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ABSTRACT: Variability in soil moisture has implications for regional terrestrial environments under a warming climate.

This paper focuses on the spatiotemporal variability in the intra-annual persistence of soil moisture in China using the fifth-

generation reanalysis dataset by the EuropeanCentre forMedium-RangeWeather Forecasts for the period 1979–2018. The

results show that in China, the mean intra-annual persistence in the humid to arid zones increased from 60 to 115 days in the

lower layer but decreased from 19 to 13 days and from 25 to 14 days in the upper and root layers, respectively. However,

these changes were strongly attenuated in extremely dry and wet regions due to the scarcity of soil moisture anomalies.

Large changes in persistence occurred in the lower soil layer in dryland areas, with a mean difference of up to 40 days

between the 2010s and the 1980s. Overall increasing trends dominated the large-scale spatial features, despite regional

decreases in the eastern arid zone and theNorth andNortheast China plains. In the root layer, the two plains experienced an

expanded decrease while on the Tibetan Plateau it was dominated by decadal variability. These contrasting changes be-

tween the lower and root layers along the periphery of the transition zone was a reflection of the enhanced soil hydrological

cycle in the root layer. The enhanced persistence in drylands lower layer is an indication of the intensified impacts of soil

moisture anomalies (e.g., droughts) on terrestrial water cycle. These findings may help the understanding of climate change

impacts on terrestrial environments.

KEYWORDS: Data assimilation; Hydrologic models; Land surface model; Climate variability; Decadal variability;

Ecosystem effects

1. Introduction

Soil moisture plays a unique role in Earth’s climate system

because of its involvement in the water cycle, energy partition-

ing, and biogeochemical processes (Cowan 1965; Seneviratne

et al. 2010; Green et al. 2019). During land–atmosphere inter-

actions, some atmospheric anomalies can propagate and persist

in the soil longer than in the atmosphere, leading to the persis-

tence of soil moisture anomalies (also termed soil moisture

memory) (Delworth andManabe 1989;Koster and Suarez 2001).

The persistence of soil moisture reflects a combination of the

regional climate and its interactions with the local soil, vegeta-

tion, and topography (Orth and Seneviratne 2012). For this

reason, variability in soil moisture persistence occurs in response

to climate change and reflects its impacts on terrestrial processes.

Studies of soil moisture persistence help further the awareness of

the impacts of climate change on terrestrial environments.

In the land–atmosphere system, soil moisture persistence

has long been recognized as a contributing factor when pre-

dicting atmospheric variations on monthly and seasonal time

scales (Yeh et al. 1984; Delworth and Manabe 1989; Koster

et al. 2010). The lag autocorrelation property of the evolution

of soil moisture over time can prolong the effects of atmo-

spheric anomalies (from two weeks to several months) in land–

atmosphere interactions. This property mainly depends on two

mechanisms: the interactions between soil moisture and pre-

cipitation and the intensity of variations in the two variables

(Orth and Seneviratne 2012). Themechanisms suggest that soil

moisture persistence stems from precipitation persistence;

soil–precipitation interactions are, however, modulated by the

natures of the soil, vegetation, topography, and local climate

regimes. On the regional and global scales, findings based on

both models and observations show that actual evaporation

strongly regulates the persistence of seasonal soil moisture

anomalies; soil moisture persistence is inversely proportional

to actual evaporation. In dry areas, low actual evaporation

contributes to long persistence (Liu and Avissar 1999; Koster

and Suarez 2001; Mahanama and Koster 2005). This mecha-

nism is also confirmed by in situ observations in China (Wang

and Shi 2019). Furthermore, vegetation plays an important role

in evapotranspiration: approximately 50%–80% of water is

transported by the root uptake of deep subsurface water; thus,

the biological processes of plants also affect the persistence of

soil moisture (Coenders-Gerrits et al. 2014; Chang et al. 2018).

Additionally, runoff, snowpack, and other hydrological pro-

cesses are important in shaping soil moisture persistence (Liu

and Avissar 1999; Orth and Seneviratne 2012). In summary,

soil moisture persistence reflects the responses of land pro-

cesses, as well as their feedbacks, to atmospheric anomalies;

therefore, studies on soil moisture persistence changes are
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helpful in assessing the impacts of climate change on terrestrial

environments.

To date, the effects of climate change on terrestrial envi-

ronments, according to atmospheric indicators, e.g., the ratio of

annual precipitation to potential evapotranspiration, show that

dryland expansion will increase in the twenty-first century,

especially in mid- to high latitudes (Feng and Fu 2013; Huang

et al. 2016). The standardized precipitation-evapotranspiration

index suggests that droughts have particularly strong impacts

on ecosystems in the tropics and high northern latitudes

(Schwalm et al. 2017). On the other hand, studies have re-

vealed spatiotemporal discrepancies between ecosystem be-

haviors and atmospheric climate variability. For example,

during the 2015–16 Amazon drought (one of the two most

severe meteorological droughts since 1901), 21.6% of forests

greened up (Yang et al. 2018). Greening trends—observed at

high latitudes, in northern China, and the Sahel region—cannot

be simply attributed to increases in precipitation (Dardel et al.

2014; Adler et al. 2017; Zhang et al. 2017). Furthermore, dif-

ferent approaches have revealed that the estimates of reduced

gross primary production during the 2003 European drought

are widely divergent (ranging from 20.02 to 20.27 Pg of car-

bon) (Vetter et al. 2008; Schewe et al. 2019). These findings

indicate that the impacts of climate change on environ-

ments are usually neither direct nor immediate; thus,

atmospheric-only indicators or methods are necessary but

not sufficient to assess climate impacts on ecosystems and

environments.

The soil acts as an interface between land–atmosphere in-

teractions, and soil moisture is involved in the flow of water,

heat, and carbon in the soil–plant–atmosphere continuum

(Cowan 1965); thus, it transports and regulates the impact

of atmospheric climate anomalies on terrestrial ecosystems

and environments. For instance, the spatial variability in soil

moisture largely contributes to the spatial heterogeneity of

the soil–moisture–evapotranspiration–precipitation coupling

in China (Li and Ma 2015; Li et al. 2017). Furthermore, pre-

vious studies have shown the functional dependence of sto-

matal conductance on soil moisture availability at the scale of

plant leaves, and soil moisture, along with temperature, can

significantly capture regional vegetation dynamics (Emanuel

et al. 2007; Djebou and Singh 2015). In this regard, the var-

iability in soil moisture persistence indicates a profound

change in the impact of climate change on local environments.

However, owing to the limited observations and low fidelity of

model soil moisture data, the variability in soil moisture per-

sistence on a regional scale largely remains an open issue

in China.

In response to the current knowledge gap in soil moisture,

this study focuses on the spatiotemporal variability in soil

moisture persistence from 1979 to 2018 in China. The goal is to

assess the variability in soil moisture persistence in response to

regional climate change and provide implications for assessing

climate change impacts. To this end, we quantify soil moisture

persistence using the latest reanalysis dataset (ERA5) from

the European Centre for Medium-Range Weather Forecasts

(ECMWF). The details of the data and methods used are de-

scribed in section 2. The fidelity of the ERA5 soil moisture data

is evaluated using in situ observations in section 3, and themain

results, including the variability and seasonality of soil moisture

persistence, follow. The possible mechanisms of persistence’s

response to regional climate change, as well as implications for

dryland expansion inChina, are discussed in section 4. The paper

is summarized with conclusions in section 5.

2. Data and methodology

a. Data

1) REANALYSIS SOIL MOISTURE DATA OF THE ERA5
The reanalysis soil moisture data used herein are taken from

the fifth generation of the global atmospheric reanalysis by

ECMWF, the latest development after the widely used ERA-

Interim and ERA-40 data (Hersbach et al. 2018). ERA5 is

produced using high-resolution forecasts from the ECMWF’s

Integrated Forecast System (IFS) with the land surface model

Hydrology Tiled ECMWFScheme for Surface Exchanges over

Land (HTESSEL; Balsamo et al. 2015). The HTESSEL in-

cludes six land surface tiles (bare ground, low and high vege-

tation, intercepted water, and shaded and exposed snow), in

which soil water transfers take freeze–thaw processes into

account (Viterbo and Beljaars 1995; Viterbo et al. 1999).

Furthermore, the representations of snow hydrological pro-

cesses were improved: they now account for snow liquid water

and include revised formulations for snow density, snow cover

fraction, and snow albedo (Balsamo et al. 2011). In terms of soil

hydrology, the HTESSEL incorporates a spatially varying soil

type and improved soil hydraulic and surface runoff schemes

based on local soil properties (Balsamo et al. 2011). Thus, the

terrestrial hydrological dynamics in ERA5, along with the

relevant seasonality of vegetation, are significantly improved

over those in its predecessor (Hersbach et al. 2018). The soil

moisture also benefits from improvements in the data assim-

ilation methodology. Through an extended Kalman filter,

ERA5 assimilates scatterometer soil moisture products to

improve its temporal evolution. Uniquely, this inclusion brings

ERA5’s decadal-scale time series of soil moisture into align-

ment with satellite-based soil moisture products. A detailed

overview of the innovation and performance of ERA5 can be

found in Hersbach et al. (2018).

In this study, the soil moisture is presented with a horizontal

resolution of a 0.258 latitude–longitude grid and has four ver-

tical layers corresponding to depths of 7, 28, 100, and 289 cm

below the ground surface; its hourly dataset (in UTC) is used

for the years 1979–2018. The soil moisture includes liquid and

solid phases (e.g., ice, when the soil is frozen) in the form of

volumetric soil moisture.

2) IN SITU OBSERVATIONS OF SOIL MOISTURE

To evaluate the reanalysis soil moisture data in ERA5,

in situ observational soil moisture data were obtained from the

International Soil Moisture Network (ISMN, https://ismn.geo.

tuwien.ac.at) (Dorigo et al. 2011) and China Meteorological

Administration (CMA, http://www.cma.gov.cn/2011qxfw/2011qsjcx),

including 956 sites in six networks, spanning 1981–2016.

Detailed information on sites, networks, and records is listed in
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Table 1 with their geographical distributions shown in Fig. 1.

These observations were obtained with two methods: the

gravimetric method and the sensor method. The routine

measurements in China with the gravimetric method were

conducted on the 8th, 18th, and 28th days of every month,

excluding rainy days and frozen periods. To benefit agricultural

practices, the records of the network CMA_Agr were released

in the form of relative soil moisture with respect to field ca-

pacity. However, the network CMA uses volumetric soil

moisture. The in situ sensor-measured soil moisture in the

other four networks is also recorded in the form of volumetric

soil moisture. Given that the observations of five networks, as

well as the ERA5 reanalysis, are consistently in volumetric soil

moisture, the relative soil moisture of the network CMA_Agr

is converted into volumetric soil moisture based on the fol-

lowing relationships (Maidment 1993):

u5 w/b
w
3b

d
, (1)

w5R3FC, (2)

where u and w stand for volumetric and gravimetric soil

moisture (cm3 cm23, g g21), respectively; bw and bd represent

the bulk densities of water and soil (g cm23), respectively, with

bw assumed to be 1 g cm23 normally;R denotes the relative soil

moisture; FC is the field capacity, i.e., the maximum soil

moisture retained in soil under gravity. Herein, the FC data are

taken from Dai et al. (2013) and were estimated with the em-

pirical pedotransfer functions based on observed soil param-

eters (e.g., bulk density). For detailed descriptions of the

estimation, refer to Dai et al. (2013) and the references cited

therein. Additionally, the four non-CMA networks mainly

serve specific scientific purposes, i.e., CTP_SMTMNwas set up

for monitoring soil moisture freeze–thaw changes, HiWATER_

EHWSN for ecohydrological monitoring, MAQU for quantify-

ing uncertainties in coarse-resolution satellite and model prod-

ucts, and SW-WHU for testing an online control method for

in situ sensors (Table 1). Although the sensors can work in sec-

onds, mean hourly data are publicly available. Importantly, all

in situ observations have been subjected to sensor calibration

and rigorous data quality control, considering sensor properties,

accidental interference, and outliers. For more details, refer to

the network reports and the references therein (available from

https://ismn.geo.tuwien.ac.at).

Owing to the scarcity of observations, all available sites with

more than 30 records are used here to expand the spatial

coverage. For this reason, the sample sizes vary among the sites

(Table 1, Fig. 2). Nonetheless, they meet the requirements of

the large sample theory, thereby ensuring the validity of sub-

sequent statistical analysis. The observations in the 0–100-cm

soil layer (mean of 10 layers, Table 1) in the network CMA are

compared with the ERA5 reanalysis data in the same layer

[mean of the first three layers, section 2a(1)]. For networks

MAQU and SW-WHU, observations at 5- and 10-cm depths

are directly compared with the reanalysis data in the 0–7-cm

layer. For the networks CTP_SMTMN, HiWATER_EHWSN,

and CMA_Agr, the observations at 10-, 20-, and 40-/50-cm

depths are used to interpolate the values for the 0–28-cm layer

matching the first two layers of the ERA5 dataset, as in Li et al.

(2005). In addition, the in situ measurement was temporarily

suspended during frozen periods in the networks CMA and

CMA-Agr, conducted from June to September in 2012 within

the HiWATER_EHWSN, and the minimum soil temperature

at three sites of the SW-WHU was higher than 08C. Thus, only

at the sites within CTP_SMTMNandMAQUwas the observed

soil moisture affected by soil freeze–thaw processes.

b. Methodology

1) QUANTIFICATION OF SOIL MOISTURE PERSISTENCE

Soil moisture persistence is quantified using the lag auto-

correlation of soil moisture anomalies over specific time

frames, given that the autocorrelation in soil moisture repre-

sents the persistence of a combination of wet/dry soil moisture

states forced by land–atmosphere interactions (Delworth and

Manabe 1988; Koster and Suarez 2001; Orth and Seneviratne

2012). The lag autocorrelation in soil moisture is estimated by

the Pearson correlation as Eq. (3) based on daily mean soil

moisture according to Santanello et al. (2018):

r
t
5

1

T
�
T

t51

(x
t
2 x)(y

t
2 y)

,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

T
�
T

t51

(x
t
2 x)

2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

T
�
T

t51

(y
t
2 y)

2

s

,

(3)

where xt and yt are the initial and lag soil moisture time series,

respectively, for the sample number T. The terms x and y are

the corresponding mean soil moisture. In this study, setting the

TABLE 1. Information on soil moisture observations and observational networks in China.

No. Networks

Site

size Data periods

Depths

(m)

SM

units

Data

intervals References

1 CMA 40 1981–99 0–1, 10 layers m3m23 10 days Liu et al. (2001)

2 CTP_SMTMN 34 2010–16 0.1, 0.2, 0.4 m3m23 Hourly Yang et al. (2013)

3 HiWATER_EHWSN 51 June–September 2012 0.1, 0.2, 0.4 m3m23 Hourly Jin et al. (2014)

4 MAQU 20 2008–10 0.05 m3m23 Hourly Su et al. (2011)

5 SW-WHU 3 November–December

2014; January, May 2015

0.1 m3m23 Hourly Chen et al. (2015)

6 CMA_Agr 808 1991–2013 0.1, 0.2, 0.5 Relative SMa Monthlyb http://www.cma.gov.cn/

2011qxfw/2011qsjcx

aRelative soil moisture is the percentage of soil moisture relative to field capacity.
bMonthly mean is derived from in situ observations with a 10-day interval.
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FIG. 1. (a)–(f) Geographical distribution of sites in six observational networks in China. Two nationwide networks shown in (b) and

(c) and three of the four specific networks in (a) are magnified in (d)–(f). The SW-WHU includes only three sites that are close to each

other. The transparency of colored dots in (b)–(f) denotes the sample size of the observations for each site.
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lag time step to one day, lag autocorrelation is calculated it-

eratively until the autocorrelation drops below the value at the

95% significance level for a one-tailed test with no fewer than

30 samples. The number of days to reach decorrelation is re-

ferred to as the persistence time scale. Here, the correlation

cutoff is set at 0.37, which ensures that all correlations are

significant at the 95% significance level (for n$ 30); hence, the

time scales of soil moisture persistence are statistically signif-

icant over its specific timeframes. If the lag time series contains

fewer than 30 samples but the autocorrelation is still greater

than 0.37, persistence days are estimated using e-folding time,

as described by Eq. (4), according to the first-order Markov

property in soil moisture processes (Delworth and Manabe

1988, 1989):

r
t
5 exp(2t/D) , (4)

where rt is the autocorrelation at lag t (e.g., 60 or 365 days) and

D is the e-folding days of anomalies in the absence of forcing.

Thus, the estimation of persistence relaxes the limitation of a

strict assumption of exponential decay of autocorrelations with

the lag time and enhances the statistical significance constraint.

To dampen the effect of the seasonal cycle in soil moisture on

its autocorrelation, the annual cycle is removed by subtracting

the 40-yr mean daily soil moisture. D’Agostino’s chi-squared

tests (D’Agostino 1971) are then applied to the anomalies, and

the results suggest that daily anomalies are normally distributed,

(e.g., for 0–28- and 0–100-cm soil layers, Stat 5 1.04, 0.95; p 5

0.59, 0.62 . 0.05 5 a, fail to reject H0), consistent with

observation-based soilmoisture data (e.g., Bell et al. 1980; Li and

Kawano 1996; Ryu and Famiglietti 2005). In this study, the focus

is on intra-annual persistence using intra-annual soil moisture

data, denoting the time, in terms of probability, that soilmoisture

tends to be invariable in a wet/dry state or dissipates/recovers

from a wet/dry state. The calculation is mainly based on the

coupling metrics toolkit, an open-source code package in

FORTRAN, provided by Santanello et al. (2018).

2) SEASONAL TREND DECOMPOSITION FOR

INTEGRATED SOIL MOISTURE

To examine the multiscale periodicity and long-term trends

in the reanalysis soil moisture data at a regional scale, the in-

tegrated soil moisture series are generated by averaging the

soil moisture over sites or corresponding grid cells along their

time axes for both observations and reanalysis in two networks

CMA and CMA_Agr, and then the integrated series are

decomposed using the seasonal trend decomposition based on

local regression (LOESS; Cleveland et al. 1990) in an additive

model (STL) as in Eq. (5):

Y
t
5T

t
1 S

t
1R

t
, t5 1, 2, . . . ,N , (5)

where the integrated soil moisture Yt is decomposed into long-

termTt, seasonal St, and the remainingRt components at time t.

The long-term linear trend can then be separated from the

long-term component by least squares linear regression, and

the remainder of the nonlinear signal manifests repeated but

nonperiodic long-term variability. The seasonal term repre-

sents variations over a fixed period (e.g., monthly), and the

residual component contains subseasonal signals (e.g., daily)

and noise other than the seasonal and long-trend components.

By seasonal trend decomposition, the periodic signals in ERA5

soil moisture can be verified on daily, seasonal, and secular

scales, which contribute to the persistence of soil moisture. The

key method in STL decomposition is LOESS smoothing

using a weighting function in which the influence of a neigh-

boring value on the smoothed value decreases with distance.

The weighting function w(xk) is defined as follows:

w(x
k
)5

�

12

�

�

�

�

x
i
2 x

k

d
i

�

�

�

�

3�3

, k5 1, 2, . . . ,N , (6)

where di is the distance from xi to the kth neighboring point in a

time series x. Then, LOESS is used to perform regression

smoothing by a quadratic function whose coefficients are cal-

culated by minimizing the following function:

FIG. 2. (a)–(e) Distributions of the numbers (months or days) of observations for all sites within five observational networks. Horizontal

lines represent the maximums, medians, and minimums of sample sizes. The values of the maximum and median are both 83 in (c).
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ŷ
k
5 a1 bx

k
1 cx2k . (7)

If limited observations are available for estimating the linear

regression function, the robust weightingsG(xk) are calculated

by estimating the residuals of the values up to this point and the

resulting median, using the following formula:

G(x
k
)5

8
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>
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i
j)

�

�

�

�

�

, 1

0

�

�

�

�

�

y
i
2 ŷ
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�
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$ 1

.

(8)

The robust weightings, multiplied with the proximity weight-

ings [Eq. (6)], are used for re-estimating a linear regression

function for the smoothed values ysk:

y
sk
5�

k

w(x
k
)G(x

k
)(y

k
2 a2bx

k
2 cx2k)

2
. (9)

By detrending, cycle-subseries smoothing, low-pass filtering,

detrending of smoothed cycle subseries, deseasonalizing, and

trend smoothing steps, the STL iteratively updates the seasonal

and trend components and weights. Then, the remainder is

R
t
5Y

t
2T

t
2 S

t
. (10)

The rigorous mathematical deduction can be found in the lit-

erature (Cleveland 1979; Cleveland et al. 1990).

3) DEFINITION OF DRYLANDS USING AN ATMOSPHERIC

INDICATOR AND SOIL MOISTURE

Taking dryland expansion as an example, to investigate the

implications of changed soil moisture persistence for terrestrial

environments, drylands are defined using both an atmospheric

indicator and soil moisture. The atmospheric aridity index

(AI), the ratio of total annual precipitation to potential evapo-

transpiration, is used to determine dryland regions. According

to Middleton and Thomas (1992), the regions with AI # 0.65

are identified as drylands. The movement of the boundary line

at AI 5 0.65 indicates the expansion/contraction of drylands

driven by atmospheric processes. Likewise, the soil moisture

(0.26m3m23 in the root layer) coincident with the line of AI5

0.65 is used as another criterion to define drylands; similarly,

the changes in drylands based on soil moisture aremeasured by

its boundary line movements. Considering plant activities,

comparisons between the areal changes in the drylands by AI

and soil moisture are performed over the main growing season

(May–September). In addition, the arid, transition, and humid

climate zones are also defined, according toAI (AI, 0.2, 0.2#

AI# 0.65, and AI. 0.65, respectively), to assess soil moisture

and its persistence changes in China.

4) STATISTICS AND TESTS FOR ANALYSIS

The other statistics used include the Pearson correlation

coefficients [the same as Eq. (3)]. Given that it remains a

challenge for most land models to concurrently capture the

annual cycles in observed soil moisture in various layers, the

correlation coefficients are estimated using the anomalies of

daily/monthly soil moisture (raw data minus their mean) at the

site-grid scale, thereby retaining the effects of the annual cycle.

According toD’Agostino’s chi-squared test, when a soil moisture

time series is nonnormal, the Box–Cox power transformation

(Box andCox 1964) is carried out to reduce its nonnormality, and

the transformation of soil moisture series SM has the follow-

ing form:

SM(l)5

8

>

<

>

:

SMl
2 1

l
, l 6¼ 0

log(SM), l5 0

, (11)

where l is estimated by maximizing the log-likelihood func-

tion. The significance of correlations is tested according to the

hypothesis test. The formula for the test statistic is

t5 r
ffiffiffiffiffiffiffiffiffiffiffi

n2 2
p

/
ffiffiffiffiffiffiffiffiffiffiffiffi

12 r2
p

, (12)

where r is the correlation coefficient, and n is the sample size.

The probability value p is then computed using a t distribution

with n 2 2 degrees of freedom. As the p is less than the sig-

nificance level (e.g., 0.05), the correlation coefficient is signif-

icant. In addition, the standard deviation s of a soil moisture

series is computed as in Eq. (13):

s5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n2 1
�

n

i51(xi 2 x)
2

r

, (13)

where n is the sample size, xi is the soil moisture series, and x

denotes the mean soil moisture. The formula for the root-

mean-square error (RMSE) is

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
n

i51

(x
ERA

2 x
obs

)
2

n

v

u

u

u

t

, (14)

where n is the sample size and xERA and xobs are the ERA5

reanalysis and observational soil moisture, respectively. In

addition, the linear trends are calculated using a least squares

linear regression, and two-sided p for a hypothesis test of sig-

nificance is calculated with the t distribution of the test statistic.

3. Results

a. Fidelity of the ERA5 soil moisture against in situ

observations

The fidelity of the ERA5 soil moisture is evaluated using

observational soil moisture at 956 sites within six networks in

China, on daily, monthly, seasonal, and secular time scales

during 1981–2016. The statistical analyses show that on the

daily scale (Fig. 3a), the correlation coefficients at 114 out of

the148 sites are significant (p, 0.05), accounting for 77%, and

the correlations at 53 sites are over 0.5 up to 36%.Note that the

depths of the soil layers vary with the network, especially at

0–100 cm for the networkCMA(Table 1). For theCTP_SMTMN

network, on the Tibetan Plateau, the mean correlation is 0.65

in the 0–28-cm soil layer (p , 0.01, mean n 5 1639), and the

maximum reaches 0.85. Another network MAQU on the pla-

teau shows amean correlation coefficient of 0.48 (p, 0.01 with
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mean n5 695) with amaximum of 0.62 in the 0–7-cm soil layer.

These observations monitor the dynamics of only liquid soil

water and hence include the effects of soil freeze–thaw cycles

and the monsoon climate of the Tibetan Plateau (rainy season

from June to August, dry season from December to April)

(Yang et al. 2013). The annual variations in the observed soil

moisture are enhanced by overlapping freeze–thaw cycles, but

in ERA5, the total soil moisture is not influenced by these

cycles. Their high correlations indicate that the reanalysis soil

moisture data vary in phase with the wet–dry cycles in the

observations. On the monthly scale (Fig. 3b), ERA5 can gen-

erally depict the observed soil moisture variations and geo-

graphical patterns. The correlations are significant at 673 sites

(p , 0.05) of the 808 total sites, reaching 83%, and the per-

centage is 27% for correlations greater than 0.5 in the 0–28-cm

soil layer. In summary, the significant correlations are widely

distributed among various sites and at soil depths from 5 to

100 cm, along with their large sample sizes (n . 30), ensuring

the robustness of the statistics and their reasonable represen-

tativeness in space. The low correlations are largely due to

mismatches between observational sites andmodel grid cells in

terms of land cover type, soil type and the associated proper-

ties, which can exert a significant influence on the phase-

shifting and timing of soil moisture variability (Wu et al. 2002;

Albergel et al. 2012).

To limit the effects of scale mismatch between sites and grid

cells, the site-averaged soil moisture for each network is

compared further (Fig. 4). The results suggest that ERA5 also

reasonably captures monthly and annual soil moisture dy-

namics, especially in the CMA, CTP_SMTMN, and CMA_Agr

networks (Figs. 4a,b,f), with correlation coefficients of 0.65,

0.71, and 0.72 (p , 0.01), respectively. In the network CMA

(with a depth of 0–100 cm), the reanalysis agrees well with

observations, especially in terms of amplitudes, with both

having standard deviations of 0.02m3m23, although the ERA5

shows a higher mean soil moisture than observations (0.29 and

0.27m3m23 for the ERA5 and observations, respectively).

Again, for the CTP_SMTMN and MAQU networks (with

depths of 0–28 and 0–5 cm, Figs. 4b,d), which are located on the

Tibetan Plateau, the observed liquid soil moisture shows larger

annual variations (amplified by soil freeze–thaw cycles) than

the total soil water in the reanalysis. This mechanism largely

accounts for the discrepancies in standard deviations (0.07 and

0.04m3m23 for observations and ERA5 in CTP_SMTMN and

0.13 and 0.03m3m23 for MAQU) on the Tibetan Plateau.

Nevertheless, ERA5 captures the observed phase shifts over

time with high consistency. In the CMA_Agr network (with a

depth of 0–28 cm, Fig. 4f), the dynamics of the ERA5 soil

moisture data also agree well with those of observations, with a

correlation of 0.72 (p , 0.01), despite the higher mean soil

moisture of the ERA5 dataset than of the observations, anal-

ogous to the biases in deeper soil (0–100 cm) in the network

CMA (Fig. 4a). In the other two networks (Figs. 4c,e), though

with limited durations, agreement can still be observed in the

main variations between the two soil moisture datasets.

Aiming to further assess the ERA5 soil moisture data on

seasonal and secular time scales, a seasonal trend decomposi-

tion [section 2b(2)] is performed for site-integrated soil mois-

ture time series in the 0–100- and 0–28-cm soil layers in

networks CMA and CMA_Agr, respectively, which have ex-

tensive spatial and temporal coverages. The decomposed sea-

sonal cycles (Fig. 5 with statistics in Table 2) show that ERA5

encouragingly reflects the seasonality in the observed soil

moisture, with correlations over 0.8 (p , 0.01). The residual

FIG. 3. Geographical distribution of correlation coefficients betweenERA5 and observational soil moisture data,

with the various sample sizes for each site (see Table 1, Figs. 1 and 2) over the years 1981–2016. (a) Networks 1–5 at

a daily time interval and (b) network 6 at amonthly time interval (Table 1). The colored bars denote the distribution

of the correlation coefficients, and the value of 0.349 indicates a significant correlation (p , 0.05) at the minimum

sample size (n 5 30).
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terms, mainly representing the month-to-month variations,

also show good agreement with each other, with correlations

over 0.6 (p , 0.01). On annual and long-term time scales, al-

though remarkable wet biases can be observed in the ERA5

soil moisture dataset (Figs. 5b,f), it still captures the observed

variations in the 0–28-cm soil layer (CMA_Agr) but substan-

tially overestimates the standard deviation and long-term

trend (Table 2). In contrast, in the deeper 0–100-cm soil

layer, the ERA5 soil moisture dataset shows decreased skill on

interannual scales and underestimates the observed long-term

trend. The decorrelation is directly induced by the lower per-

sistence of long-lasting anomalies in the reanalysis soil

moisture dataset, which is mainly associated with the ERA5

soil hydrological representations, e.g., the assumption of free

drainage at the soil bottom and the inaccuracy of soil property

data (Balsamo et al. 2011, 2015). This inaccuracy also con-

tributes to the wet soil moisture biases in ERA5 by reducing

bare soil evaporation. Additionally, the soil hydrology prop-

erties, allowing soil moisture to go lower than the wilting point

in dry times, partly account for the large amplitudes of seasonal

and interannual dynamics in the 0–28-cm soil layer (Balsamo

et al. 2015).

In summary, the above results, along with previous valida-

tions of the HTESSEL-simulated soil moisture for various

regions (e.g., Balsamo et al. 2011, 2015; Li et al. 2020), confirm

that ERA5 can reasonably represent the evolution of soil

moisture observed in situ in China on daily to annual time

scales. Therefore, the use of ERA5 soil moisture data in soil

moisture persistence studies is justified. Furthermore, the un-

certainties in soil moisture and its evaluations are discussed in

section 4.

b. Spatial patterns of soil moisture persistence

The intra-annual soil moisture persistence estimated using

daily lag autocorrelation (365 days averaged from 1979 to

2018) in three soil layers (0–28-cm upper layer, 0–100-cm root

layer, and 100–289-cm lower layer) shows that the persistence

increases with soil depth from the upper to root to lower soil

layers, especially in the northwestern arid zone (Fig. 6). From

the perspective of climate zones, the statistics (Table 3) show

FIG. 4. Comparisons of network averaged time series for the ERA5 and observational monthly mean soil moisture. Networks of

(a) CMA, (b) CTP_SMTMN, (c) HiWATER_EHWSN, (d)MAQU, (e) SW-WHU, and (f) CMA_Agr; r is the correlation coefficient, and

** denotes significance at p , 0.01 with sample size n.
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that persistence in the arid zone is 13 and 15 days in the upper

and root layers, respectively, and up to 104 days in the lower

layer. Likewise, the persistence increases vertically, with

values of 19, 25, and 60 days on average in the upper, root, and

lower layers, respectively, in the humid zone. In between is the

increase with depth in the transition zone. The maximum

persistence (over 180 days) occurs in the lower layer in arid

regions, and the increase is remarkably stronger than that in

FIG. 5. Seasonal trend decomposition for integratedmonthly soil moisture at all 40 sites of the network CMAand

808 sites of the network CMA_Agr and corresponding ERA5 reanalysis data for the 0–100- and 0–28-cm soil layers;

r denotes the correlation coefficient, and ** denotes significance at p , 0.01 with sample sizes n 5 228 and 253 in

networks CMA and CMA_Agr, respectively.

TABLE 2. Statistics for seasonal trend decomposition analyses of the ERA5 and observational soil moisture (Fig. 3). Two asterisks (**)

denote significance at the p , 0.01 level.

Two observational networks of soil moisture

Statistics CMA (0–100 cm, n 5 228) CMA_Agr (0–28 cm, n 5 253)

Correlation coefficients between ERA5

and obs

Means 0.65** Means 0.73**

Trends 0.24** Trends 0.76**

Seasonal 0.82** Seasonal 0.83**

Residual 0.67** Residual 0.69**

Standard deviation (m3m23), ERA5/obs Means 0.021/0.021 Means 0.039/0.019

Trends 0.007/0.008 Trends 0.012/0.006

Seasonal 0.015/0.015 Seasonal 0.019/0.009

Residual 0.011/0.01 Residual 0.030/0.015

Root-mean-square error (m3m23) Means 0.029 Means 0.042

Trends 0.026 Trends 0.031

Seasonal 0.009 Seasonal 0.013

Residual 0.009 Residual 0.023

Linear trends (m3m23 decade21),

ERA5/obs

Trends 20.0004/20.0095** Trends 20.0109**/20.0033**
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the soil moisture content. The long persistence in deep soil is

spatially in good agreement with long-lasting soil droughts

(over 12 months) in arid regions (Li and Ma 2015). In contrast,

the relationships between soil moisture and its persistence

(Fig. 7) suggest that persistence is fairly low in extremely dry or

wet areas (with the scarce presence of soil moisture anomalies

with small standard deviations or even close to zero), such as in

parts of the extremely dry northwestern regions and the wet

Yangtze River valley. There is a bell-shaped relationship be-

tween persistence and soil moisture content, with the longest

persistence corresponding to moderate soil moisture with strong

variations and shifting to the dry end in the deep soil layer,

in agreement with the findings in a multimodel experiment

(Seneviratne et al. 2006).

Regionally, shorter persistence can be observed in moun-

tainous areas; for instance, there is a contrast between the

Greater and Lesser Hinggan Mountains and the Northeast

China Plain. Such a spatial structure is also observed in Europe

(Orth and Seneviratne 2013), reflecting the buffering effect of

forests on soil moisture variations. On the Tibetan Plateau, the

persistence shows an east–west disparity, which agrees with the

findings from the Global Land Data Assimilation System

(GLDAS; Yang and Wang 2019). These regional-scale char-

acteristics point to the important roles of local vegetation, to-

pography, and phase changes in soil moisture in reshaping the

persistence of soil moisture.

c. Seasonality of soil moisture persistence

The seasonality of persistence is measured with the lag au-

tocorrelation of daily soil moisture, covering approximately

90 days averaged from 1979 to 2018, in the three soil layers.

Seasonal changes in persistence show clear evolutions with

FIG. 6. Spatial patterns of mean intra-annual soil moisture persistence in three soil layers and corresponding daily mean soil moisture

during 1979–2018. The red and blue lines are the contours of AI at 0.2 and 0.65, respectively, denoting the arid, transition, and humid

climate zones in China from northwest to southeast.
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climate zones, and they are stronger in the transition zone than

in the others, especially in the lower soil layer (Fig. 8). For

instance, the seasonal changes range from 8 to 39 days for the

three layers in the transition zone but from 5 to 31 and from 9 to

30 days in arid and humid zones, respectively (Table S1 in the

online supplemental material). For the three climate zones, the

maximum persistence occurs in winter in the upper and root

layers but autumn in the lower layer, while in all layers, the

minimum persistence tends to appear in summer. The largest

relative increases from the upper to lower layers also occur in

summer. The seasonality of persistence is mainly associated

with the monsoon climate and with changes in soil properties

and vegetation activities between the wetting and drying stages

of the soil (Haines 1930; Hsiao and Acevedo 1974). In autumn

in the transition zone, the increased persistence can last

through winter, largely resulting from the freezing processes in

the root layer, especially on the Tibetan Plateau and in

northeastern China. In the lower soil layer, the lack of soil

freezing at these depths partly contributes to the reduced

persistence in winter. In southwestern China (e.g., Yunnan

Province), longer persistence occurs in summer in the root

layer, which is presumably due to the evolution of the south-

western monsoon rainfall.

d. Decadal variability in soil moisture persistence

Considering the periodic effects and accumulated biases of

soil moisture climatology, the mean persistence values during

four separate 5-yr periods with similar wet–dry climates, 1981–

85, 1991–95, 2004–08, and 2014–18, instead of long-term linear

regressions, are compared to assess the decadal variability. The

persistence is also estimated with 365 daily anomalies derived

by averaging over each 5-yr period. The decadal changes

(Fig. 9) are characterized by remarkable consistency in space

among the periods of 1990s and 1980s (1991–95 minus 1981–

85), 2010s and 2000s (2018–14 minus 2004–08), and the whole

study period (2018–14minus 1981–85), as well as clear regional

footprints with decreases/increases in persistence on decadal

scales in the three layers. For example, based on changes of

longer than 1 day across China, the decreased persistence

covers 4.89Mkm2, slightly larger than the area of increased

persistence, 4.22Mkm2, in the root layer during the 2010s rel-

ative to the 1980s, while increased persistence expanded by

approximately 0.18Mkm2 in the lower soil, relative to the root

layer, and by 0.57Mkm2 in the upper layer (Table S2). In terms

of climate zones, the root layer persistence increased by 5 days

on average in the western arid zone along 908E longitude

covering an area of approximately 0.4Mkm2, while in the

eastern part, decreased persistence (3 days) occurred in an area

of 0.43Mkm2 in the comparison between the 2010s and 1980s.

In the lower layer, the persistence increased (decreased) by 11

(16) days in smaller (larger) areas of 0.29Mkm2 (0.56Mkm2) in

the two regions (Tables S3 and S4). This east–west contrast

between the 2010s and 2000s is similar to that between the

1990s and 1980s. In the transition zone, the Tibetan Plateau

region shows an increase of 4 days in the root layer and an

increase of 13 days in the lower layer. Furthermore, there is a

decadal shift in the root layer from a decrease-dominated

change in the 1990s relative to the 1980s to an increase-dominated

change in the 2010s relative to the 2000s (Table S3). In the eastern

part of this zone, the decadal changes in the root layer feature

TABLE 3. Statistics for mean soil moisture and its persistence in the three climate zones during 1979–2018. SM denotes volumetric soil

moisture, and SMP stands for soil moisture persistence (days).

Depths 0–28 cm 0–100 cm 100–289 cm

Climate zones Arid Transition Humid Arid Transition Humid Arid Transition Humid

SM 0.10 0.21 0.34 0.11 0.21 0.34 0.15 0.22 0.36

SMP 13 19 19 15 23 25 104 92 60

FIG. 7. Relationships between soil moisture persistence and soil moisture. SM denotes the mean soil moisture, SMstd denotes the soil

moisture standard deviation, and SMP denotes soil moisture persistence.
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FIG. 8. Spatial patterns of seasonal variability in soil moisture persistence at three depths. (a),(e),(i) March–May (MAM); (b),(f),(j)

June–August (JJA); (c),(g),(k) September–November (SON); and (d),(h),(l) December–February (DJF). The red and blue lines denote

AI 5 0.2 and 0.65 contours, respectively, indicating the arid, transition, and humid climate zones from northwest to southeast.
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increase in the northwest and decrease in the southeast, with areas

of 0.67 and 0.84Mkm2, and the decreased persistence expands

toward the humid zone in northeastern China and the Huang-

Huai region (Table S4). However, such an expansion is not ob-

served in the lower layer. In contrast, in lower soil, the increased

persistence dominates this region, with areas of 0.92Mkm2

(Table S4). In the humid zone, there is a contrast in both the upper

and root layers: a decrease in the humid Huang-Huai region (HH

in Fig. 9g) and an increase in southeastern China (SE in Fig. 9g),

with magnitudes of 24 and 3 days, respectively, and the contrast is

reduced in the lower soil (Tables S3 and S4). Moreover, the in-

creased persistence intensifies and expands in the lower soil layer,

and this is the case in the western part of the humid zone as well.

In summary, during the 2010s in comparison with the 1980s,

decadal persistence changes exhibit a contrast between an in-

crease in the west and a decrease in the east in the three soil

FIG. 9. Decadal differences in soil moisture persistence in the three soil layers. The 1980s denote persistence estimated using daily

anomalies of averaged soil moisture for 1981–85 (n5 365); the 1990s, 2000s, and 2010s represent the same processing as the 1980s but for

1991–95, 2004–08, and 2014–18, respectively. The red and blue lines denote AI5 0.2 and 0.65 contours, respectively, indicating the arid,

transition, and humid climate zones from northwest to southeast. The black (dashed) lines denote the 30% variations in soil moisture

persistence.
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layers in the arid zone, and increases in persistence prevail

across the transition zone with regional decreases in the

southeast part of the eastern transition zone in all layers.

The increases in the humid zone expand from the upper to

the lower layer as the decreases spatially contract, e.g., in the

Huang-Huai region. Discrepancies in persistence between the

upper and lower layers can be seen along the transition zone,

e.g., the Tibetan Plateau, Huang-Huai region, and northeastern

China, where soilmoisture also shows enhanced variations in the

root layer (Fig. S1). Furthermore, quantile regression analyses

reveal stronger variations at the high end of soil moisture per-

sistence (figure not shown), which is in agreement with the in-

creased soil moisture droughts (Li and Ma 2015) in the regions.

e. Seasonal contributions to decadal persistence variability

The seasonal contributions to decadal persistence variability

are investigated during the 2010s relative to the 1980s (2018–14

minus 1981–85), owing to the similarity between the decadal

patterns. The seasonal changes show that strong variations

generally occur in autumn and intensify with soil depth

(Fig. 10). The regional mean changes in persistence (Table S5)

indicate that the east–west contrast in the root layer in the arid

zone starts in autumn owing to the decreases in the east and

intensifies in winter because of the considerable increases in

the west. In spring and summer, the contrast is reduced because

of the similar increases in both regions. In the lower layer, a

similar pattern appears in winter, is strongest in spring and

disappears in summer. In the transition zone, the dominant

changes also start in autumn in the root layer but in summer in

the lower layer. In the humid zone root layer, e.g., the Huang-

Huai region and southeastern China, the decadal features of

persistence changes are also shaped by autumn changes and

persist throughout winter until spring. The enhanced changes

in autumn persistence might influence the seasonal predict-

ability of the regional climate, owing to long persistence per se

or substantial soil moisture anomalies. In the eastern transition

zone, the decreases in persistence in the root layer can con-

tribute to recovery after droughts in autumn. However, once

strong droughts propagate into the lower soil, their influence

tends to persist considerably longer due to increased persistence in

this layer. In contrast, in southeastern China, the persistence in-

creases in summer and autumn in theupper soil layer but decreases

in the lower layer, indicating the prolonged durations of anomalies

(e.g., floods/droughts) in the upper soil layer but reduced durations

of anomalies in the deep soil over the last decades. Note that soil

moisture persistence based on lag autocorrelation is dependent on

the length of the given time series, which tends to undervalue the

seasonal contributions to decadal persistence variabilities. For

example, there are no similarly large-scale seasonal persistence

decreases compared to decadal variabilities in the upper and root

layers in the Huang-Huai regions.

4. Discussion

a. Possible mechanisms for the variability in soil moisture

persistence

Soil moisture persistence stems from land–atmosphere in-

teractions. Its variability is jointly driven by atmospheric and

land processes. Previous studies have identified several factors

that regulate soil moisture persistence, e.g., initial soil mois-

ture, subsequent atmospheric forcing, interactions between

terrestrial hydrological processes (Delworth andManabe 1988,

1989; Koster and Suarez 2001; Mahanama and Koster 2005;

Seneviratne et al. 2006; Orth and Seneviratne 2012, 2013;

MahfuzurRahman and Lu 2015; Gao et al. 2018; McColl et al.

2019), soil freeze/thaw, snowpack, and vegetation processes

(Shinoda 2001; Liu 2010; Yang andWang 2019). These findings

have been confirmed by ground/satellite observations and by

modeling studies, which fundamentally contribute to the un-

derstanding of possible mechanisms underlying the variability

in soil moisture persistence.

Persistence increases from humid to arid regions, especially

in the deep soil, and is characterized by a southeast–northwest

gradient. This spatial pattern is in line with both observational

and model-based patterns (Liu and Avissar 1999; Seneviratne

et al. 2006), especially when interannual persistence is taken

into account (Fig. 11). The spatial gradient might be interpreted

via the following aspects: 1) Large-scale climate forcing. The

monsoon establishes a moisture gradient from humid south-

eastern China to dry northwestern China. In dry regions,

positive/negative soil moisture anomalies aremainly dissipated

by evapotranspiration/rainfall, while in humid regions, they are

dissipated by runoff/rainfall (Seneviratne et al. 2006). The high

(low) precipitation frequency contributes to the quick (slow)

dissipation of negative soil moisture anomalies in humid (arid)

regions. In terms of positive anomalies, dissipation by evapo-

transpiration in arid regions is slower than that by runoff

processes, owing to the hysteretic effects of the soil water re-

tention curve (Haines 1930). On a large scale, the dissipation

rate of soil moisture anomalies is tied to potential evaporation

(Liu and Avissar 1999), which is smaller at high latitudes/

elevations than at low latitudes/elevations. Thus, the south–

north gradient of the dissipation rate contributes to shaping the

pattern of soil moisture persistence. 2) Regional climate and

vegetation processes. At high latitudes/elevations (e.g., on the

Tibetan Plateau), soil anomalies are preserved as variations in

the amount of soil ice and are carried into the next year, ex-

tending the persistence of anomalies by several months (Yang

and Wang 2019). Additionally, the surface snow cover further

prolongs the persistence of anomalies across northern China

via snow hydrological effects (Matsumura and Yamazaki 2012).

Vegetation processes, especially variations in root depth, may

affect soil water flow and contribute to the persistence gradient

owing to differences in species and properties (Shinoda 2001).

In addition to the aforementioned factors, the other processes

of land–atmosphere interactions might contribute to the for-

mation of persistence patterns in China, and these contributors

may vary with location and time.

Decadal variations in soil moisture persistence during 1979–

2018 (Figs. 9 and 10) can be interpreted largely from the per-

spective of climate change and variability, as the changes in the

properties of soil, topography, and land use and land cover are

not explicitly considered in the ERA5 model system. With

climate change, the land water cycle, as a component of Earth’s

climate system, has also been altered (Milly et al. 2005). Where

the soil moisture goes into drying states or strengthening
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FIG. 10. Decadal differences in the seasonality of the soil moisture persistence in the three soil layers between the 2010s and 1980s. The

1980s and 2010s denote the same periods as in Fig. 9. March–May (MAM), June–August (JJA), September–November (SON), and

December–February (DJF). The red and blue lines denote AI 5 0.2 and 0.65 contours, respectively, indicating the arid, transition, and

humid climate zones from northwest to southeast. The black (dashed) lines denote the 30% variations.
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variations, soil moisture persistence tends to increase in these

regions. For example, soil moisture persistence shows pre-

dominant increases across drylands, which may point to the

intensified impacts of soil droughts and the expansion of dry-

land areas over the last four decades. The decreases in per-

sistence in parts of the semiarid Tibetan Plateau indicate a

substantial improvement in soil wetness.

In parts of the arid regions, precipitation increases signifi-

cantly, as does the soil moisture; however, the absolute in-

creases are not enough to change the soil moisture regime or to

depress frequent negative soil moisture anomalies. On the

central Tibetan Plateau, more convective precipitation is trig-

gered as the surface air temperature increases (Yang et al.

2014). The increased precipitation leads to increases in the soil

moisture, which greatly shortens the persistence of negative

soil moisture anomalies, especially in the upper soil layer. The

increases in soil moisture can also be indirectly confirmed by

significant lake expansion and runoff increases (Lei and Yang

2017; Zhang et al. 2019). Nonetheless, the mechanisms still

require more effort due to the fewer observations available at

this point over this region.

In the humid Huang-Huai region and southern China with

consistently high soil moisture, the increases in precipitation

amount and frequency (Piao et al. 2009; Gu et al. 2017) assist in

more quickly dissipating negative soil moisture anomalies,

leading to decreases in persistence. Regarding positive anom-

alies in soil moisture, runoff processes can more rapidly drain

water from wetter soil, dissipating anomalies in soil moisture.

The increase in persistence across this region is largely regu-

lated by changes in the precipitation regime; for instance, in

1960–2011, the observed amounts and frequencies of light and

moderate rain in southeastern China significantly decreased,

while heavy rain and rainstorms increased (Huang et al. 2015).

The changed precipitation regime, along with increased evapo-

transpiration under warming conditions, reduces soil moisture

and hence prolongs the persistence of soil moisture anomalies.

Reduced precipitation and, thus, significant soil moisture de-

creases (p , 0.05) largely account for the increase in persis-

tence in southwestern China (e.g., Yunnan Province), which is

consistent with the intensified droughts in recent decades (Yan

et al. 2017).

Regarding the seasonality of variations in soil moisture

persistence, owing to the monsoon climate in China, the soil

generally absorbs water from rainfall in summer and releases

water in autumn. An absorption depends on large soil pores,

but desorption is governed by smaller pores, which results in a

hysteretic effect between the absorption and desorption of soil

water (Haines 1930). This process amplifies the variations in

soil moisture anomalies in autumn.

b. Implications of soil moisture persistence changes for

terrestrial environments

To understand the implications of changes in soil moisture

persistence on terrestrial environments, taking drylands as an

example, the variations from 1979 to 2018 in China are com-

pared between estimates using the atmospheric indicator and

soil layer soil moisture (Fig. 12). The geographic locations of

the drylands and their changes are generally consistent be-

tween the estimates by the index AI and soil moisture. They

both display a southeastward expansion of drylands in China;

however, their intensities are substantially different. Based on

AI, the expansion over the growing season (May–September)

reaches 0.72Mkm2 in the 2010s and increases by approximately

21.6% compared with the area in the 1980s. However, based on

soil moisture, the values are 0.50Mkm2 and 14.9%. In the

central Tibetan Plateau, according to the soil moisture crite-

rion, the extensive dryland contraction detected by AI did not

occur until the 2010s. Considering the possible periodicity of

climate, dryland changes are further compared between the

1990s and 1980s (Fig. 13). The expansion is 12.5% and 3.2%

based on AI and soil moisture, respectively, along with slight

contractions in the central Tibetan Plateau. The directions of

FIG. 11. Spatial patterns of mean soil moisture persistence based on a 5-yr time frame in the three soil layers. The estimation is conducted

using 5-yr daily soil moisture anomalies (n 5 1825) averaged during 1981–85, 1991–95, 2004–08, and 2014–18 in each of the three layers.
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the dryland variations agree with those in the 2010s but with

less intensity, highlighting the persistent southeastward ex-

pansion of drylands in China. The dryland expansion/contraction

is consistent in space with the increases/decreases in the root

layer soil moisture persistence during the main growing sea-

sons, manifesting soil moisture regime changes in those re-

gions. The comparisons illustrate the difference between soil

dryness and atmospheric dryness, despite the tight connection

with each other. Soil moisture changes exhibit more direct

impacts of climate change on terrestrial processes and envi-

ronments, e.g., resulting in different dryland changes. Changes

in soil moisture persistence reflect changes in soil moisture

regimes and the profound responses and feedbacks in terres-

trial environments to climate change.

c. Limitations and uncertainty

Some caveats in the present study should be noted. First, this

study is focused on intra-annual persistence on the daily scale,

FIG. 12. Geographic distributions of drylands and their areal changes according to (a) AI and (b) soil moisture

during growing seasons between the 2010s and the 1980s. AI denotes aridity index, the ratio of annual precipitation

to evapotranspiration, and SM is soil moisture (m3m23); the red and blue contours represent expanded and con-

tracted regions of drylands during the 2010s relative to the 1980s, based separately on the AI and soil moisture

metrics.

FIG. 13. As in Fig. 12, but for the comparison between the 1990s and 1980s.
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and in quantitative terms, the estimates are somewhat different

from those of interannual persistence or those based onmonthly

mean soil moisture, owing to the filtering effects of various

time intervals. Second, the analysis using soil moisture data is

taken from the ERA5 reanalysis. Its model system has yet to

explicitly represent land-use change and groundwater effects

on soil moisture and thus may omit some information on soil

moisture persistence. Third, comparisons of the ERA5 soil

moisture to in situ observations show varying degrees of dis-

agreements in long-term variabilities, and resolving this issue

will require many more observations at various soil depths in

order to perform more rigorous validation in the future. If the

disagreement is attributed to the ERA5 soil moisture biases,

more care should be taken in long-term trend analyses using

this reanalysis soil moisture data. Moreover, the scale mis-

match between observational sites and model grid cells should

be taken into account in terms of the effectiveness of validation

using in situ observations. Additionally, by now, there are still

large areas in China that are not covered by observational

networks (e.g., the western Tibetan Plateau). In these areas,

the variability in soil moisture persistence might be the result

of uncertainties and errors from the biases in the reanalysis soil

moisture product. In the future, other components of terres-

trial cycles, e.g., runoff and evapotranspiration, should be

compared to cross-examine the soil moisture dataset once

observations are available. Fourth, the lag autocorrelation

analysis framework combines negative and positive soil mois-

ture anomalies. Assessment of the separate persistence of the

two types of soil moisture anomalies could be more helpful in

understanding the regional impacts of climate change.

5. Summary and conclusions

In the present study, the variability in intra-annual persistence

of soilmoisture acrossChina during 1979–2018 is examinedusing

the ERA5 reanalysis from the ECMWF. The ERA5 soil mois-

ture dataset is first validated against in situ observations, and

ERA5 is verified to be able to reasonably represent soil moisture

evolutions from daily to annual time scales.

Based on the framework of lag autocorrelation, the estimation

reveals a considerable increase in soil moisture persistence with

soil depth. In the upper and root layers, the maximum persis-

tence (over 30 days) occurs in the transition zone and regions

with large soil moisture variabilities. In the deep layer, the mean

persistence grows to 115 days in the arid zone and 60 days in the

humid zone, and the spatial gradient appears to be opposite that

of soil moisture. Persistence is prolonged in autumn, and the

seasonality intensifies with soil depth. On decadal scales, soil

moisture persistence shows predominant increases across dry-

lands, especially in the lower soil layer, contributing to the in-

tensification of soil droughts and the expansion of dryland areas

over the last four decades.

The changed soil moisture persistence indicates the variability

in soil hydrological regimes under a changing climate and the

potentially profound responses of terrestrial environments to

climate change. These findings identify the implications of the

impacts of climate change in terms of terrestrial hydrological

cycle variability. In the future, the role of soil moisture in climate

change impact evaluations should be studied further.
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