replacement [78]. The results of previous

studies analyzing a link between dyslipidemia and CRC

are inconclusive [79–82]. However, dietary modifications

alone may not be enough to explain the etiopathogenesis

of a given condition; for example, while a short-term

change in diet showed only a minimal correlation with

genes in the pathway of an inflammatory marker, prosta-

glandin E2 (PGE2), an increase in colonic SFAs stimu-

lated a rise in PGE2 concentration [83]. Although a

dietary intake of SFAs (estimated with a diet question-

naire) correlated positively with rectal cancer risk, in

contrast to fatty acids of plasma PHL, it showed no

significant association with the overall risk of CRC [84].

Enhanced elongation of saturated fatty acids in CRC

According to Kondo, CRC patients had significantly

lower serum levels of long-chain FAs, 14:0, 15:0 and

18:0, and presented with significantly higher serum

levels of very long-chain FAs (VLCFAs), 24:0, 25:0, 26:0,

28:0 and 30:0, than healthy controls [85]. However,

Zhang observed more than a 50% increase in 18:0 con-

tent in cancerous tissue, but without concomitant

changes in 14:0 and 16:0 levels [86]. The Singapore

Chinese Health Study showed that while rectal cancer

patients and healthy subjects did not differ significantly

in terms of 16:0 and 18:0 plasma PHL levels, the 16:0

content correlated inversely with colon cancer risk [87].

In turn, Mendelian randomization analysis pointed to a

significant relation between 18:0 content and CRC risk

[88]. Some studies demonstrated that CRC was associ-

ated with a significant increase in serum level of

VLCFAs [85, 89]. Our previous study showed that can-

cerous tissue contained more 22-, 24- and 26-carbon

SFAs and MUFAs than normal colonic tissue [22].

Moreover, we found 26:0 cerotic acid exclusively in the

sera of CRC patients, and hence, proposed it as a serum

biomarker of this malignancy [22]. However, Kondo ob-

served only a 1.33-fold increase in serum 26:0 in CRC

patients [85]. The lack of 16:0 accumulation implies that

the products of FASN may serve as substrates for other

enzymes. The activity of various elongating enzymes

ELOVLs may be cancer type-specific, e.g. ELVOL7 is in-

volved in prostate cancer [90], ELOVL2 in breast cancer

[91] and ELOVL1 and ELOVL 6 in triple negative breast

cancer [36]. Enhanced activity of elongases in CRC tis-

sue, assessed based on elongation index values (18:0/

16:0 and 22–26:0/20:0 ratios) and higher ELOVL1 and

ELOVL6 mRNA levels, contributed to an increase in

saturated and monounsaturated VLCFA content in

tumor tissue, and probably was also a reason behind the

elevated serum concentrations of VLCFAs. Plausibly, the

latter may serve as a biomarker of CRC [22].

Endogenous and exogenous monounsaturated fatty acids

Oleic acid (18:1 n-9, OA) is one of the most abundant

FAs in human tissues and the most abundant MUFA

[22, 86, 92]. It is the main dietary MUFA provided with

both animal products and plant oils, especially with olive

oil. The latter is an essential component of Mediterra-

nean diet [93], which has been implied to protect against

cancer [94]. However, the exact mechanism through

which OA would interfere with CRC is still not fully

understood. Both oleic acid and palmitic acid trigger

non-canonical autophagic response in human cancer

cells, but through different mechanisms (beclin-1-inde-

pendent autophagy that requires intact Golgi apparatus

or via the activity of 5’AMP-activated protein kinase

(AMPK), protein kinase R (PKR) and c-Jun N-terminal

protein kinase 1 (JNK1)) [95]. The role of autophagy in

cancer progression is ambiguous; while it can suppress

cancer development at its early stages, preventing accu-

mulation of mutated cells or aggregation of reactive oxy-

gen species (ROS), it can also boost the resilience of

cancer cells via supply of extra energy whenever nutri-

ents are sparse [96]. Moreover, oleic acid was shown to

decrease mRNA levels for some FA transporters and re-

ceptors and to reduce lipid droplet content in colonic

adenocarcinoma cells [97]. The level of oleic acid was

demonstrated to be significantly reduced in CRC tumor

tissue, which was associated with a shift from stage B to

stage C in Dukes classification [86].

MUFAs can be also synthesized in vivo by SCD-1, an

enzyme expressed in all major tissues, as well as by

SCD-5, found in the pancreas and brain [98]. Available

evidence points to a link between various cancer types

and SCD-1 expression [99–102]. Overexpression of

SCD-1 and other enzymes, namely ATP-binding cassette

sub-family A member (ABCA1), long chain acyl-CoA

synthetase (ACSL1) and 1-acyl-sn-glycerol-3-phosphate

acyltransferase alpha (AGPAT1), was associated with in-

creased risk of recurrence and worse outcomes in stage

II colon cancer [103]. However, the upregulation of

SCD-1 was not reflected by an increase in serum and tis-

sue levels of 18:1, plausibly because of the incorporation

of this FA into complex lipids or its utilization as a sub-

strate for other enzymes involved in lipid metabolism

[86, 87]. The relation between cancer mortality and

activity of SCD-1, estimated on the basis of serum cho-

lesteryl ester ratio of 16:1 n-7 and 16:0, and presence of

a single nucleotide polymorphism in its gene, suggests

that endogenous synthesis of MUFAs may exert an effect

on cancer outcome [104]. As a result, SCD-1 became a
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target for anticancer therapy [105, 106]. ACSL/SCD-1

pathway can regulate the invasiveness of cancer cells

and serve as a predictor of survival. Further, silencing of

SCD-1 with siRNAs was shown to activate apoptosis in

HCT116 cells [107].

n-3 and n-6 polyunsaturated fatty acids

PUFAs are represented by two families, n-3 and n-6,

which exert opposite effects on inflammation. n-3

PUFAs are known to exhibit anti-inflammatory proper-

ties. Inflammation is one of the hallmarks of cancer.

Patients with inflammatory bowel disease have increased

risk of CRC [108, 109]. n-3 PUFAs can attenuate inflam-

mation via multiple mechanisms, inter alia acting via

their oxidized derivatives [110, 111]. Long chain n-3

PUFAs, specifically 20:5 n-3 (eicosapentaenoic acid,

EPA) and 22:6 n-3 (docosahexaenoic acid, DHA) found

in oily fish, were shown to interfere in vitro with the

kappa-light-chain-enhancer of activated B cells (NF-κB)

signaling system, downregulating nuclear NF-κB p65

component and NF-κB inhibitor (IκBα) and upregulating

cytoplasmic NF-κB p50 in a time- and dose-dependent

manner [112]. The upregulation of NF-κB was observed

in some cell lines, including human CRC cells [111].

While n-3 PUFAs were shown to exert an

anti-inflammatory effect, published data about the link

between consumption of fish or supplementation with

fish oil and the risk of CRC are inconclusive. While

some observational studies demonstrated that dietary

provision of n-3 PUFAs from those sources was associ-

ated with a decrease in CRC risk [113] and lower mor-

tality from that malignancy [114], others did not find

enough evidence to support this link [115]. Although a

recent meta-analysis of nine studies demonstrated an

overall improvement in the levels of inflammatory

markers, IL-6, albumin and CRP/albumin ratio, it also

documented difficulties in obtaining comparable data

about the anti-inflammatory effects of DHA or EPA sup-

plementation; the authors proposed that at least some of

the results might have been influenced by inconsisten-

cies in supplementation protocols [116]. Moreover, it

must be stressed that n-3 PUFA supplements may con-

tain some proportion of n-6 PUFAs and SFAs, which

also might interfere with their beneficial effects [117]. Fi-

nally, the supplements in which a major n-3 PUFA is

ALA may offer limited advantages due to low impact on

DHA and EPA levels resulting from limited conversion

rates on n-3 PUFA pathway [118].

Another mechanism through which n-3 may exert a

beneficial biological effect and prevent carcinogenesis, is

disruption of lipid rafts associated with their low affinity

for cholesterol and saturated chains and resultant lesser

rigidity of formed structures [119, 120]. Proteins embed-

ded in lipid rafts were shown to be involved in cell

signaling, proliferation, adhesion and apoptosis [121,

122]. Turk et al. reported that DHA but not EPA or 20:4

n-6 (arachidonic acid, AA) enhanced phosphorylation of

epidermal growth factor receptor (EGFR) and reduced

downstream signaling in young adult mouse colonic

(YAMC) cells and in a murine model [123]. Enhanced

phosphorylation of EGFR after supplementation with

n-3 PUFAs was also observed in breast cancer cell lines

[124]. Those findings are worth emphasizing as EGFR is

also known to be overexpressed in most CRCs [125].

n-6 PUFAs are abundant in plant oils [126]. Most FAs

from the n-6 PUFA family, especially AA and its oxi-

dized products, show proinflammatory properties [127],

and thus, may act as tumor promoters. However, the evi-

dence from observational studies analyzing the role of

AA in CRC risk is inconclusive [128]. High dietary n-6/

n-3 PUFA ratio may be an important risk factor of

other epithelial malignancies, such as aggressive pros-

tate cancer [129], breast cancer [37] or invasive lung

cancer [43]. Zhang et al. demonstrated that n-6/n-3

PUFAs ratio in cancerous tissue was significantly

higher than in adjacent normal tissue [86], and this

observation was later confirmed in another study

[130]. However, caution has to be applied when

studying effects of n-3 and n-6 PUFA metabolites.

Relying simply on n-6/n-3 PUFA ratio may be a

source of bias, since some n-6 derived oxidation

products may in fact have anti-inflammatory proper-

ties [131].

Humans do not have the ability to synthesize linoleic

acid (LA, 18:2 n-6) and α-linolenic acid (ALA, 18:3 n-3)

de novo due to the lack of Δ-12-desaturase and

Δ-15-desaturase [132]. Previous studies demonstrated

that CRC patients can be distinguished from healthy

controls and individuals with colorectal polyps based on

their serum levels of LA and ALA [133, 134]. In another

study, CRC patients presented with nearly 50% lower

serum concentrations of 18:3 n-6 (γ-linolenic acid, GLA)

than healthy controls [85]. Additionally, GLA was pro-

posed as a biomarker for CRC risk because its altered

concentrations could be observed as early as at the ad-

enoma stage, but without an evident decreasing or in-

creasing tendency across stages I to IV [85]. Another

study showed that the level of 18:2 n-6 in cancerous tis-

sue was significantly higher than in adjacent normal tis-

sue, and differed depending on Dukes stage [86].

However, an opposite relationship was found in another

larger study including more than twice as many CRC pa-

tients, in which 18:2 n-6 concentration in cancerous tis-

sue was significantly lower than in normal tissue and did

not correlate with TNM stage [130]. Certain proportion

of dietary 18:2 n-6 and 18:3 n-3 are converted to

long-chain PUFAs by elongation and desaturation. Spe-

cifically, 18:3 n-3 is a substrate for EPA and DHA,
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whereas 18:2 n-6 is converted to AA through combined

action of elongases, Δ-5 and Δ-6 desaturases [52]. How-

ever, the product of 18:2 n-6 elongation can be also con-

verted by Δ-5-desaturase to a unique n-6 PUFA,

dihomo-γ-linolenic acid (DGLA) 20:3 n-6, which exerts

an opposite biological effect to AA [126, 135]. According

to Butler et al., the plasma indices of n-6 PUFA desatur-

ation pathway correlated positively with increased colon

cancer risk [87].

The growing popularity of dietary supplements contain-

ing conjugated linoleic acids (CLA) and their widely re-

ported beneficial effects observed in animals, inter alia

anticancer activity [136], stimulated research on the link be-

tween CLAs and CRC. The term ‘CLA’ refers to the group

of LA isomers, both cis and trans, with conjugated double

bonds. The main natural dietary source of CLAs are

ruminant-derived dairy products that contain primarily

cis-9 and trans-11 isomers [137]. In turn, commercially

available supplements are racemates of cis-9, trans-11,

trans-10 and cis-12 CLAs. Two mechanisms of action of

CLAs have been proposed. First, CLAs may reduce the

level of harmful COX-2 metabolites [138], and second, they

may act as ligands for peroxisome proliferator-activated re-

ceptors (PPARs) [137, 139]. Some studies demonstrated

beneficial effects of CLAs in cell lines [140] and murine

models [137] and a decrease in tumor invasiveness and im-

provement of inflammatory status were observed in

CLA-supplemented rectal cancer patients [141, 142]. How-

ever, CLAs should be used with caution in cancer patients,

as the study in healthy volunteers demonstrated that their

administration may cause loss of appetite, which would

pose a risk of cachexia in persons with malignancies [143].

Products of lipid oxidation

Link between oxidative stress, chronic inflammation and an

array of chronic disorders have been studied extensively in

cardiovascular diseases [144], diabetes mellitus [145],

rheumatoid arthritis [146] and cancer [147–149]. Oxidative

stress damages various molecular species, including pro-

teins, nucleic acids and lipids. Oxidized lipid products may

be formed either during a non-specific peroxidation facili-

tated by oxidative stress, as lipid peroxidation products

(LPPs), or be generated in enzymatic reactions catalyzed by

cyclooxygenases (COX), lipoxygenases (LOX) and cyto-

chromes p450 (CYP450), as oxylipins. Due to presence of

multiple double bonds, PUFAs are most susceptible to oxi-

dation; while n-3 PUFA-derived oxylipins generally produce

favorable biological effects, the products of n-6 PUFA oxi-

dation usually have proinflammatory properties.

Products of oxidative stress

Carcinogenesis is associated with oxidative stress [150, 151].

The breakdown of PUFAs and PUFA-containing com-

plex lipids starts from the formation of lipoperoxyl

radical, a product of ROS-mediated damage to a sus-

ceptible double bond. A reaction between the lipoper-

oxyl radical and lipid molecules results in formation

of lipid radicals and lipid hydroxyperoxides, which are

further degraded to secondary products [56]. The

markers of oxidative stress are isoprostanes (isoPs),

containing primarily F-type prostane rings derived

from AA, and DHA-derived neuroprostanes [152].

Among non-enzymatically formed arachidonic acid me-

tabolites series 2 isoprostanes, CRC patients presented

with lower serum levels of 8-iso-PGF2α and elevated

serum concentrations of 2,3-dinor-8-iso-PGF2α [153].

The end-products of ROS-mediated lipid breakdown are

4-hydroxynonenal (HNE) and malondialdehyde (MDA),

both found at elevated concentrations in CRC tissues

[154]. Both MDA and 4-HNE are established mutagenics

in humans [155, 156]. However, 4-HNE may also exert an

anticancerogenic effect, as it was shown to inhibit the ac-

tivity of telomerase in Caco-2 and HT-29 cell lines [157].

Enzymatically formed pro- and anti-inflammatory oxylipins

Oxidized lipid species can be also generated in enzym-

atic reactions catalyzed by COXs, LOXs and CYP450.

The process begins with the release of FA from mem-

brane phospholipid. The reaction is catalyzed by an en-

zyme from cytosolic phospholipase A2 family (cPLA2)

[158]. However, also adipose TG lipase (ATGL) has been

implicated as an enzyme involved in the release of sub-

strate for oxylipin production from mast cell membranes

[159]. Baseline concentration of oxylipins seems to be

modulated by dietary intake of PUFAs [160]. To this

date, the most extensively studied oxylipins have been

AA derivatives, referred to as eicosanoids, since cPLA2α

shows a preference for AA release [158] enabling down-

stream enzymes to synthesize more than 50 AA deriva-

tives [161]. However, some eicosanoids, namely

resolvins, protectins and maresins, may be also synthe-

sized from n-3 PUFAs [32]. Chemical structures of some

representative eicosanoids synthesized from AA on vari-

ous enzymatic pathways are shown in Fig. 2. Oxidation

of AA on COX-2 pathway results in generation of series

2 oxylipins: prostaglandins and thromboxanes [162].

Previous studies demonstrated that concentration of

prostaglandin PGE2 correlated positively with cancer

stem cell (CSC) markers in human colorectal tumor

samples; furthermore, PGE2 was shown to promote CSC

expansion in a murine model [163]. However, the avail-

able evidence in this matter is inconclusive, since ac-

cording to Zhang et al., serum concentration of PGE2
and its product, 20-hydroxy-PGE2 in CRC patients were

significantly lower than in healthy controls [153]. The

group of LOX-derived AA oxylipins includes hydroxyei-

cosatetraenoic acids (HETEs), also synthesized on

CYP450 pathway, and leukotrienes. 12S-HETE was
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shown to promote the invasiveness of colorectal adeno-

carcinoma cells via activation of myosin regulatory light

chain 2 (MLC2), Rho/Rho-associated coiled-coil contain-

ing protein kinase (Rho/ROCK) and Ca2+ signaling

[164]. Leukotrienes are inflammatory mediators synthe-

sized from AA and EPA on 5-LOX (5-lipooxygenase)

pathway. LTB4 (leukotriene B4) is a well-established

pro-inflammatory compound; its proinflammatory activ-

ity is inter alia associated with its ability to promote for-

mation of reactive oxygen species [165]. 12-keto-LBT4,

an inactive product of LBT4 conversion via LTB4–

12-hydroxydehydrogease/15-oxo-prostaglandin-13-re-

ductase (LTB4DH/15oPGR), was shown to be consider-

ably downregulated in CRC patients sera, and thus, has

been proposed as a potential biomarker of this malig-

nancy [153]. Moreover, 15S-HETE concentration is sig-

nificantly lower in serum of CRC patients that was not

associated with Duke’s stage, which suggests drop in its

levels early in cancer development [166]. 15S-HETE is a

metabolite of AA known for its anti-inflammatory prop-

erties. As an antagonist of cancer promoting 20-HETE,

19-HETE may prevent proliferation of cancer cells. In-

deed, one study showed that CRC patients presented

with lower serum concentrations of 19-HETE and lower

values of 19-HETE/20-HETE ratio [153]. Also, some

specialized pro-resolving mediators (SPMs) were ana-

lyzed for their association with adenoma occurrence risk.

However, blood levels of neither lipoxin A4 (a product

of AA) nor resolvin D1 (a derivative of DHA) were

accurate enough to identify patients with a past history

of adenoma [167]. According to Ritchie, an inverse cor-

relation between TNM stage and serum concentrations

of some hydroxylated, polyunsaturated ultra-long-chain

fatty acids (hPULCFAs) were found in CRC patients par-

ticipating in an untargeted biomarker discovery study

[168]. hPULCFAs resemble some derivatives of FAs,

namely lipoxins, resolvins and protectins [168], but their

exact structure and biological role are yet to be ex-

plained. Further studies demonstrated that a moiety with

molecular mass of 446 (C28H46O4), referred to as

GTA-446, may be a marker of CRC risk in healthy per-

sons [168, 169] and is more sensitive than blood gFOBT

[170]. However, other authors put into question the pre-

dictive value of GTA-446, and proposed that it could be

rather used as a diagnostic marker [171].

Polar lipids in blood and tissues of CRC patients

Polar lipids (PLs) are the most abundant lipids in cells

and inner compartment membranes. Thus, the structure

of PLs determines physical properties of membrane bi-

layer; a change in the degree of saturation of FAs that

build PLs may affect membrane fluidity and conse-

quently, also its permeability. Analysis of plasma PLs in

CRC patients revealed altered profiles of FAs, namely an

increase in total SFAs and a decrease in PUFA content

[172]. Published evidence suggests that an increase in

Fig. 2 Synthesis of eicosanoids in colorectal cancer cells. Green arrows indicate direction of change of the level of compounds in serum of CRC
patients [153]. COX: cyclooxygenase, CYP450: cytochrome P450, DiHETrE: dihydroxyeicosatrienoic acid, EpETrE: epoxyeicosatrienoic acid, HETE:
hydroxyeicosatetraenoic acid, HpETE: hydroperoxyeicosatetraenoic acid, LOX: lipoxygenase, LT: leukotriene, LX: lipoxin, PG: prostaglandin, TX: thromboxane
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SFA fraction of plasma PLs may be associated with

greater risk of CRC [84], colon cancer [87], and colon

adenoma [173]. Incorporation of SFAs contributes to ER

stress-induced apoptosis [174]. Additionally, also an in-

crease in elaidic (trans-9 18:1) PL fraction correlated

with adenoma presence [173].

Mass spectrometry-based imaging studies documented

an increase in MUFA content, positive correlation with

the levels of PC-32:1, PC-34:1 and PC-36:1 phosphatidyl-

cholines (PCs) in cancerous tissue, and a downregulation

of polyunsaturated FAs and polyunsaturated PLs, except

from a 1.49-fold increase in phosphatidic acid PA-36:2

[175]. Another signature of CRC seems to be a significant

upregulation of PC-16:0/16:1 [176], lysophosphatidylcho-

lines LPC-16:0, LPC-18:1 and PC-16:0/18:1 [177]. The au-

thors of one lipidomic study demonstrated considerable

alterations of several complex plasma lipids in CRC pa-

tients, and based on the analysis of receiver operating

characteristic (ROC) curve proposed phosphatidylglycerol

PG-18:0/16:0, sphingomyelin SM-d18:1/24:1 (42:2), cer-

amide Cer-d18:1/26:4 (elevated), LPC-18:3, LPC-18:2,

phosphorylethanolamines PE-18:2/18:1, PE-18:1/20:2 and

SM-38:8 (decreased) as biomarkers of this malignancy

[89]. The use of biomarker clusters may have greater dis-

criminative power than single molecules. In one study, pa-

tients with early CRC were identified accurately based on

their serum levels of palmitic amide, oleamide, hexadeca-

nedioic acid, 12-hydroxystearic acid, 20:3 n-3, 14:0, lyso-

phosphatidic acid LPA-16:0, LPA-18:0 and LPC-16:0, with

the area under the ROC curve equal 0.991, 0.981 sensitiv-

ity and 1.000 specificity [178]. Similar approach, with a

panel of various metabolites, among them lipids, was also

used to predict the recurrence and spread of CRC and sur-

vival in patients with this malignancy [179]. Also, the ac-

tivity of enzymes involved in PL metabolism may be

altered in cancer patients. Upregulation of choline kinase

α (CHα) results in an increase in PC content, whereas the

overexpression of lysophosphatidylcholine acyltrans-

ferases, LPCAT1 and LPCAT4, contributes to alterations

of PL profiles [175, 180]. In one study, cancer tissue con-

tained elevated levels of PA-36:2 and less PA-38:3,

PA-40:5, PE-38:4, sphingomyelins SM-22:0 and SM-22:4

[175].

Sphingolipids (SPLs) are a group of complex lipids, con-

taining a sphingoid base as a backbone, linked to fatty acid

chain. SPLs can be either synthesized de novo from

L-serine and palmitoyl-CoA in endoplasmic reticulum

yielding membrane-bound dihydroceramide, or originate

from the degradation of complex sphingolipids on the sal-

vage pathway [181, 182]. CRC patients may present with

elevated plasma levels of some glycosphingolipids contain-

ing glucose (Glu) or lactose (Lac), namely GluCer-42:3,

GluCer-42:2, GluCer-36:4, GluCer-34:1, GluCer-33:2,

LacCer-42:4, LacCer-40:1, LacCer-40:2, LacCer-40:4,

LacCer-38:1 and LacCer-35:1 [89]. CRC tissues were

shown to contain more Cer-16:0, Cer-24:0 and Cer-24:1,

and less Cer-18:0 and Cer-22:0, as well as elevated mRNA

levels for ceramidase synthases, CerS1, CerS2, CerS5 and

CerS6 [183, 184].

Hartman et al. found that Cer present in HCT-116

colon cancer cell line originated primarily from de novo

synthesis [185]. Overexpression of CerS4 leads to inhib-

ition of cell proliferation and an increase in Cer-16:0

content. In turn, upregulation of CerS6 was shown to be

associated with an increase in Cer-18:0 and Cer-20:0

levels. In CerS2-overexpressing cells, supplementation

with nervonyl- or lignoceryl-CoA resulted in upregula-

tion of very long chain-containing Cer species, Cer-24:0

and Cer-24:1, and enhanced proliferation. Further stud-

ies showed that the activity of CerS2 may partially de-

pend on ELOVL1 expression [186]. Also an important

role of a balance between long- and very long-chain

FA-containing Cer was emphasized on the basis of the

observation on diminished apoptosis in the case of

CerS4/CerS6 and CerS2 co-expression [186]. Also Shen

reported on elevated plasma levels of Cer that contained

long-chain FAs (Cer-d18:1/26:4) in CRC patients [89].

Cer are proapoptotic molecules involved in stress-in-

duced signaling pathways, among them, in JNK pathway

[187, 188]. The inhibition of SCD-1 in human adenocar-

cinoma LOVO cells was shown to be associated with a

significant decrease in proliferation rate and accumula-

tion of saturated endoceramides, Cer-16:0 to Cer-24:0.

The overproduction of Cer-18:0 to Cer-24:0 ceased upon

supplementation with 18:1 n-9. Administration of

SCD-1 inhibitor caused a delay in tumor growth in

xenograft mice, which could be reversed after blockade

of Cer biosynthesis. These findings imply that Cer may

influence the SCD-1-mediated apoptosis due to a

cross-talk between these two pathways [184].

Cer is a central molecule to sphingolipid metabolism.

Following cleavage of FAs by ceramidase, the remaining

sphingosine can be phosphorylated by sphingosine ki-

nases (SphK1 or SphK2) to form sphingosine-1-pho-

sphate (S1P) [189]. Some studies demonstrated that

tumor tissues contain significantly more SphK1 than

normal colonic mucosa [190, 191]. SphK1 expression

knockdown in colorectal adenocarcinoma cell lines was

associated with a decrease in tumor cell migration and in-

vasiveness, probably due to interference with

epithelial-mesenchymal transition (EMT) [191], a process

observed during cancer progression and spread [192].

To summarize, published evidence suggests that CRC

may be associated with alterations in PLs. Since PLs are

important structural and functional molecules involved

in cell growth and differentiation, their alterations may

also play a role in carcinogenesis [193]. The evidence

from mass spectrometry studies points to PLs as
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potential cancer biomarkers, but diagnostic and prog-

nostic value of those molecules still needs to be verified

in large clinical studies [194, 195].

Association between blood and tumor tissue

triacylglycerols and CRC

TGs are the primary depot of highly-concentrated meta-

bolic energy released from adipose tissue in form of FAs

and delivered with blood to target tissues. Dietary TGs

are hydrolyzed in the intestine, re-esterified in the enter-

ocytes, conjugated with cholesterol and proteins in form

of chylomicrons, and eventually, released into the blood.

Moreover, TGs may originate from endogenous synthesis

in the liver and be released in the form of

very-low-density-lipoproteins (VLDL). Elevated concen-

tration of TGs observed during the course of dyslipid-

emia is an established risk factor of cardiovascular

disease [196]. Published data about the link between

blood TGs and CRC risk are inconclusive. According to

some authors, elevated serum or plasma levels of total

TGs were associated with increased risk of colorectal ad-

enoma [197], colonic adenoma risk [198]; the relation-

ship seemed to be stronger for the colon than for the

rectum, and in men than in women [199, 200]. However,

other studies did not demonstrate a link between serum/

plasma TGs and CRC risk [79, 201–203]. A

meta-analysis of published studies dealing with the prob-

lem in question suffered from a considerable heterogen-

eity of source data, since the study populations differed

markedly in their CRC risk profiles, probably due to var-

iations in environmental factors [204]. Furthermore, lit-

tle is known on specific FAs forming TGs. Serum TGs

of Min mice (a mouse model of colorectal cancer)

showed greater level of hydroxyperoxidation and con-

tained elevated concentrations of TG species with 18:2

n-6 chains, especially during polyp formation [205].

Rapid evaporative ionization mass spectrometry

(REIMS) imaging demonstrated that CRC tissues con-

tained significantly less TG 54:0 than benign adenomas;

however, concentration of this TG in CRC was still sig-

nificantly higher than in normal tissues [206]. In another

study, rectal cancer patients showed a significant in-

crease in serum TG 56:6, 52:2 and 52:1, but it must be

stressed that the study group was relatively small [89].

The authors of most studies analyzing TG levels in

blood and tissues of CRC patients reported their overall

concentrations but did not provide a detailed informa-

tion about the content of specific FAs.

Specific fatty acids changes in adipose tissue of CRC

patients

Although available data on FAs esterified in TGs are

generally limited, some studies provided an insight

into this lipid group, based on the analysis of adipose

tissue. The latter is the main reservoir of TGs, cap-

able of releasing them into bloodstream, and thus, it

may influence the lipid profiles of various tissues.

Many studies documented a relationship between

obesity and colorectal cancer risk [58, 59]. Abdominal

fat deposits, which can be expressed as the

waist-to-hip ratio, seem to be a predominant “meas-

ure” of colorectal adenoma risk in men and women

[207]. Moreover, as outlined recently in the review ar-

ticles published by Himbert [208] and Masoodi [209];

also multifaceted interactions between adipose micro-

environment and tumor, especially those mediated by

proinflammatory factors, raise a growing interest of

researchers. Thus, adipose tissue is no longer consid-

ered a merely energy reservoir, but also a source of

various signaling molecules, adipokines [210], and FAs

with proinflammatory properties that can modulate

immune cells [211] or activating autophagy [212].

Furthermore, adipose tissue is no longer analyzed as a

single entity, but as two distinct compartments, vis-

ceral adipose tissue (VAT) and subcutaneous adipose

tissue (SAT). Furthermore, studies of SAT sometimes

consider additional heterogenic nature of this tissue,

with two distinct layers, deep and superficial one, that

differ in terms of various parameters, e.g. the inten-

sity of lipolysis [213–216]. Surprisingly, however, only

few previous studies analyzed a link between CRC oc-

currence or progression and the content of some spe-

cific FAs in adipose tissue, showing some significant

changes of their levels [92, 213, 217, 218].

The authors of one study published in 1988 found no

significant intergroup differences in the content of seven

major FAs determined by means of GLC-FID in SAT and

RBCs from 49 CRC patients and 49 sex- and age-matched

controls [218]. Also another case-control study conducted

by Giuliani et al. [92] showed no significant differences in

total SFAs or MUFAs content between SAT and VAT for

both controls and patient. Total SFA content in VAT and

total MUFA content in SAT turned out to be higher in

CRC patients than in the controls (p < 0.001). Among spe-

cific PUFAs, CRC patients presented with higher levels of

visceral 18:3 n-3 whereas lower 18:4 n-3 than the controls.

Furthermore, the study showed that in CRC patients, the

level of n-6 PUFA, 18:2 n-6, was significantly higher in

SAT than in VAT. Finally, the total content of n-6 PUFAs

(LA +GLA +DGLA + AA) in SAT was shown to be

higher in healthy controls than in CRC patients.

A somehow different approach was presented by Cot-

tet et al. [217], who analyzed subcutaneous adipose tis-

sue FAs based on the estimated activity of the enzymes

involved in their metabolism. Therein the putative

marker for ELVOL5 + Δ-6-desaturase activities estimated

by 20:3 n-6 to 18:2 n-6 ratio as well as ELVOL2/5 activ-

ity (ratio of 22:4 n-6 to 20:4 n-6 and 22:5 n-3 to 20:5
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Table 1 Colorectal cancer related changes of lipid species content in various biological samples

Research material Lipid species Lipid fraction Direction of change Reference

Cancer tissue 14:0 total lipids ↓ Mika et al. (2017) [22]

total lipids ↑ Qiu et al. (2014) [179]

16:0 total lipids ↓ Mika et al. (2017) [22]

↓ Li et al. (2013) [178]

ceramides ↑ Chen et al. (2015) [183]

↑ Chen et al. (2016) [184]

lysophosphatidylcholines ↑ Mirnezami et al. (2014) [177]

↑ Li et al. (2013) [178]

lysophosphatidic acid ↑ Li et al. (2013) [178]

18:0 total lipids ↑ Mika et al. (2017) [22]

↑ Zhang et al. (2013) [86]

free fatty acids ↑ Chen et al. (2015) [183]

total lipids ↓ Li et al. (2013) [178]

ceramides ↓ Chen et al. (2015) [183]

↓ Chen et al. (2016) [184]

lysophosphatidylcholines ↑ Li et al. (2013) [178]

lysophosphatidic acid ↑ Li et al. (2013) [178]

20:0 total lipids ↑ Mika et al. (2017) [22]

ceramides ↓ Chen et al. (2015) [183]

↓ Chen et al. (2016) [184]

22:0 total lipids ↑ Mika et al. (2017) [22]

sphingomyelin ↓ Guo et al. (2014) [175]

24:0 total lipids ↑ Mika et al. (2017) [22]

free fatty acids ↑ Chen et al. (2015) [183]

ceramides ↑ Chen et al. (2015) [183]

↑ Chen et al. (2016) [184]

26:0 total lipids ↑ Mika et al. (2017) [22]

14:1 total lipids ↓ Mika et al. (2017) [22]

free fatty acids ↑ Chen et al. (2015) [183]

16:1 n-7 total lipids ↓ Mika et al. (2017) [22]

↓ Zhang et al. (2013) [86]

total lipids ↑ Qiu et al. (2014) [179]

16:1 n-7 free fatty acids ↑ Chen et al. (2015) [183]

↑ Guo et al. (2014) [175]

18:1 n-9 total lipids ↓ Mika et al. (2017) [22]

↓ Zhang et al. (2013) [86]

18:1 n-9 free fatty acids ↑ Guo et al. (2014) [175]

↑ Chen et al. (2015) [183]

18:1 n-9 lysophosphatidylcholines ↑ Mirnezami et al. (2014) [177]

↑ Li et al. (2013) [178]

20:1 free fatty acids ↑ Guo et al. (2014) [175]

↑ Chen et al. (2015) [183]

22:1 total lipids ↑ Mika et al. (2017) [22]

22:1 free fatty acids ↑ Chen et al. (2015) [183]
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Table 1 Colorectal cancer related changes of lipid species content in various biological samples (Continued)

Research material Lipid species Lipid fraction Direction of change Reference

24:1 total lipids ↑ Mika et al. (2017) [22]

24:1 free fatty acids ↑ Chen et al. (2015) [183]

24:1 ceramides ↑ Chen et al. (2015) [183]

↑ Chen et al. (2016) [184]

24:1 sphingomyelin ↓ Guo et al. (2014) [175]

26:1 total lipids ↑ Mika et al. (2017) [22]

18:2 n-6 total lipids ↑ Zhang et al. (2013) [86]

18:2 n-6 total lipids ↓ Yang et al. (2015) [130]

20:2 n-6 total lipids ↑ Zhang et al. (2013) [86]

20:2 n-6 free fatty acids ↑ Chen et al. (2015) [183]

20:4 n-6 total lipids ↑ Mika et al. (2017) [22]

↑ Zhang et al. (2013) [86]

20:4 n-6 free fatty acids ↓ Guo et al. (2014) [175]

20:4 n-6 lysophosphatidylcholines ↓ Li et al. (2013) [178]

20:3 n-6 total lipids ↑ Zhang et al. (2013) [86]

↑ Yang et al. (2015) [130]

22:4 n-6 free fatty acids ↓ Guo et al. (2014) [175]

22:4 n-6 free fatty acids ↑ Chen et al. (2015) [183]

20:5 n-3 total lipids ↑ Mika et al. (2017) [22]

↑ Yang et al. (2015) [130]

20:5 n-3 free fatty acids ↑ Chen et al. (2015) [183]

20:5 n-3 total lipids ↓ Zhang et al. (2013) [86]

20:5 n-3 free fatty acids ↓ Guo et al. (2014) [175]

22:6 n-3 total lipids ↑ Mika et al. (2017) [22]

↑ Yang et al. (2015) [130]

22:6 n-3 free fatty acids ↑ Chen et al. (2015) [183]

22:6 n-3 total lipids ↓ Zhang et al. (2013) [86]

22:6 n-3 lysophosphatidylcholines ↓ Li et al. (2013) [178]

malondialdehyde ↑ Skrzydlewska et al. (2005) [154]

4-hydroxynonenal ↑ Skrzydlewska et al. (2005) [154]

1,2-DG-36:3 ↓ Alexander et al. (2017) [206]

Cer-d18:0/H24:0 ↑ Alexander et al. (2017) [206]

Cer-t18:0/24:0(2OH) ↑ Alexander et al. (2017) [206]

GlcCer-30:1 ↑ Alexander et al. (2017) [206]

PA-31:0 ↑ Alexander et al. (2017) [206]

PA-34:0 ↑ Alexander et al. (2017) [206]

PA-36:2 ↑ Guo et al. (2014) [175]

PA-38:3 ↓ Guo et al. (2014) [175]

PA-40:5 ↓ Guo et al. (2014) [175]

PC-16:0/16:1 ↑ Kurabe et al. (2013) [176]

PC-16:0/18:1 ↑ Mirnezami et al. (2014) [177]

PC-32:1 ↑ Shen et al. (2017) [89]

PC-34:1 ↑ Guo et al. (2014) [175]

↑ Li et al. (2013) [178]
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Table 1 Colorectal cancer related changes of lipid species content in various biological samples (Continued)

Research material Lipid species Lipid fraction Direction of change Reference

PC-36:1 ↑ Guo et al. (2014) [175]

PC-38:4 ↓ Guo et al. (2014) [175]

PC-38:6 ↓ Guo et al. (2014) [175]

PE-34:4 ↑ Alexander et al. (2017) [206]

PE-38:4 ↓ Guo et al. (2014) [175]

PG 38:4 ↓ Alexander et al. (2017) [206]

PG-36:1 ↑ Alexander et al. (2017) [206]

PI-38:4 ↓ Guo et al. (2014) [175]

PS-41:0 ↑ Alexander et al. (2017) [206]

PS-43:4 ↓ Alexander et al. (2017) [206]

PS-44:6 ↑ Alexander et al. (2017) [206]

PS-44:8 ↑ Alexander et al. (2017) [206]

SM-22:0 ↓ Guo et al. (2014) [175]

SM-24:1 ↓ Guo et al. (2014) [175]

TG-54:0 ↓ Alexander et al. (2017) [206]

serum 14:0 total lipids ↓ Kondo et al.. (2011) [85]

total lipids ↑ Mika et al.. (2017) [22]

15:0 total lipids ↓ Kondo et al.. (2011) [85]

18:0 total lipids ↓ Mika et al. (2017) [22]

↓ Kondo et al. (2011) [85]

22:0 total lipids ↑ Mika et al. (2017) [22]

24:0 total lipids ↑ Kondo et al. (2011) [85]

26:0 total lipids ↑ Mika et al. (2017) [22]

↑ Kondo et al. (2011) [85]

28:0 total lipids ↑ Kondo et al. (2011) [85]

30:0 total lipids ↑ Kondo et al. (2011) [85]

18:1 n-9 total lipids ↑ Mika et al. (2017) [22]

26:1 total lipids ↑ Mika et al. (2017) [22]

18:2 n-6 total lipids ↓ Zhu et al. (2014) [134]

18:3 n-6 total lipids ↓ Kondo et al. (2011) [85]

18:3 n-3 total lipids ↓ Mika et al. (2017) [22]

↓ Zhu et al. (2014) [134]

20:5 n-3 total lipids ↓ Mika et al. (2017) [22]

9,10-DiHOME ↓ Zhang et al. (2017) [153]

12,13-DiHOME ↓ Zhang et al. (2017) [153]

9-HpODE ↓ Zhang et al. (2017) [153]

9-HODE ↓ Zhang et al. (2017) [153]

9-KODE ↓ Zhang et al. (2017) [153]

13-HpODE ↓ Zhang et al. (2017) [153]

13-HODE ↓ Zhang et al. (2017) [153]

13-KODE ↓ Zhang et al. (2017) [153]

19-HETE ↓ Zhang et al. (2017) [153]

20-HETE ↓ Zhang et al. (2017) [153]

12-keto-LTB4 ↓ Zhang et al. (2017) [153]
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Table 1 Colorectal cancer related changes of lipid species content in various biological samples (Continued)

Research material Lipid species Lipid fraction Direction of change Reference

PGE2 ↓ Zhang et al. (2017) [153]

2-hydroxy-PGE2 ↓ Zhang et al. (2017) [153]

5-HpETE ↓ Zhang et al. (2017) [153]

5-HETE ↓ Zhang et al. (2017) [153]

LTD4 ↑ Zhang et al. (2017) [153]

LTE4 ↑ Zhang et al. (2017) [153]

14,15-LTE4 ↑ Zhang et al. (2017) [153]

12-keto-LTB4 ↓ Zhang et al. (2017) [153]

5S,6R-LXA4 ↓ Zhang et al. (2017) [153]

12-HETE ↓ Zhang et al. (2017) [153]

15-HETE ↓ Zhang et al. (2017) [153]

↓ Chen et al. (2003) [166]

8-HETE ↓ Zhang et al. (2017) [153]

14,15-DHET ↓ Zhang et al. (2017) [153]

8,9-DHET ↓ Zhang et al. (2017) [153]

5,6-DHET ↓ Zhang et al. (2017) [153]

14,15-EET ↓ Zhang et al. (2017) [153]

8-iso-PGF2α ↓ Zhang et al. (2017) [153]

8-iso-PGE2 ↓ Zhang et al. (2017) [153]

2,3-dinor-8-iso-PGF2α ↑ Zhang et al. (2017) [153]

GTA-446 ↓ Ritchie et al. (2010) [168]

↓ Hata et al. (2017) [170]

plasma 16:0 total lipids ↑ Okuno et al. (2013) [172]

total lipids ↓ Butler et al. (2017) [87]

18:0 total lipids ↓ Butler et al. (2017) [87]

24:0 total lipids ↓ Okuno et al. (2013) [172]

16:1 n-7 total lipids ↓ Butler et al. (2017) [87]

18:1 n-9 total lipids ↓ Butler et al. (2017) [87]

20:1 total lipids ↓ Okuno et al. (2013) [172]

20:1 free fatty acids ↑ Shen et al. (2017) [89]

18:2 n-6 total lipids ↓ Butler et al. (2017) [87]

18:3 n-6 total lipids ↓ Butler et al. (2017) [87]

20:2 n-6 free fatty acids ↑ Shen et al. (2017) [89]

20:3 n-6 total lipids ↓ Butler et al. (2017) [87]

20:5 n-3 total lipids ↓ Okuno et al. (2013) [172]

22:4 n-6 free fatty acids ↑ Shen et al. (2017) [89]

18:3 n-3 total lipids ↓ Butler et al. (2017) [87]

Cer-d18:1/26:4 ↑ Shen et al. (2017) [89]

LPC-18:2 ↓ Shen et al. (2017) [89]

LPC-18:3 ↓ Shen et al. (2017) [89]

↓ Li et al. (2013) [178]

PE-18:1/20:2 ↓ Shen et al. (2017) [89]

PE-18:2/18:1 ↓ Shen et al. (2017) [89]

PG-18:0/16:0 ↑ Shen et al. (2017) [89]
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n-3) were positively associated with CRC risk. No such

association with CRC risk was observed on the basis of

18:1 n-9 to 16:1 n-9 ratio.

One limitation of adipose tissue studies is the method

of sample preparation, which has already been shown to

influence FA concentration [219]. Furthermore, adipose

tissue collection is an invasive procedure, and hence, is

unlikely to be applicable to large-scale studies.

Conclusions

Despite a decrease in mortality, CRC still remains a ser-

ious public health burden [26]. A growing number of

CRCs are diagnosed in patients younger than 50 years

[220, 221]. The reason for this alarming tendency is yet

to be elucidated, but it may be a consequence of greater

exposure to environmental factors, lesser physical activ-

ity and unfavorable dietary changes. Analysis of lipid

metabolism in cancer patients may provide a better

insight into metabolic disturbances that contribute to

carcinogenesis. The fact that cancer cells require lipids

to proliferate [20], may open new therapeutic perspec-

tives: perhaps some specific pathways involved in the

synthesis and storage of fatty acids might be targeted to

prevent cancer development [24]. Furthermore, some

metabolites of fatty acids are important signaling mole-

cules involved in the maintenance of proinflammatory

and anti-inflammatory equilibrium. Probably these are

proinflammatory factors which constitute a link be-

tween obesity and CRC [208]. Moreover, obesity is as-

sociated with lipidome changes [32] that may

predispose to the development of some related condi-

tions, among them cancer. Alterations of FAs, their me-

tabolites and lipid species containing FA chains can be

observed in tumor microenvironment as well (Table 1).

Some of those alterations, such as accumulation of

PC-16:0/16:1, may be considered as cancer biomarkers

[176]. Lipid profile alterations, e.g. presence of cerotic

acid [22] or a decrease in the concentration of hydrox-

ylated, polyunsaturated ultra-long-chain fatty acids

[169], can be also found in the sera of CRC patients,

differentiating between early and advanced stages of

this malignancy [178], or serving as a predictor of sur-

vival [179]. However, the development of clinically use-

ful lipid biomarkers requires consistent research

methodology, and previous studies were quite

heterogenous in this matter. Another drawback of pre-

vious studies is limited sample size which may hinder

generalization of their results onto the whole popula-

tion of CRC patients. Nevertheless, understanding of

lipid alterations associated with CRC may define new

directions in the diagnosis and treatment of this

malignancy.

Table 1 Colorectal cancer related changes of lipid species content in various biological samples (Continued)

Research material Lipid species Lipid fraction Direction of change Reference

SM-38:8 ↓ Shen et al. (2017) [89]

SM-d18:1/24:1 ↑ Shen et al. (2017) [89]

erythrocyte 18:0 total lipids ↑ Neoptolemos et al. (1988) [218]

20:0 total lipids ↓ Okuno et al. (2013) [172]

18:1 n-9 total lipids ↑ Neoptolemos et al. (1988) [218]

24:1 total lipids ↑ Okuno et al. (2013) [172]

20:4 n-6 total lipids ↓ Neoptolemos et al. (1988) [218]

20:5 n-3 total lipids ↓ Okuno et al. (2013) [172]

adipose tissue 16:1 n-9 total lipids ↑ Cottet et al. (2015) [217]

20:1 total lipids ↑ Neoptolemos et al. (1988) [218]

18:3 n-6 total lipids ↑ Giuliani et al. (2014) [92]

20:3 n-6 total lipids ↑ Giuliani et al. (2014) [92]

↑ Cottet et al. (2015) [217]

22:4 n-6 total lipids ↑ Giuliani et al. (2014) [92]

↑ Okuno et al. (2013) [172]

18:3 n-3 total lipids ↓ Giuliani et al. (2014) [92]

↓ Cottet et al. (2015) [217]

18:4 n-3 total lipids ↓ Giuliani et al. (2014) [92]

22:5 n-3 total lipids ↑ Cottet et al. (2015) [217]

Cer ceramide, DG diacylglycerol, DHET dihydroxyeicosatrienoic acid, DiHOME dihydroxyoctadecenoic acid, EET epoxyeicosatrienoic acid, GlcCer glucosylceramide,

HETE hydroxyeicosatetraenoic acid, HODE hydroxyoctadecadienoic acid, HpETE hydroperoxyeicosatetraenoic acid, HpODE hydroperoxyoctadecadienoic acid, KODE

ketooctadecadienoic acid, LPC lysophosphatidylcholine, LT leukotriene, LX lipoxin, PA phosphatidic acid, PC phosphatidylcholine, PE phosphorylethanolamine, PG

phosphatidylglycerol, PGE/F prostaglandin E/F, PI phosphatidylinositol, PS phosphatidylserine, SM sphingomyelin, TG triacylglycerol
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