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1. INTRODUCTION: WHY EXTREMES ARE 

IMPORTANT 
 
 Most societal infrastructures, as well natural and 
agricultural plant and animal communities, have little 
difficulty accommodating moderate changes in typical 
weather. But changes in the tails of the distribution may 
not be so easily accommodated because weather 
extremes often have very direct impacts. For example, 
extremely hot weather can cause railroad tracks to 
buckle (Peterson et al., 2006) and adverse human 
health effects which can involve thousands of fatalities 
even in developed countries (Karl and Knight, 1997; 
Schär and Jendritzky, 2004; Milligan, 2005). Cold 
outbreaks after the start of the growing season have 
been documented to cause the extinction of local 
populations of Edith’s Checkerspot butterfly (Easterling 
et al., 2000) as well negatively impacting agricultural 
production. Weather extremes causing high egg 
temperatures during the pre-incubation period limit the 
southern range of the pheasant (Schulte and Porter, 
1974). Overwintering insects must avoid injury and 
death from the freezing of tissues and from metabolic 
disruptions associated with exposure to low, non-
freezing temperatures (Turnock and Fields, 2005). 
Metabolic disruptions may be due to long periods of 
moderate cold but the freezing of tissue, which occurs at 
the supercooling point, is directly related to cold 
extremes (the supercooling point varies with insect 
species and is, for example, -15.4°C for Japanese pine 
sawyer larvae in winter; Ma et al., 2006). 
 Light snow conditions can slow transportation but 
blizzards bring air and highway travel to a standstill. 
Highway underpasses can safely accommodate 
moderate precipitation, but heavy precipitation may 
cause flooding. Heavy rain also causes much more 
severe erosion than moderate rainfall and can lead to 
increased cases of diarrhea or even outbreaks of 
cholera  in  poor  countries  (Cazelles  and Hales, 2006). 
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According to INFEST (1998), spruce bark beetle 
outbreaks in Alaska are controlled by a combination of 
predation (woodpeckers), climate (wet, cool springs; 
extremely cold, snowless winters), and food supply 
(they "run-out" of large diameter trees; beetle brood 
production is poor in small diameter trees). When beetle 
outbreaks spreads, large swaths of forest can die. The 
standing dead timber, in turn, is a wildfire risk. 
Therefore, in certain situations, a decrease in winter 
cold extremes can lead to a serious increase in summer 
forest fires. In sum, as these examples indicate, 
extreme weather has profound effects on human and 
natural systems. Therefore, it is important to understand 
how extremes are changing within a region such as 
North America. 
 
2. HISTORICAL DAILY DATA 
 
 Daily maximum temperature (Tmax), minimum 
temperature (Tmin) and precipitation were analyzed for 
the stations in Figure 1. Figure 2 shows how the number 
of stations with data complete enough to calculate 
indices changed over the analysis period. These daily 
data are being made available through the North 
American Extremes Monitoring web page at NOAA’s 
National Climatic Data Center 
(http://www.ncdc.noaa.gov/nacem/nacem.html). 
 

 
Figure 1. Locations of meteorological stations whose 
observations were used in the analyses. 
 



  

 
Figure 2. Number of stations with data complete 
enough to produce indices through time. 
 
2.1 Canadian data 
 
 Canadian temperature data consist of homogeneity 
adjusted daily minimum and maximum values for 210 
high quality (i.e., few missing values, minimal urban 
effects), relatively evenly distributed stations across the 
country. For these data, homogeneity problems caused 
by station relocation and changes to instrumentation 
and observing practices have been addressed using a 
regression technique and surrounding stations (Vincent 
1998). Adjustment factors for monthly mean 
temperatures were computed for identified 
inhomogeneities. They were further interpolated into 
daily adjustment factors that were used to obtain the 
adjusted daily temperatures (Vincent et al. 2002). This 
dataset has been used in previous studies on changes 
in Canadian temperature extremes (Bonsal et al., 2001; 
Vincent and Mekis, 2006). 
 Canadian precipitation data include adjusted daily 
rainfall and snowfall amounts observed at 495 stations 
across the country (Mekis and Hogg, 1999; updated). All 
known inhomogeneities in the station data caused by 
changes in the measurement programs were carefully 
minimized. Wind undercatch, wetting loss, evaporation, 
trace events, and varying snow densities were also 
considered in the adjustment procedure. Inhomogeneity 
due to station relocation was not addressed. A subset of 
this dataset was used to investigate changes in heavy 
precipitation events in Canada (Zhang et al., 2001) and 
trends in precipitation intensity in Canada (Stone et al., 
2000). 
 
2.2 U.S. data 
 
 For the U.S. and Mexico, homogeneity adjusted 
daily datasets are not yet available. Instead great care 
was taken to identify any station time series with 
discontinuities and remove them from the analysis. The 
U.S. daily data were extracted from the Global Historical 
Climatology Network (GHCN) Daily dataset 
(http://www1.ncdc.noaa.gov/pub/data/ghcn/daily/). The 
U.S. subset of GHCN-Daily is from the National 
Weather Service Cooperative and First Order weather 

observing station observations which have undergone 
quality control at the NOAA’s National Climatic Data 
Center. GHCN-Daily provides a few additional quality 
control checks. Unfortunately, data from many of these 
stations are inhomogeneous due to changes in 
observing location, time of day the observations were 
made, etc. 
 To limit the impact of inhomogeneities on the 
analyses several steps were taken. First, no data prior 
to 1950 were used as longer time series have greater 
chance of containing artificial discontinuities and 
stations with short time series were removed from the 
analysis as well. Then the data for the contiguous 
United States (CONUS) were subjected to statistical 
tests by Menne and Williams (2005) that compared 
station temperature time series with those of 
neighboring stations. Stations with statistically 
significant change points in their temperature time 
series were removed from the analysis. This cut the 
12,581 possible CONUS stations in GHCN-Daily down 
to 2606. 
 Unfortunately, stations in Alaska, Hawaii, Puerto 
Rico and the U.S. Virgin Islands are often too far apart 
for the neighboring stations statistical analysis of Menne 
and Williams (2005) to work reliably. Each station time 
series from these regions were individually evaluated. 
After first removing stations with short time series, plots 
of each time series were evaluated and stations that 
had detectable problems were removed. Then each 
station was subjected to a homogeneity test 
(specifically, the RHTest which is a homogeneity test 
written in the statistical language “R” for use at regional 
climate change workshops; Wang and Feng, 2004; 
Wang, 2003) which evaluated changes in station time 
series. While this test is good at determining changes in 
the characteristics of a time series and providing 
statistical significance to different detected changes, 
because the test had no comparison to neighboring 
stations, some of the detected changes were real 
changes in climate. The results of the RHTest were 
used as guide to additional evaluation of time series 
using graphs and assessment of station history 
information. Stations deemed inhomogeneous were 
removed from the analysis. The final step for Hawaii, 
Puerto Rico and the U.S. Virgin Islands data was to 
consult with the State Climatologists for those areas. 
Based on their advice, a few additional stations were 
removed from the analysis. This process of removing 
the most inhomogeneous stations from the analysis 
brought the total Alaska, Hawaii, Puerto Rico and the 
U.S. Virgin Islands station count down from 745 to 55.  
 
2.3 Mexican data 
 
 A subset of the longest and most continuously 
operating 163 temperature and precipitation stations 
were selected from data from the Servicio 
Meteorológico Nacional (SMN) of Comisión Nacional del 
Agua (CNA). These stations cover Mexico north of 20º 
N and their data mainly extend over the second half of 
20th century. Additional quality control and homogeneity 
assessments of the daily data were undertaken using 



  

the regional climate change workshop software RHTest 
and RClimDex (Zhang and Yang, 2004). The QC 
consisted of preliminary checks for identifying logical 
errors (e.g., Tmax < Tmin, precipitation < 0), potential 
wrong data defined as values exceeding a certain 
threshold were flagged and visual inspection of the 
plotted Tmax, Tmin and precipitation time series was 
carried out. The thresholds for defining an outlier were 
set to be four times the standard deviation (σ) of daily 
Tmax and Tmin records and six σ for daily precipitation 
data. 
 Potential errors were then validated or rejected (i.e., 
set to missing) by consulting (a) the original records, (b) 
independent sources, such as the Mexican Cold Front 
Index (Magaña and Vazquez, 2000) for temperature and 
precipitation records or the hurricane-tracks record 
available at National Hurricane Center for heavy 
precipitation events, (c) the values of adjacent days at 
the same station (d) data from the same date at nearby 
stations and (e) OLR anomalies and synoptic patterns 
based on Reanalysis NCEP/NCAR (Kalnay et al 1996) 
as well as known impacts of ENSO in precipitation 
(Magaña et al, 2003). Only those values that were 
positively found to be erroneous data were set to 
missing and deleted from further analysis.  From the 
163 temperature and precipitation records, the highest 
quality and most homogeneous 31 daily maximum and 
minimum temperature time series and 56 daily 
precipitation time series were selected. 
 
3. INDICES AND ANALYSIS TECHNIQUES 
 
 The start of the set of indices used in this analysis 
are the 27 indices from daily data formulated and 
internationally coordinated by the joint World 
Meteorological Organization (WMO) Commission for 
Climatology (CCl) / World Climate Research 
Programme (WCRP) project on Climate Variability and 
Predictability (CLIVAR) / Joint WMO-Intergovernmental 
Oceanographic Commission of the United National 
Educational, Scientific and Cultural Organization 
(UNESCO) Technical Commission for Oceanography 
and Marine Meteorology (JCOMM) Expert Team on 
Climate Change Detection and Indices (ETCCDI). This 
suite of indices, available from 
http://cccma.seos.uvic.ca/ETCCDMI/, has changed 
since it was first used in Frich et al. (2002) and Peterson 
et al. (2002). Some indices have been added but more 
importantly the approach used to determine station level 
thresholds for percentile indices was improved. 
 The original approach calculated, for example, the 
10th percentile of daily Tmax by determining the value of 
the 10th percentile of the data from a 5 day window 
centered on each calendar day during a base period, 
typically 1961-1990. This calendar day-specific value 
was used for that calendar day throughout the entire 
time series. However, it was later determined that this 
approach caused a slight discontinuity in the indices at 
the beginning and end of the base period. The solution 
was a bootstrap procedure described in Zhang et al. 
(2005a) that used that same technique for determining 
the appropriate threshold value for years outside the 

base period but for years inside the base period only 
used the other 29 years to calculate the appropriate 
threshold. This changes the threshold slightly from year 
to year but avoids the data for any year contributing to 
the calculation of the appropriate percentile threshold 
applied to that year’s data. 
 Over the last several years, this suite of indices was 
used to examine changes in extremes in five specific 
areas where regional climate change workshops were 
held (Aguilar et al., 2005; Haylock et al., 2006; Klein 
Tank et al.; 2006; New et al., 2006; Vincent et al., 2005; 
and Zhang et al., 2005b) and one global analysis which 
incorporated the indices calculated at the regional 
workshops (Alexander et al., 2006). For this North 
American extremes analysis, a few additional indices 
were calculated in a manner consistent with 
formulations used by the ETCCDI and in the papers just 
cited. 
 Indices of relevant parameters were created on a 
station basis and then averaged together. For North 
American time series, anomalies of station level indices 
were first averaged into 2.5° latitude by 2.5° longitude 
grid boxes. Where a grid box didn’t have any stations, 
the values of the indices from neighboring grid boxes 
were interpolated into that grid box in order to make the 
averaging area more spatially representative. This 
primarily occurred in northern areas. The grid box 
values were then averaged on an area-weighted basis 
to create North American time series. The time series 
figures show the annual values and a smoothed line 
derived from a locally weighted regression (lowess filter; 
Cleveland et al., 1988). An advantage of a lowess filter 
is that it is robust to one extreme annual value that 
might occur in an El Niño year, and therefore depicts the 
underlying long-term changes quite well. 
 Maps of the indices show grid box level linear 
trends computed using a Kendall’s tau based slope 
estimator (Sen, 1968). This estimator is robust to the 
effect of outliers in the series. It has been widely used to 
compute trends in hydrometeorological series (e.g., 
Wang and Swail, 2001; Zhang et al., 2000). The 
significance of the trend is determined using Kendall’s 
test because this test does not assume an underlying 
probability distribution of the data series. There is, 
however, a problem associated with the Kendall test in 
that the result is affected by serial correlation of the 
series. Specifically, a positive autocorrelation, that is 
likely the case for most climatological data, in the 
residual time series will result in more false detection of 
a significant trend than specified by the significance 
level (e.g., von Storch, 1995; Zhang and Zwiers, 2004). 
This would make the trends detection unreliable. 
Because of this, we use an iterative procedure, 
originally proposed by Zhang et al. (2000) and later 
refined by Wang and Swail (2001), to compute the trend 
and to test the trend significance taking account of a 
lag-1 autocorrelation effect. Details of the trend 
estimation and significance testing are explained in the 
work of Wang and Swail (2001, Appendix A). 
Throughout our paper, a trend is considered significant 
if it is statistically significant at the 5% level. Grid boxes 
where the trend is significant are highlighted. 



  

 While the analysis used data from 1950 through 
2004, not all grid boxes had the same period of record. 
A trend for a grid box was plotted in the figures if the 
grid box average time series was at least 25 years long. 
This low threshold allows the maps to be fairly complete 
and show the local trends in the indices where data are 
available. But it also means that some grid boxes are 
providing trends from different periods of records and 
thereby enhances the appearance of spatial variability. 
Also, should a grid box have the same multi-decadal 
variability and change indicated in the North American 
time series, linear trends starting in 1950 may not 
represent the climate change over the last three 
decades very well. 
 
4. RESULTS 
 
4.1 Different Measures of Temperature Extremes 

Show Similar Results 
 
 The ETCCDI percentile indices examined changes 
in the 10th and 90th percentile of Tmax and Tmin. As 
each calendar day’s threshold was determined 
separately, the probability of exceeding the 90th 
percentile is just as likely in winter as it is in summer. 
The detection probability of trends depends on the 
return period of the event and the length of the 
observational series. For time series with a typical 
length of ~50 years, the optimal return period for 
detection is 10-30 days (Frei and Schär, 2001; Klein 
Tank and Können, 2003). Conversely, detection of a 
trend would be exceedingly difficult with a measure of 
extremes that would only occur a few times in the 
course of 50 years. Therefore, the prime value of using 
a threshold of extremes that on average is exceeded 
every 10 days is in detection of trends. But the 
downside is that such values are not the extremes that 
have the most significant impact. 
 It was recommended at the July 2005 meeting on 
North American Weather and Climate Extremes: 
Progress in Monitoring and Research in Aspen that 
extremes farther out on the tail be analyzed as well. 
Therefore, analysis was done on the 10th, 5th and 2.5th 
percentiles, not only to provide insights into changes of 
rarer events (e.g., the 97.5th percentile would be 
exceeded on average only nine times a year), but to see 
how changes in the data points farther out on the tails of 
the distribution compare to changes in the 10th 
percentile. 
 Time series of North American area-averaged 
changes in maximum and minimum temperature 
extremes are shown in Figures 3-6. The figures show 
not only that cold extremes are decreasing and warm 
extremes are increasing, but also that very similar 
changes are indicated by 10th or 90th percentile and 
measures farther out on the tails of the distribution. 
Figure 7 shows the spatial distribution of trends in one 
of these measures of extremes, the days exceeding the 
90th percentile in minimum temperature. Positive trends, 
and statistically significant positive trends, are widely 
distributed. However, there are some areas with 
negative trends, particularly northeastern Canada and 

western central Mexico, and a large area in the 
southeastern U.S. does not show a positive trend. This 
general pattern is fairly similar for the other extremes 
shown in Figures 3-6. 
 

 
Figure 3. North American area-averaged percent of 
days with maximum temperature below the 10th, 5th and 
2.5th percentiles. Note that all three time series have 
similar behavior. 

 
Figure 4. Same as Figure 3 except for minimum 
temperature. 

 
Figure 5. North American area-averaged percent of 
days with maximum temperature above the 90th, 95th 
and 97.5th percentiles. 



  

 
Figure 6. Same as Figure 5 but for minimum 
temperature. 
 

 
Figure 7. Grid box (2.5° latitude by 2.5° longitude) level 
trends of days above the 90th percentile of minimum 
temperature. Grid boxes with trends that are statistically 
significant at 5% are outlined in green and have a green 
circle in their centers. 
 
 Figures 3-7 reflects changes in individual days. 
Often several days in a row of warm or cold 
temperatures can cause impacts that individual extreme 
days can not. Therefore, the ETCCDI defined a Warm 
(Cold) Spell Duration Index as the annual count of days 
with at least 6 consecutive days when maximum 
(minimum) temperature is above (below) the 90th (10th) 
percentile. These can occur any time during the year. 
Examination of Figure 8 indicates that cold spells have 
decreased since 1950 while warm spells decreased until 
~1970 and then increased. The change in these indices 
indicates that the observed changes in extremes are not 
limited to isolated days. 
 

 
Figure 8. Warm and Cold Spell Duration indices. 
 
4.2 The Warmest and Coldest Extremes are 

Changing Differently 
 
 The percentile indices presented in the previous 
section were determined throughout the calendar year. 
Two approaches are used to examine how the warmest 
and coldest days of the year are changing. The first 
examines the number of days exceeding the 90th 
percentile of maximum and minimum temperature for 
the hottest month of the year, July, and the number of 
days below the 10th percentile of maximum and 
minimum temperature for the coldest month of the year, 
January. On average during the base period, these 
thresholds represent the three hottest temperature 
readings of the hottest month of the year and the three 
days with the coldest temperatures of the coldest month 
of the year. Examination of Figure 9 indicates that, on a 
North American area-averaged basis, the number of 
cold days is decreasing with maximum and minimum 
temperature decreasing at about the same rate. The 
number of warm days is increasing, as shown in Figure 
10, but minimum temperature has a greater increase 
than maximum temperature. 
 

 
Figure 9. The percent of January days below the 10th 
percentile has been decreasing, with both maximum 
and minimum temperature showing similar changes. 



  

 
Figure 10. The number of July days above the 90th 
percentile has been increasing, with minimum 
temperature showing a greater increase than maximum 
temperature. 
 
 The second approach looks at the annual 
temperature extremes. Rather than a count of the 
number of days exceeding a threshold, this is a 
measure of the actual warmest and coldest maximum 
and minimum temperature observed in a year. Figure 11 
shows that the highest annual maximum and minimum 
temperature have increased ~1°C since the mid-1960s. 
The coldest temperatures of the year have much more 
variability than the hottest temperatures, as shown in 
Figure 12. Unlike the trends in the number of July days 
exceeding the 90th percentile, this measure of extremes 
indicates that maximum and minimum temperatures are 
increasing at about the same rate, ~3.5°C since the late 
1960s. 
 

 
Figure 11. The highest maximum and minimum 
temperature observed in a year have increased ~1°C 
since the mid-1960s. 
 
 

 
Figure 12. The coldest maximum and minimum 
temperature observed in a year have increased ~3.5°C 
since the late-1960s. As comparison with Figure 11 
indicates, while this increase is larger than that 
experienced by the warmest temperature of the year, 
the variability of the coldest temperature is also larger. 
 
4.3 Heavy Precipitation is Increasing 
 
 Several indices have been developed to track 
changes in precipitation intensity. Figure 13 shows the 
Simple Daily Intensity Index, which is simply the total 
annual precipitation divided by the number of days with 
precipitation equal to or greater than 1 mm. This 
threshold is designed to insure that changes in how an 
observing network treats trace precipitation does not 
impact the index. The increases in the Simple Daily 
Intensity Index revealed in Figure 13 indicate that on 
days when precipitation does occur, it tends to be 
heavier. The spatial distribution of trends in this index, 
shown in Figure 14, reveals that the change in intensity 
of precipitation is not as uniform as the changes in 
temperature shown earlier. 
 

 
Figure 13. The Simple Daily Intensity Index has been 
increasing. This index is simply the total annual 
precipitation divided by the number of days with 
precipitation. So increases in this index indicate that on 
days when precipitation does occur, it tends to be 
heavier. 



  

 
Figure 14. Grid box level trends in the Simple Daily 
Intensity Index. Grid boxes with trends significant at the 
5% level are outlined in magenta and have a magenta 
circle in their centers. Grid boxes in gray have a trend of 
0.00. 
 
 The annual precipitation from days exceeding the 
95th and 99th percentile of daily precipitation has been 
increasing on a North American area-averaged basis, 
as shown in Figure 15. The highest one day and five 
day precipitation events are also increasing (see Figure 
16). Grid box level trends in the maximum one day 
precipitation in Figure 17 show that many regions have 
negative trends in this index but all the statistically 
significant trends are positive. 
 
 

 
Figure 15. Annual precipitation from days with 
precipitation greater than the 95th and 99th percentiles of 
daily precipitation has been increasing. 
 
 

 
Figure 16. Maximum one day and five day precipitation 
has been increasing. 
 

 
Figure 17. Grid box trends in maximum one day 
precipitation. Grid boxes with statistically significant 
trends are highlighted. 
 
4.4 Biologically Sensitive Indices 
 
 Growing Season Length 
 
 The Growing Season can be defined in many 
different ways. Jones and Briffa (1995) calculated the 
start of the Growing Season for the former Soviet Union 
as the last day of the first five-day spell for which each 
daily mean temperature remained above 5°C and the 
end was defined as the last day of the last such spell of 
the year. Jones et al. (2002) modified that definition to 
include as the first/last five-day period had to occur 
after/before the last/first frost of the winter season. We 
are using the Growing Season definition used by the 
ETCCDI, which starts in the spring with the first span of 
at least 6 days in a row with each day having a mean 
temperature greater than 5°C. The Growing Season is 
defined to end in the autumn with the first span of 6 
days in a row with each day having a mean temperature 
less than 5°C. 
 Examination of Figure 18 indicates that the start of 
the growing season is getting earlier and the end of the 
growing season is getting later. However, the changes 



  

in spring are greater than the changes in the fall, with 
the North American area-averaged growing season now 
starting ~5.5 days earlier than it did in the mid-1960s. 
Figure 19 shows the spatial variability of the change in 
growing season length. The widespread regions where 
the linear trend since 1950 is positive dominates the 
map, but there is also a noticeable region in the central 
and southern CONUS where the trends are negative. 
 

 
Figure 18. The Growing Season has been increasing. 
While start of the Growing Season is getting earlier and 
the end is getting later, the magnitude of the changes is 
greater in the spring than in the fall. 
 

 
Figure 19. Grid box level trends in the length of the 
growing season. Grid boxes with statistically significant 
trends are highlighted. 
 
 False Springs 
 
 Hard freezes that occur in the spring after the 
growing season has started adversely impact plants and 
the animals that depend on the plants. These episodes 
are referred to as False Springs. Complicating analyses 
of False Springs is the fact that every plant species 
responds differently. For example, the False Spring for 
the yellow birch in eastern Canada requires daily 
maximum temperature to exceed 4°C after being below 
freezing for at least two months during winter, greater 
than 50 growing degree days to start the spring growth, 

and then the daily minimum temperature needs to drop 
to -4°C (Bourque et al., 2005). Yet many plants, such as 
corn or soybeans, die back at much warmer 
temperatures. A higher minimum temperature threshold 
of -2.2°C is often used (e.g., Schwartz et al., 2006). 
Indeed a minimum temperature of -2.2°C (28°F) is a 
commonly used threshold in the U.S. for plant freezing 
related indicators such as when allergy season is over 
in the fall. Our False Spring Index is defined as the 
number of days between the start of the growing season 
in the spring and the last -2.2°C or lower minimum 
temperature in the first half of the year. Should no hard 
freeze occur after the start of the growing season, the 
index value is zero. 
 The area-averaged false spring index would 
become larger if the length of time between the start of 
the growing season and a hard freeze increases or the 
number of stations indicating a False Spring increases. 
Both events are detrimental to plants and animals as the 
longer the period before a hard freeze, the greater the 
chance that plant dependent insects are out of 
dormancy and that insect dependent birds have 
migrated into the areas. Figure 20 shows the change in 
North American area-averaged False Springs. The 
index rose from 1950 to the mid-1960s and then 
decreased, though the interannual variability is quite 
large. 

 
Figure 20. False Springs have been decreasing since 
the mid-1960s, though the interannual variability is quite 
large. 
 
5. DISCUSSION 
 
 North American area-averaged maximum and 
minimum temperature extremes are, to a first 
approximation, changing the way one might expect 
given the changes in mean temperature (e.g., see 
Figure 21). There are many different ways to assess 
changes in extremes. Just looking farther out on the tail 
of the distribution, as shown in Figures 3-6 provides little 
extra insight into how extremes are changing. However, 
examining days exceeding percentile thresholds can 
indicate something quite different than changes in the 
actual temperature. For example, changes in the 
number of warmest and coldest days of the year, 
Figures 9 and 10, indicate about the same magnitude of 



  

change for the hottest summer days compared to the 
coldest winter days. On the other hand, the changes in 
the coldest and warmest temperature experienced in a 
year, Figures 11 and 12, indicate that cold winter 
extremes are warming faster than summer hot 
extremes. Or to put it another way, rather than warming, 
North America is becoming less cold. 

 
Figure 21. Trends in mean temperature for the U.S. and 
surrounding areas since 1970. When the trend in a 5° 
latitude by 5° longitude grid box is statistically significant 
at the 5% level, a green dot is put in the center of the 
box. Data from Smith et al. (2005).  
 
 These differences are easy to reconcile because 
the interannual variability is greater in the winter than 
summer. If the data from Figures 11 and 12 were 
normalized by dividing the temperature values by the 
standard deviation of the annual time series, cold winter 
extremes appear to have the same amount of warming 
as hot summer extremes, as indicated by Figures 22 
and 23. 
 

 
Figure 22. The annual extreme warmest and coldest 
minimum temperature time series shown in Figures 11 
and 12 normalized by dividing by their standard 
deviations. 

 
Figure 23. The same as Figure 20 except for maximum 
temperature. 
 
 The growing season indices are, perhaps, less 
measures of changes in extremes than ways to 
integrate changes of both means and extremes into a 
biologically sensitive index. The growing season was 
documented to be increasing with the start getting 
earlier and the end getting later. False Springs have 
been decreasing in recent decades, although the 
changes are small compared to the interannual 
variability. 
 The measures of precipitation extremes primarily 
focused on changes in heavy precipitation. Several 
different indices were examined and they all indicated 
that heavy precipitation is increasing. One non-extreme 
ETCCDI precipitation index, Consecutive Dry Days, was 
not shown because (a) it examines very different 
physics in different parts of North America which has 
seasonally dry regions and (b) very few areas show any 
statistically significant trends in this index. On a North 
American area-averaged basis, the number of 
Consecutive Dry Days decreases from 1950 to the mid-
1980s and then increased at about the same rate as it 
decreased. 
 
6. SUMMARY AND CONCLUSIONS 
 
 Detailed homogeneity assessments of daily 
maximum and minimum weather observing station data 
from Canada, the United States and Mexico enabled 
analysis changes in North American extremes starting in 
1950. The measures of extremes assessed were 
primarily indices developed by the joint 
CCl/CLIVAR/JCOMM Expert Team on Climate Change 
Detection and Indices. Similar decreases in cold 
extremes and increases in warm extremes were found 
when examining the 10th, 5th and 2.5th percentiles. 
Annual extreme cold temperatures are warming faster 
than annual extreme warm temperatures when the 
parameter measured is the actual temperature but cold 
and warm extremes are changing about the same when 
examined on a percentile or normalized basis. By any of 
several measures, heavy precipitation has been 
increasing in recent decades and the average amount of 
precipitation falling on days with precipitation has also 
been increasing. These changes in extremes are likely 



  

to impact natural ecosystems as well as agricultural and 
societal infrastructure. 
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