

TITLE:

Changes in Passive Properties of the Gastrocnemius Muscle-Tendon Unit During a 4-Week Routine Static Stretching Program.

AUTHOR(S):

Nakamura, Masatoshi; Ikezoe, Tome; Umegaki, Hiroki; Kobayashi, Takuya; Nishishita, Satoru; Ichihashi, Noriaki

CITATION:

Nakamura, Masatoshi ...[et al]. Changes in Passive Properties of the Gastrocnemius Muscle-Tendon Unit During a 4-Week Routine Static Stretching Program.. Journal of sport rehabilitation 2017, 26(4): 263-268

ISSUE DATE: 2017-07

URL: http://hdl.handle.net/2433/231317

RIGHT:

Accepted author manuscript version reprinted, by permission, from Journal of Sport Rehabilitation, 2017, 26(4): 263-268, https://doi.org/10.1123/jsr.2015-0198. © Human Kinetics, Inc. The full-text file will be made open to the public on in 01 July 2017 accordance with publisher's 'Terms and Conditions for Self-Archiving'. This is not the published version. Please cite only the published version. この論文は出版社版でありません。引用の際には出版社版をご確認ご利用ください。

- 1 Changes in passive properties of the gastrocnemius muscle–tendon unit during a 4-week
- 2 routine static stretching program

4 Abstract

Context: Static Stretching (SS) is commonly performed within a warm-up routine to $\mathbf{5}$ increase the range of motion (ROM) of a joint and to decrease muscle stiffness. 6 However, the time course of changes in ankle dorsiflexion (DF) ROM and muscle 78 stiffness during a routine SS program is unclear. 9 **Objective:** The present study investigated changes in ankle DF ROM, passive torque at DF ROM, and muscle stiffness during a routine SS program performed three times 10 weekly for 4 weeks. 11 12Design: A quasi-randomized controlled trial design. *Participants:* The subjects comprised 24 male volunteers (age 23.8 ± 2.3 years; height 13 172.0 ± 4.3 cm; body mass 63.1 ± 4.5 kg) randomly assigned to either a group 14 performing a 4-week stretching intervention program (SS group) or a control group. 15Main Outcome Measures: The DF ROM, passive torque, and muscle stiffness were 1617measured during passive ankle dorsiflexion in both groups using a dynamometer and ultrasonography once weekly during the 4-week intervention period. 18 **Results:** In the SS group, DF ROM and passive torque at DF ROM significantly 1920increased after 2, 3, and 4 weeks compared with the initial measurements. Muscle stiffness also decreased significantly after 3 and 4 weeks in the SS group. However, 21

 $\mathbf{2}$

22 there were no significant changes in the control group.

- and decreased muscle stiffness. Furthermore, an SS program greater than 2 weeks
- duration effectively increased DF ROM and changed the stretch tolerance, and an SS
- 26 program greater than 3 weeks in duration effectively decreased muscle stiffness.
- 27
- 28 Key words: time course, muscle stiffness, stretch tolerance, ultrasound

京都大学 KYOTO UNIVERSITY

30	Stretching is commonly performed within a warm-up routine to increase joint flexibility,
31	improve performance, and reduce injury risk. Numerous previous studies reported that
32	static stretching (SS) increased the joint range-of-motion (ROM) both acutely ^{1, 2} and
33	following routine SS ³⁻⁵ . Hamstring and plantar flexor muscle stretching increased knee
34	extension and ankle dorsiflexion (DF) ROM both acutely and chronically, according to
35	systematic literature reviews ^{6, 7} . Potentially, the joint ROM increase following SS may
36	be caused by: decreased passive torque, muscle-tendon unit (MTU), and muscle
37	stiffness; and changes in psychological factors such as pain and stretch tolerance ^{8, 9} .
38	Previous studies evaluating acute effect of SS reported that a 3- to 5-min
39	duration decreased MTU and muscle stiffness ⁹⁻¹³ . In a study examining MTU stiffness
40	over time following SS (constant-torque stretching) at 2, 4, and 8 min, the initial
41	decrease in MTU stiffness dissipated in less than 10 min following a 2 min SS, but after
42	4- and 8-min SS, the effect was maintained for 10 min ¹⁴ . We recently reported that
43	decreased MTU and muscle stiffness were maintained for 10 min following a 5-min
44	constant-angle SS session ¹² , which is consistent with a prior study ¹⁴ . However, Mizuno
45	et al. (2013) reported that the MTU and muscle stiffness decreases following a 5-min
46	constant-angle SS disappeared within 10-15 min, whereas the increased ROM persisted
47	for 30 min. These results suggested that the increased ROM immediately following SS

48 may be attributed to changes in both MTU viscoelasticity and stretch tolerance, and the 49 ROM increase at 15–30 min after SS could be attributed only to a stretch tolerance 50 change. These studies concluded that the retention time of the acute effects of SS was 51 shorter for MTU viscoelasticity than for stretch tolerance.

Other studies have similarly examined the chronic effect of SS. For example, 52previous studies reported that passive torque and MTU stiffness decreased after a 3- to 536-week routine SS program¹⁵⁻¹⁸. In addition, stretch tolerance changed after a 2- to 546-week routine SS program¹⁹⁻²¹. We reported that muscle stiffness decreased after 4 55weeks of routine SS²². However, the time course of changes in muscle stiffness and 56stretch tolerance immediately following SS were discordant⁹; thus, a discrepancy in the 57time course of muscle stiffness and stretch tolerance changes may also occur during a 58routine SS program. Furthermore, the ideal SS program duration required to change the 59ROM, muscle stiffness, and stretch tolerance is unclear. 60

This study investigated changes in the gastrocnemius MTU passive properties over time, including DF ROM, muscle stiffness, and stretch tolerance during a 4-week SS program. A previous study showed that the acute effects of SS on muscle stiffness dissipated faster than the stretch tolerance⁹. Therefore, we hypothesized that muscle stiffness changes caused by the routine SS program would occur later during the

 $\mathbf{5}$

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

	Methods	
Study Design		
A <u>quasi-</u> randomized c	controlled trial design was used to	o investigate changes in ankle DF
ROM, passive torque	at DF ROM, and muscle stiffn	ess during a routine SS program
performed three times	s weekly for 4 weeks. The gastro	ocnemius MTU passive properties
(DF ROM, passive to	orque at DF ROM, and muscle	e stiffness) were measured at the
initial evaluation and	once weekly over 4 weeks in bo	oth groups. <u>As an <i>a priori</i> sample</u>
size calculation, we ca	alculated the sample size that wa	as needed for split-plot analysis of
variance (ANOVA) [a	lpha error = 0.05, power = 0.80,	effect size = 0.25 (middle)] using
<u>G*Power 3.1 software</u>	e (Heinrich Heine University, D	Düsseldorf, Germany). The results
showed that the requ	isite number of subjects for th	is study was 11 for each group.
Considering a possible	e dropout, 12 participants were	recruited for each group. After an
initial evaluation of N	ATU passive properties, participa	ants were randomly <u>allocated in a</u>
1:1 ratio to either the	e SS group (N = 12) or the co	ontrol group (N = 12) <u>using the</u>

program than the stretch tolerance changes.

- 82 <u>alternation method</u>. To control for immediate SS impacts, all procedures in the SS group
- 83 were performed at least 24 h after the last SS session²². The subjects were instructed not

84	to initiate any other stretching or strength training program during the experimental
85	period.
86	
87	Participants
88	Twenty-four healthy male volunteers who were non-athletes participated in this study
89	(age 23.8 \pm 2.3 years; height 172.0 \pm 4.3 cm; body mass 63.1 \pm 4.5 kg). Subjects with a
90	history of neuromuscular disease or lower extremity musculoskeletal injury were
91	excluded. All subjects participated in sports at a recreational level and had not been
92	involved in any regular resistance or flexibility training. Written informed consent was
93	obtained from all subjects. Subject demographics of each group are summarized in
94	Table 1. There were no significant demographic differences between the two groups
95	based on an unpaired t-test. In addition, this study was approved by the ethics
96	committee.
97	
98	Procedures
99	Assessment of DF ROM and passive torque at the DF ROM
100	The subjects laid in a prone position on a dynamometer table (MYORET RZ-450,
101	Kawasaki Heavy Industries, Kobe, Japan) secured at the hips with adjustable lap belts.

102	The dominant knee was maintained in full extension, and the ipsilateral foot was
103	securely attached to the dynamometer footplate with adjustable lap belts to prevent the
104	heel that moving away from the footplate. The ankle was passively dorsiflexed at a
105	constant 5°/s velocity beginning at a 30° plantar flexion until reaching the DF ROM. In
106	this study, DF ROM was defined as the angle where subjects experienced discomfort
107	without pain ^{9, 11, 12, 14} . The passive torque at ankle angles of 0°, 30° dorsiflexion, and DF
108	ROM were measured during the procedure using a dynamometer. Passive torque at DF
109	ROM served as the index of stretch tolerance; a passive torque increase at the DF ROM
110	indicated modified stretch tolerance ⁹ .
111	
112	Muscle stiffness assessment
112 113	Muscle stiffness assessment Myotendinous junction (MTJ) displacement at the gastrocnemius muscle medial head
112 113 114	Muscle stiffness assessment Myotendinous junction (MTJ) displacement at the gastrocnemius muscle medial head during passive ankle dorsiflexion was determined using B-mode ultrasonography
112 113 114 115	Muscle stiffness assessment Myotendinous junction (MTJ) displacement at the gastrocnemius muscle medial head during passive ankle dorsiflexion was determined using B-mode ultrasonography (Famio Cube SSA-520A; Toshiba Medical Systems Corporation, Tochigi, Japan). MTJ
 112 113 114 115 116 	Muscle stiffness assessmentMyotendinous junction (MTJ) displacement at the gastrocnemius muscle medial headduring passive ankle dorsiflexion was determined using B-mode ultrasonography(Famio Cube SSA-520A; Toshiba Medical Systems Corporation, Tochigi, Japan). MTJwas visualized on a continuous sagittal plane ultrasound image using an 8-MHz
 112 113 114 115 116 117 	Muscle stiffness assessmentMyotendinous junction (MTJ) displacement at the gastrocnemius muscle medial headduring passive ankle dorsiflexion was determined using B-mode ultrasonography(Famio Cube SSA-520A; Toshiba Medical Systems Corporation, Tochigi, Japan). MTJwas visualized on a continuous sagittal plane ultrasound image using an 8-MHzlinear-array probe. An acoustically reflective marker was placed on the skin under the
 112 113 114 115 116 117 118 	Muscle stiffness assessmentMyotendinous junction (MTJ) displacement at the gastrocnemius muscle medial headduring passive ankle dorsiflexion was determined using B-mode ultrasonography(Famio Cube SSA-520A; Toshiba Medical Systems Corporation, Tochigi, Japan). MTJwas visualized on a continuous sagittal plane ultrasound image using an 8-MHzlinear-array probe. An acoustically reflective marker was placed on the skin under theultrasound probe to confirm that the probe remained stable during measurement. The
 112 113 114 115 116 117 118 119 	Muscle stiffness assessmentMyotendinous junction (MTJ) displacement at the gastrocnemius muscle medial headduring passive ankle dorsiflexion was determined using B-mode ultrasonography(Famio Cube SSA-520A; Toshiba Medical Systems Corporation, Tochigi, Japan). MTJwas visualized on a continuous sagittal plane ultrasound image using an 8-MHzlinear-array probe. An acoustically reflective marker was placed on the skin under theultrasound probe to confirm that the probe remained stable during measurement. TheMTJ displacement was defined as the distance between the MTJ and the reflective

120	marker. A customized fixation device secured the probe to the skin. Ultrasound MTJ
121	images were quantified using open-source digital measurement software (Image J,
122	National Institutes of Health, Bethesda, MD, USA). To ensure accuracy, the MTJ was
123	identified at the inner fascial edge surrounding the muscle at its fusion to the tendon;
124	displacement was measured during 0° and 30° ankle dorsiflexion. Muscle stiffness was
125	calculated by dividing the passive torque change during $0-30^{\circ}$ ankle dorsiflexion by the
126	MTJ displacement ¹² .
127	
128	Surface electromyography (EMG)
129	Electromyography (EMG) (TeleMyo2400; Noraxon USA Inc., Scottsdale, AZ, USA)
130	confirmed that the subjects were relaxed and muscles were inactive during passive ankle
131	dorsiflexion. Surface electrodes (Blue Sensor M, Ambu, Denmark) at a 2.0-cm
132	interelectrode distance were placed on the medial and lateral gastrocnemius muscle
133	bellies ¹³ .
134	An EMG was recorded from the muscle bellies while the subjects performed an
135	isometric maximum voluntary contraction (MVC), obtained during maximal isometric
136	plantar flexion with the ankle at 0°. Strong verbal encouragement was provided during
137	the contraction to promote maximal effort. EMG activity was calculated from the root

138	mean square (RMS), and a full wave rectification was performed using an RMS
139	smoothing algorithm at a 50-ms window interval. EMG activity recorded during passive
140	ankle dorsiflexion was expressed as a percentage of MVC. The EMG sampling rate was
141	1500 Hz.
142	
143	Static stretching (SS) program
144	Subjects in the SS group were placed in a prone position with the knee extended, similar
145	to conditions during the DF ROM and passive torque measurements. During SS, the

ankle was passively dorsiflexed, starting from 30° of plantar flexion to the DF ROM, 146and was held at the DF ROM for 30 s, e,g, constant-angle stretching method. We 147previously confirmed that an SS greater than 2 min significantly decreased muscle 148stiffness ²³. Therefore, the 30-s maneuver was repeated four times, 2 min in total. A 149previous study reported that stretching exercises performed three times weekly were 150sufficient to improve ROM compared to stretching once weekly⁵. Therefore, the SS 151maneuver was performed three times weekly over a 4-week period. The sessions were 152conducted every 2 or 3 days. Subjects in the control group did not receive any 153154intervention.

1	5	6
-	~	~

157	Measurement reliability	
-----	-------------------------	--

- 158 All measurements were performed by the same experienced examiner. We selected
- 159 seven subjects (age, 23.8 ± 1.1 years; height, 172.7 ± 4.9 cm; body mass, 65.2 ± 2.8 kg)
- 160 from the control group and adopted the initial and 1 week data for the reliability
- 161 <u>analysis.</u>
- 162

163 Statistical analysis

164 SPSS (version 17.0; SPSS Japan Inc., Tokyo, Japan) was used for statistical analyses.

- 165 Measurement reliability was assessed using the intraclass correlation coefficient (ICC [1,
- 166 1]). The Shapiro–Wilk test was performed to evaluate the normality of the data, and the
- 167 assumption was met for almost all variables, suggesting the use of a parametric analysis.
- 168 Differences between the SS and control groups for all variables relative to the initial
- 169 evaluation were assessed with an unpaired *t*-test. Split-plot ANOVA and one-way
- 170 repeated ANOVA compared the SS and control groups over time and the initial
- 171 evaluation vs. data at 1, 2, 3, and 4 weeks. When one-way repeated ANOVA indicated a
- 172 significant effect associated with time, the Dunnett's multiple comparison test was
- 173 employed to determine the change time course compared with the initial evaluation.

174	Differences were considered statistically significant at an alpha level of $p < 0.05$.
175	Descriptive data are shown as mean ± standard deviation.
176	
177	Results
178	Reliability assessment
179	Measurement reliability assessments are summarized in Table 2. The ICC (1, 1) was
180	0.836 (95% confidence interval [CI]; 0.464-0.960) for DF ROM, 0.942 (95% CI;
181	0.782-0.986) for passive torque at DF ROM, and 0.941 (95% CI; 0.779-0.986) for
182	muscle stiffness.
183	
184	DF ROM, passive torque at DF ROM, and muscle stiffness changes over time
185	There were no significant differences between the two experimental groups in all
186	variables relative to the initial evaluation. The DF ROM, passive torque at DF ROM,
187	and muscle stiffness changes over time in both groups are shown in Table 3. The
188	<u>split-plot ANOVA indicated that</u> there were significant group \times time interaction effects
189	for DF ROM, passive torque at DF ROM, and muscle stiffness (<u>F = 20.6, p < 0.01, η_p^2 =</u>
190	<u>0.483; F = 5.88, p < 0.01, η_p^2 = 0.211; and F =11.0, p < 0.01, η_p^2 = 0.334, respectively).</u>
191	There was also a significant time effect on DF ROM, passive torque at DF ROM, and

192	muscle stiffness in the SS group, but there was no significant time effect on the
193	variables in the control group.
194	In the SS group, the DF ROM significantly increased after 2 weeks ($p < 0.05$),
195	3 weeks (p < 0.01), and 4 weeks (p < 0.01). Similarly, the passive torque at DF ROM
196	significantly increased after 2 weeks (p <0.05), 3 weeks (p < 0.01), and 4 weeks (p <
197	0.01). In addition, muscle stiffness significantly decreased after 3 (p < 0.05) and 4
198	weeks ($p < 0.05$).
199	
200	EMG activity
201	The GM and LG EMG activities were <2% MVC, which confirmed a lack of contractile
202	contribution to the DF ROM, passive torque, and muscle stiffness.
203	
204	Discussion
205	We investigated the gastrocnemius MTU passive property changes during a 4-week
206	routine SS program. The major study finding was that the DF ROM and passive torque
207	at DF ROM changes occurred earlier than the muscle stiffness change during the routine
208	SS program. Although previous studies investigated the acute impact of SS on passive
209	properties ^{9, 10, 12, 14} , this is the first known study demonstrating the time course of MTU

210 passive property changes during a 4-week routine SS program in vivo.

211	Our study revealed two-way ANOVA (group \times time) interactions in the DF
212	ROM and passive torque at DF ROM. In addition, the multiple comparison test
213	indicated that DF ROM and passive torque at DF ROM in the SS group significantly
214	increased after 2-4 weeks compared with the initial evaluation, with no significant
215	changes in the control group. These results suggest that a 2-week or longer SS program
216	effectively increases the DF ROM, which is consistent with previous studies ³⁻⁵ . The
217	passive torque at DF ROM, which indicated stretch tolerance, also increased after 2
218	weeks of the SS program. These results suggest that a 2-week or longer SS program
219	may be required to change DF ROM and stretch tolerance. Although the mechanism of
220	stretch tolerance change after routine SS program is unknown, afferent input from
221	muscles and joints during stretching inhibits signals from nociceptive fibers, which may
222	increase pain thresholds ²⁴⁻²⁶ .

In the evaluation of effects of routine SS program on muscle stiffness, there was a two-way ANOVA (group × time) interaction observed. Furthermore, a multiple comparison test revealed that muscle stiffness significantly decreased after 3 and 4 weeks in the SS group. These results suggest that a SS program greater than 3 weeks effectively decreases muscle stiffness. The underlying mechanism of this change is

228	unknown, but previous studies reported that the decreased muscle stiffness acutely and
229	chronically following an SS program might be associated with alterations in the
230	properties of intramuscular connective tissue properties rather than muscle fiber
231	lengthening ^{11, 12, 22} . Therefore, the muscle stiffness decrease after 3 weeks of routine SS
232	may also reflect a change in intramuscular connective tissue flexibility. Our results
233	showed that muscle stiffness significantly decreased after 3 and 4 weeks, with no
234	change observed during the initial 1-2 weeks. There may be a dose-response
235	relationship between the SS duration and the MTU stiffness response ¹⁴ . Therefore, a 1-
236	to 2-week SS program may be insufficient to decrease muscle stiffness, and an SS
237	program lasting at least 3 weeks may be necessary using the current study protocol.
238	Our results showed a discrepancy the between muscle stiffness and stretch
239	tolerance changes during the 4-week routine SS program. In particular, more than 2
240	weeks of routine SS increased passive torque at DF ROM, which indexes stretch
241	tolerance, but more than 3 weeks of routine SS was required to decrease muscle
242	stiffness. These results show that the stretch tolerance changed earlier than muscle
243	stiffness during a routine SS program, which confirms our hypothesis, though the
244	underlying mechanism is unclear. As for the acute effect of SS, Mizuno et al. (2013)

246	time than the stretch tolerance benefits. Potentially, the stretch tolerance change
247	occurred earlier than the muscle stiffness decrease during the routine SS program.
248	Decreased muscle stiffness can be beneficial in improving athletic performance or
249	preventing injury ^{27, 28} ; further study is needed to clarify the long-term effects of routine
250	SS not only on passive properties, such as DF ROM and muscle stiffness, but also on
251	improving performance and preventing injury. Notably, under the current study protocol
252	of 2-min SS, three times weekly over a 4-week period, it is unclear whether the same
253	decreased muscle stiffness could be realized under an SS program with longer single
254	sessions combined with a shorter program duration. Additional study determining the
255	ideal SS program duration and intervention frequency maximizing the muscle stiffness
256	decrease is needed.
257	Our results showed that there was a discrepancy in the time course of muscle

stiffness and stretch tolerance changes during a routine SS program, i.e., the stretch tolerance changed earlier than muscle stiffness during a routine SS program. In addition, decreased muscle stiffness can be beneficial in improving athletic performance or preventing injury^{27, 28}. Therefore, taken together, it was suggested that it is necessary to perform the routine SS program to cause a decrease in muscle stiffness in order to improve the athletic performance or prevent injury.

264	This study had some limitations. First, the examiner taking measurements was
265	not blinded to the group. Therefore, a bias in the results cannot be completely
266	discounted. Second, we have not investigated the time course of changes in passive
267	properties during a detraining period after 4 weeks of static stretching program.
268	Therefore, further research is required to determine the prolonged effect of SS program
269	on passive properties.
270	
271	
272	Conclusion
273	This study investigated the change in the gastrocnemius MTU passive properties, the
273 274	This study investigated the change in the gastrocnemius MTU passive properties, the DF ROM, muscle stiffness, and stretch tolerance, during a 4-week routine SS program.
273 274 275	This study investigated the change in the gastrocnemius MTU passive properties, the DF ROM, muscle stiffness, and stretch tolerance, during a 4-week routine SS program. Our results showed that the changes in muscle stiffness and stretch tolerance occur at
273 274 275 276	This study investigated the change in the gastrocnemius MTU passive properties, the DF ROM, muscle stiffness, and stretch tolerance, during a 4-week routine SS program. Our results showed that the changes in muscle stiffness and stretch tolerance occur at different speeds during the 4-week routine SS program. In particular, these results
273 274 275 276 277	This study investigated the change in the gastrocnemius MTU passive properties, the DF ROM, muscle stiffness, and stretch tolerance, during a 4-week routine SS program. Our results showed that the changes in muscle stiffness and stretch tolerance occur at different speeds during the 4-week routine SS program. In particular, these results suggest that a SS program greater than 2 weeks effectively increases DF ROM and
 273 274 275 276 277 278 	This study investigated the change in the gastrocnemius MTU passive properties, the DF ROM, muscle stiffness, and stretch tolerance, during a 4-week routine SS program. Our results showed that the changes in muscle stiffness and stretch tolerance occur at different speeds during the 4-week routine SS program. In particular, these results suggest that a SS program greater than 2 weeks effectively increases DF ROM and changes stretch tolerance, and a SS program greater than 3 weeks is needed to decrease
 273 274 275 276 277 278 279 	This study investigated the change in the gastrocnemius MTU passive properties, the DF ROM, muscle stiffness, and stretch tolerance, during a 4-week routine SS program. Our results showed that the changes in muscle stiffness and stretch tolerance occur at different speeds during the 4-week routine SS program. In particular, these results suggest that a SS program greater than 2 weeks effectively increases DF ROM and changes stretch tolerance, and a SS program greater than 3 weeks is needed to decrease muscle stiffness.

Acknowledgment

- 282 This work was supported by a Grant-in-Aid from the Japan Society for the Promotion of
- 283 Science (JSPS) Fellows (23-5873)

286 **References**

- Ryan ED, Beck TW, Herda TJ, Hull HR, Hartman MJ, Stout JR, et al. Do
 practical durations of stretching alter muscle strength? A dose-response study. Medicine
 and science in sports and exercise. 2008 Aug;40(8):1529-37. PubMed PMID: 18614936.
 Epub 2008/07/11. eng.
- 291 2. O'Sullivan K, Murray E, Sainsbury D. The effect of warm-up, static stretching
 and dynamic stretching on hamstring flexibility in previously injured subjects. BMC
 musculoskeletal disorders. 2009;10:37. PubMed PMID: 19371432. Pubmed Central
 PMCID: 2679703.
- 3. Bandy WD, Irion JM, Briggler M. The effect of time and frequency of static
 stretching on flexibility of the hamstring muscles. Physical therapy. 1997
 Oct;77(10):1090-6. PubMed PMID: 9327823.
- Cipriani D, Abel B, Pirrwitz D. A comparison of two stretching protocols on
 hip range of motion: implications for total daily stretch duration. Journal of strength and
 conditioning research / National Strength & Conditioning Association. 2003
 May;17(2):274-8. PubMed PMID: 12741862. Epub 2003/05/14. eng.
- 302 5. Marques AP, Vasconcelos AA, Cabral CM, Sacco IC. Effect of frequency of

static stretching on flexibility, hamstring tightness and electromyographic activity.
Brazilian journal of medical and biological research = Revista brasileira de pesquisas
medicas e biologicas / Sociedade Brasileira de Biofisica [et al]. 2009
Oct;42(10):949-53. PubMed PMID: 19784479.

Radford JA, Burns J, Buchbinder R, Landorf KB, Cook C. Does stretching
increase ankle dorsiflexion range of motion? A systematic review. British journal of
sports medicine. 2006 Oct;40(10):870-5; discussion 5. PubMed PMID: 16926259.

310 Pubmed Central PMCID: 2465055. Epub 2006/08/24. eng.

311 7. Decoster LC, Cleland J, Altieri C, Russell P. The effects of hamstring stretching

on range of motion: a systematic literature review. J Orthop Sports Phys Ther. 2005

313 Jun;35(6):377-87. PubMed PMID: 16001909. Epub 2005/07/09. eng.

8. Weppler CH, Magnusson SP. Increasing muscle extensibility: a matter of

increasing length or modifying sensation? Physical therapy. 2010 Mar;90(3):438-49.

- 316 PubMed PMID: 20075147. Epub 2010/01/16. eng.
- 9. Mizuno T, Matsumoto M, Umemura Y. Viscoelasticity of the muscle-tendon
- unit is returned more rapidly than range of motion after stretching. Scandinavian journal
- of medicine & science in sports. 2013 Feb;23(1):23-30. PubMed PMID: 21564309.
- 320 10. Mizuno T, Matsumoto M, Umemura Y. Decrements in Stiffness are Restored

321	within 10 min. Int J Sports Med. 2013 Nov 9;34(6):484-90. PubMed PMID: 23143704.
322	Epub 2012/11/13. Eng.
323	11. Morse CI, Degens H, Seynnes OR, Maganaris CN, Jones DA. The acute effect
324	of stretching on the passive stiffness of the human gastrocnemius muscle tendon unit.
325	The Journal of physiology. 2008 Jan 1;586(1):97-106. PubMed PMID: 17884924.
326	Pubmed Central PMCID: 2375574.
327	12. Nakamura M, Ikezoe T, Takeno Y, Ichihashi N. Acute and prolonged effect of
328	static stretching on the passive stiffness of the human gastrocnemius muscle tendon unit
329	in vivo. Journal of orthopaedic research : official publication of the Orthopaedic
330	Research Society. 2011 Nov;29(11):1759-63. PubMed PMID: 21520263.
331	13. Kay AD, Blazevich AJ. Moderate-duration static stretch reduces active and
332	passive plantar flexor moment but not Achilles tendon stiffness or active muscle length.
333	J Appl Physiol. 2009 Apr;106(4):1249-56. PubMed PMID: 19179644. Epub 2009/01/31.
334	eng.
335	14. Ryan ED, Beck TW, Herda TJ, Hull HR, Hartman MJ, Costa PB, et al. The
336	time course of musculotendinous stiffness responses following different durations of

passive stretching. The Journal of orthopaedic and sports physical therapy. 2008

338 Oct;38(10):632-9. PubMed PMID: 18827325.

337

339	15. Kubo K, Kanehisa H, Fukunaga T. Effect of stretching training on the
340	viscoelastic properties of human tendon structures in vivo. J Appl Physiol. 2002
341	Feb;92(2):595-601. PubMed PMID: 11796669. Epub 2002/01/18. eng.
342	16. Marshall PW, Cashman A, Cheema BS. A randomized controlled trial for the
343	effect of passive stretching on measures of hamstring extensibility, passive stiffness,
344	strength, and stretch tolerance. J Sci Med Sport. 2011 Nov;14(6):535-40. PubMed
345	PMID: 21636321. Epub 2011/06/04. eng.
346	17. Guissard N, Duchateau J. Effect of static stretch training on neural and
347	mechanical properties of the human plantar-flexor muscles. Muscle Nerve. 2004
348	Feb;29(2):248-55. PubMed PMID: 14755490. Epub 2004/02/03. eng.
349	18. Akagi R, Takahashi H. Effect of a 5-week static stretching program on
350	hardness of the gastrocnemius muscle. Scandinavian journal of medicine & science in
351	sports. 2013 Aug 15. PubMed PMID: 23944602.
352	19. Magnusson SP, Simonsen EB, Aagaard P, Sorensen H, Kjaer M. A mechanism
353	for altered flexibility in human skeletal muscle. J Physiol. 1996 Nov 15;497 (Pt

354 1):291-8. PubMed PMID: 8951730. Pubmed Central PMCID: 1160931. Epub
355 1996/11/15. eng.

356 20. Gajdosik RL, Allred JD, Gabbert HL, Sonsteng BA. A stretching program

increases the dynamic passive length and passive resistive properties of the calf

358	muscle-tendon unit of unconditioned younger women. Eur J Appl Physiol. 2007
359	Mar;99(4):449-54. PubMed PMID: 17186300. Epub 2006/12/23. eng.
360	21. Ben M, Harvey LA. Regular stretch does not increase muscle extensibility: a
361	randomized controlled trial. Scand J Med Sci Sports. 2010 Feb;20(1):136-44. PubMed
362	PMID: 19497032. Epub 2009/06/06. eng.
363	22. Nakamura M, Ikezoe T, Takeno Y, Ichihashi N. Effects of a 4-week static
364	stretch training program on passive stiffness of human gastrocnemius muscle-tendon
365	unit in vivo. European journal of applied physiology. 2012 Jul;112(7):2749-55. PubMed
366	PMID: 22124523.
366 367	PMID: 22124523.23. Nakamura M, Ikezoe T, Takeno Y, Ichihashi N. Time course of changes in
366 367 368	 PMID: 22124523. 23. Nakamura M, Ikezoe T, Takeno Y, Ichihashi N. Time course of changes in passive properties of the gastrocnemius muscle-tendon unit during 5 min of static
366 367 368 369	 PMID: 22124523. 23. Nakamura M, Ikezoe T, Takeno Y, Ichihashi N. Time course of changes in passive properties of the gastrocnemius muscle-tendon unit during 5 min of static stretching. Manual therapy. 2013 Jun;18(3):211-5. PubMed PMID: 23294911.
366 367 368 369 370	 PMID: 22124523. 23. Nakamura M, Ikezoe T, Takeno Y, Ichihashi N. Time course of changes in passive properties of the gastrocnemius muscle-tendon unit during 5 min of static stretching. Manual therapy. 2013 Jun;18(3):211-5. PubMed PMID: 23294911. 24. Magnusson SP, Simonsen EB, Aagaard P, Dyhre-Poulsen P, McHugh MP, Kjaer
366 367 368 369 370 371	 PMID: 22124523. 23. Nakamura M, Ikezoe T, Takeno Y, Ichihashi N. Time course of changes in passive properties of the gastrocnemius muscle-tendon unit during 5 min of static stretching. Manual therapy. 2013 Jun;18(3):211-5. PubMed PMID: 23294911. 24. Magnusson SP, Simonsen EB, Aagaard P, Dyhre-Poulsen P, McHugh MP, Kjaer M. Mechanical and physical responses to stretching with and without preisometric
366 367 368 369 370 371 372	 PMID: 22124523. 23. Nakamura M, Ikezoe T, Takeno Y, Ichihashi N. Time course of changes in passive properties of the gastrocnemius muscle-tendon unit during 5 min of static stretching. Manual therapy. 2013 Jun;18(3):211-5. PubMed PMID: 23294911. 24. Magnusson SP, Simonsen EB, Aagaard P, Dyhre-Poulsen P, McHugh MP, Kjaer M. Mechanical and physical responses to stretching with and without preisometric contraction in human skeletal muscle. Arch Phys Med Rehabil. 1996 Apr;77(4):373-8.

374 25. Azevedo DC, Melo RM, Alves Correa RV, Chalmers G. Uninvolved versus

375	target muscle contraction during contract: relax proprioceptive neuromuscular
376	facilitation stretching. Phys Ther Sport. 2011 Aug;12(3):117-21. PubMed PMID:
377	21802037. Epub 2011/08/02. eng.
378	26. Law RY, Harvey LA, Nicholas MK, Tonkin L, De Sousa M, Finniss DG.
379	Stretch exercises increase tolerance to stretch in patients with chronic musculoskeletal
380	pain: a randomized controlled trial. Physical therapy. 2009 Oct;89(10):1016-26.
381	PubMed PMID: 19696119.
382	27. Worrell TW, Smith TL, Winegardner J. Effect of hamstring stretching on
383	hamstring muscle performance. J Orthop Sports Phys Ther. 1994 Sep;20(3):154-9.
384	PubMed PMID: 7951292. Epub 1994/09/01. eng.
385	28. Bixler B, Jones RL. High-school football injuries: effects of a post-halftime
386	warm-up and stretching routine. Fam Pract Res J. 1992 Jun;12(2):131-9. PubMed
387	PMID: 1621533. Epub 1992/06/01. eng.
388	
389	

- 390 Table 1. Subject demographics.
- ^aSS group: performed a routine static stretching (SS) maneuver.

- Table 2. Reliability assessment for DF ROM, passive torque at DF ROM, and muscle
- 394 stiffness.
- 395 Data presented as mean ± standard deviation
- 396 DF, dorsiflexion; ROM, range-of-motion; ICC, intraclass correlation coefficient; CI,
- 397 confidence interval

398

- 399 Table 3. Passive property changes of the gastrocnemius muscle-tendon unit over time.
- p < 0.05, ** p < 0.01; significantly different from the initial measurement.
- 401 SS, static stretching; DF, dorsiflexion; ROM, range-of-motion.

403				
	SS group ^a		control group	
	(N = 12)		(N = 12)	p-value
Age (years)	23.9 ± 3.0 (21–33)		23.6 ± 1.0 (22–26)	p = 0.23
Height (cm)	171.4 ± 4.4 (163–183)		172.7 ± 4.0 (163–180	p = 0.89
Body mass (kg)	61.9 ± 5.1 (50–70)		64.3 ± 3.3 (57–70)	p = 0.33
404				
	Test 1	Test 2	ICC (1, 1)	95% CI
DF ROM	34.9 ± 2.7	35.0 ± 2.6	0.836	0.464–0.960
Passive torque at DF ROM	40.7 ± 8.5	40.1± 8.2	0.942	0.782–0.986
Muscle stiffness	37.8 ± 6.7	38.3 ± 6.5	0.941	0.779–0.986

	DF ROM (°)		Passive Torque at DF ROM		Muscle Stiffness (Nm/cm)	
	(Nm)					
	SS group	Control group	SS group	Control group	SS group	Control group
Initial	34.8 ± 3.8	37.6 ± 5.6	39.3 ± 5.0	40.6 ± 10.5	38.7 ± 9.2	39.9 ± 8.9
1 week	37.3 ± 4.2	36.8 ± 5.1	48.0 ± 10.0	41.6 ± 9.8	37.1 ± 8.6	41.1 ± 6.8
2 weeks	39.6 ± 3.1*	37.4 ± 5.2	$51.8 \pm 10.5^{*}$	42.1 ± 10.8	37.2 ± 8.4	39.0 ± 8.0
3 weeks	40.7 ± 3.9**	37.3 ± 4.9	53.8 ± 10.9**	41.1 ± 7.2	$30.4 \pm 7.0^{*}$	41.0 ± 7.1
4 weeks	43.9 ± 4.5**	36.8 ± 4.7	58.3 ± 10.7**	41.9 ± 9.2	29.6 ± 6.8*	41.5 ± 7.5
Effect size	$\eta_{\rm p}^2 = 0.483$		$\eta_{\rm p}^2 = 0.211$		$\eta_{\rm p}^2 = 0.334$	