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Abstract

The acquisition of new motor skills is essential throughout daily life and involves the processes of learning new motor
sequence and encoding elementary aspects of new movement. Although previous animal studies have suggested a
functional importance for striatal dopamine release in the learning of new motor sequence, its role in encoding elementary
aspects of new movement has not yet been investigated. To elucidate this, we investigated changes in striatal dopamine
levels during initial skill-training (Day 1) compared with acquired conditions (Day 2) using 11C-raclopride positron-emission
tomography. Ten volunteers learned to perform brisk contractions using their non-dominant left thumbs with the aid of
visual feedback. On Day 1, the mean acceleration of each session was improved through repeated training sessions until
performance neared asymptotic levels, while improved motor performance was retained from the beginning on Day 2. The
11C-raclopride binding potential (BP) in the right putamen was reduced during initial skill-training compared with under
acquired conditions. Moreover, voxel-wise analysis revealed that 11C-raclopride BP was particularly reduced in the right
antero-dorsal to the lateral part of the putamen. Based on findings from previous fMRI studies that show a gradual shift of
activation within the striatum during the initial processing of motor learning, striatal dopamine may play a role in the
dynamic cortico-striatal activation during encoding of new motor memory in skill acquisition.
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Introduction

Motor skill learning is defined as a change in motor per-

formance with practice and includes a number of aspects such as

increasing the repertoire of motor behaviour and maintenance of

acquired behaviour over a period of time [1] . If a point-to point

movement is made faster and with greater accuracy through

practice, there results in a learning process, recognized as a new

skill acquisition [2,3,4,5]. Such motor skill acquisition is essential

in daily life. It is based on the formation of order of complex

movements with sequential elements (learning new motor

sequence) and reconstruction of muscle control of isolated

movement (encoding elementary aspects of movement) [6,7].

Many functional imaging studies revealed that the neural basis of

the motor skill learning is attributed to different portions of the

brain including the motor cortices, cerebellum and basal ganglia

[8,9,10,11].

Dopaminergic signals in the striatum and motor cortex play

essential roles in the induction of synaptic plasticity and motor skill

acquisition. Administration of a D1 receptor antagonist to the

striatum previously resulted in impaired motor skill acquisition

[12] [13], while 11C-raclopride positron emission tomography

(PET) showed dopamine release in the striatum during new motor

sequence learning [14]. The motor cortex is also associated with

encoding elementary aspects of movement such as dynamic

acceleration and force [15,16,17].

Muellbacher and colleagues previously carried out a transcra-

nial magnetic stimulation (TMS) study in which subjects rapidly

learned how to optimize ballistic thumb flexion with the aid of

visual feedback, as indicated by increased thumb acceleration. The

simple repetitive movements changed into an acquired motor skill

after 60 minutes of training. The acquisition of new motor skills

was shown to be associated with the early consolidation of motor

memory, the memory stabilization from interference by repetitive

TMS, causing rapid induction of motor cortical plasticity. Evidence

indicated that encoding elementary aspects of movement can be

related to the formation of new motor memory [18,19]. However, it

remains unclear whether striatal dopamine is associated with

encoding of new motor memory during skill acquisition.

The aim of the present study, therefore, was to investigate

whether striatal dopamine is related to the intrinsic processing of

new motor memory, dependent on the time course of training. We

examined striatal intrinsic dopamine levels as measured by 11C-

raclopride PET during the skill acquisition task developed by

Muellbacher on Day 1 (initial skill-training) and Day 2 (acquired

conditions). Our hypothesis was that striatal dopamine levels
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would change in association with encoding of new motor memory

during skill acquisition.

Materials and Methods

Subjects
Ten healthy volunteers (six males, four females; mean age 6

standard deviation [SD] = 68.862.7 years) with no history of

neurological or psychiatric disorders were enrolled in the study. All

subjects were right-handed according to the Edinburgh Inventory

(Oldfield, 1970). All participants provided written and informed

consent in accordance with the dictates of the trust ethics

committee of Nagoya-City University Hospitals, Nagoya, Japan

and the National Centre for Geriatrics and Gerontology, Obu

City, Japan. The ethics committee of Nagoya-City University

Hospitals and the National Centre for Geriatrics and Gerontology

specifically approved this protocol (protocol number 46-08-0002).

Experimental procedure
To elucidate potential changes in striatal dopamine release

associated with differences in the processing of motor memory

dependent on the time course of skill-training, 11C-raclopride

positron-emission tomography (PET) scanning was performed on

two separate days, two weeks apart (Day 1; initial skill-training, Day

2; acquired). This technique detects subtle differences in the amounts

of dopamine released under different conditions [20,21,22]. Based

on previous11C-raclopride PET studies, the task was started 5 min

prior to the injection of 11C-raclopride to maintain detection

sensitivity throughout the duration of the scan [22,23].

During Day 1, subjects rapidly learned how to effectively

contract their left flexor pollicis brevis muscles with the aid of

visual feedback. On Day 1, they performed one block of motor

practice outside the scanner (session 1) then completed a further

six blocks while they underwent PET scanning (session 2, blocks 2–

3; session 3, blocks 4–5; session 4, blocks 6–7). Each block of motor

practice included 60 movements in block 1 and 120 movements in

blocks 2–7. A 3-min rest period was provided between each block,

and it took 3 min in block 1 and 6 min in each block 2–7 to

complete. There was no interim practice between Day 1 and Day

2. Two weeks after Day 1, on Day 2, the same subjects performed

four blocks of motor prepractice (block 1 and blocks 2–4) 3 hours

before the PET scan in order to retrieve the skill. In the acquired

condition, participants then performed seven blocks of the motor

task (sessions 1–4), as described for initial skill-training conditions:

that is, they performed session 1 outside the scanner and then

completed sessions 2–4 while they underwent PET scanning

(Figure 1A, 1B).

The difference in levels of striatal dopamine released between

the two conditions represents the encoding of new motor memory

during skill acquisition, if the motor skill was retained in the

acquired condition.

Behavioural task
The task was modified from the established motor skill-

acquisition protocol [18,19,24] and consisted of repeated rapid

contraction of the left thumb. Subjects rapidly learned how to

optimise rapid finger movements with the aid of visual feedback.

Subjects practised rapid contraction of their left flexor pollicis

brevis muscles to the beat of a metronome every 3 s. The non-

dominant hand was chosen to ensure that the task involved motor

learning [25]. Each block of motor practice included 60

movements in block 1 and 120 movements in blocks 2–7. The

change in sequential one-dimensional acceleration of the left

thumb during each contraction was recorded with a piezoelectric

Figure 1. Experimental procedures. (A) Time schedule of experiments. Subjects were scanned for evaluating striatal dopamine levels using 11C-
raclopride PET on Day 1 (initial skill-training condition) and Day 2 (acquired condition). (B) 11C-raclopride PET scanning. 11C-raclopride (555 MBq) was
injected into the right vein just before the emission data was acquired. They practiced rapid contraction of their left thumb via visual feedback during
PET scanning. (C) Display seen by subjects during motor practice. Three coloured horizontal lines were graphically presented to help subjects
understand the quality of their performance: peak acceleration of the present movement (blue), mean peak acceleration of all previous trials within a
block (green) and maximum peak acceleration of all previous trials within a block (red).
doi:10.1371/journal.pone.0031728.g001
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accelerometer mounted on the proximal phalanx (model 25A,

Isotron PE Accelerometer, 4.575 mVg21 sensitivity, Endevco, San

Juan Capistrano, CA). The signal was amplified with a battery-

powered low-noise signal conditioner (model 4416B Isotron Signal

Conditioner, Endevco) and digitized with a PCI-MIO-16E4 board

(National Instruments, Austin, TX) at a rate of 2,000 Hz. Peak

acceleration was recorded precisely using 6,000 sampling points

within 3 s.

Subjects were asked to perform the metronome-paced muscle

contraction as fast as possible with the aid of visual feedback. Real-

time acceleration was graphically displayed on the monitor for 1 s

immediately after the end of movement. Data were graphically

presented to subjects as three coloured horizontal lines to help

them understand the quality of their performance: peak acceler-

ation of the present movement (blue), mean peak acceleration of

all previous trials within a block (green) and maximum peak

acceleration of all previous trials within a block (red). Subjects were

instructed to focus on elevating the blue line above the green line

(Figure 1C). The increase of peak acceleration was displayed as the

elevation of the green line. Data from each behavioural trial were

stored on a laboratory computer for offline analysis.

The maximal peak force between the index finger and the

thumb was also measured five times with a pinch gauge (in kgf)

(JAMAR Hydraulic Pinch Gauge, PC-7498-05; Sakai Co, Japan)

immediately before session 1 and after session 3 for both initial

skill-training and acquired conditions.

Behavioural data analysis
To assess the quality of motor-skill performance, the mean peak

acceleration of the 60 or 120 executed movements in each block

was calculated (in cm/s2). The first 10 trials in session 1 were

excluded from analysis because of incomplete data acquisition and

high variability. Mean values for the remainder of sessions 1–4

were therefore analysed.

We hypothesized that the motor performance in the Day 1 would

improve with repeat practice to ultimately reach plateau level,

whereas, any more performance improvement would not occur

in the Day 2. To confirm behavioural changes reflecting skill

acquisition in the present protocol, mean accelerations were

compared using one-way repeated-measures analyses of variance

(ANOVA), with the time of sessions 1–4 as a within-subject variable,

followed by a post-hoc paired t-test. For the acquired condition, we

evaluated whether the mean acceleration was retained from start to

finish using one-way repeated-measures ANOVA. Missing data due

to accelerometer failure during the PET scan were linear-

interpolated.

Imaging data acquisition and analysis
Volumetric anatomical magnetic resonance imaging (MRI) of

the brain was carried out with a 1.5-Tesla scanner, using a T1-

weighted inversion-recovery fast-spoiled gradient-echo sequence

(Phillips Intera 1.5T; slice thickness, 1 mm; transverse plane;

repetition time, 8.3 ms; echo time, 3.8; flip angle = 30u; matrix

size, 2566256).
11C-raclopride PET scans were performed using an ECAT

EXACT HR tomograph (CTI/Siemens, South Iselin, NJ) in

three-dimensional acquisition mode, which yielded 47 simulta-

neous planes, with an inter-slice spacing of 3.125 mm, an axial

full-width at half-maximum resolution of 4.8 mm and an in-plane

resolution of 4.0–3.9 mm at the centre. The subject was positioned

in the scanner so that the entire brain was within the field of view.

The head position was maintained using moulded foam headrests.

To correct for tissue attenuation of 511 keV annihilation

radiation, two-dimensional transmission scanning was performed

for 10 min prior to the tracer injection using a retractable 68Ga/

68Ge source. 11C-raclopride (555 MBq) was injected into the right

antecubital vein over a period of 30 s, and emission data were

acquired over a period of 60 min in 19 sequential frames of

progressively increasing duration. The injection was performed

between 15:00 and 16:00.

Two analytical methods were used to estimate changes in

striatum dopamine release: a demonstration of changes in 11C-

raclopride binding using the region of interest (ROI) approach,

and a voxel-based analysis using statistical parametric mapping

[26].

ROI analysis
11C-raclopride PET data were pre-processed and analysed by a

neuroradiologist using PMOD software (PMOD Technologies,

Zurich, Switzerland). The dynamic PET frames for the two

conditions and the MRI T1 structural images were initially

imported into PMOD, and image volumes were reoriented in

accordance with the inter-hemispheric fissure and inter-commis-

sural plane. The ROIs were then traced around the caudate and

putamen of the bilateral hemispheres on each subject’s MRI T1

image for all planes in which these structures were clearly defined.

Reference regions were traced on the bilateral cerebellum as two

elliptic regions placed over the cerebellar hemisphere.

MRI T1 images and PET scans of the two conditions were

rigidly matched by the shift and rotation of spatial coordinates. In

this co-registration process, we performed intra-modality matching

for PET scans, and the MRI T1 images were then spatially

transformed to PET scans using the automatic cross-modality

matching method (with trilinear interpolation, an 8-mm sample

rate and the Powell minimization method).

The binding potential (BP) was calculated from the radioactivity

concentration ratios in regions with and without specific receptor

binding. The cerebellum was used as a receptor-less reference

region because of its paucity of dopamine receptors. In the present

study, 11C-raclopride BP was computed using regional time-

activity curves, which indicated changes in radioactivity concen-

tration. By applying the ROIs and reference regions as volumes of

interest (VOIs), time-activity curves were obtained for receptor-

rich (putamen and caudate) and receptor-less (cerebellum) regions

[27]. BP was computed using Logan reference-region graphical

analysis [28]. A reduction in 11C-raclopride BP indicated an

increase in extra-cellular dopamine concentration [29].

Changes in 11C-raclopride BP were evaluated using a repeated-

measure ANOVA, with condition (Day 1 and Day 2) as a within-

subject variable and place (right putamen, left putamen, right

caudate and left caudate) as a between-group variable. The

Greenhouse-Geisser method was used to correct for nonsphericity.

If the effect was significant, a post-hoc paired t-test was performed

on the data.

Voxel-by-voxel analysis
Striatal and cerebellar VOIs were created using MRIcro

software (Version 1.40.1; http://www.sph.sc.edu/comd/rorden;

Chris Rorden, University of South Carolina, Columbia, SC) on

MRI T1 images. VOIs and MRI T1 images for each subject were

co-registered to the integrated PET images, which were produced

by summing the frames from the first 5 min of the PET scanning

in the skill-acquisition condition. Co-registered VOIs were then

used to obtain regional time-activity curves for receptor-rich and

receptor-less regions within PMOD. These curves were incorpo-

rated into the pixel-by-pixel calculation of BP, then parametric BP

images were created.

Striatal Dopamine Release during Skill Learning
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Co-registered MRI T1 images were transformed into standard-

ized Montreal Neurological Institute (MNI) stereotactic space

(http://www.bic.mni.mcgill.ca) using Statistical Parametric Map-

ping 5 (SPM5; Wellcome Department of Imaging Neuroscience;

freely available at http://www.fil.ion.ucl.ac.uk/spm) implemented

within Matlab R2006. In the process of spatial normalization using

SPM5 default parameters, the transformation matrix obtained

from this step was applied to the parametric BP images, placing all

BP images in MNI space. MRI T1 images and striatal VOIs were

directly transformed into MNI space, then the averaged image of

all subjects’ normalized VOIs was created. BP images and the

averaged striatal VOI were resliced to a final voxel size of

36363 mm, and smoothed with an 8-mm full-width at half

maximum Gaussian kernel.

In order to elucidate sub-regions of the striatum which indicated

significant change between the two conditions, voxel-wise paired t-

tests between the initial skill training and acquired conditions were

conducted in SPM5 as follows: initial skill training – BP,acquired

– BP, and acquired – BP,initial skill training– BP, without a

global normalization procedure. To limit analysis within the

striatum, the striatal VOI was used for mask image in the process

of voxel-wise comparisons. The threshold of significance was set at

P,0.05.

Results

Behaviour
The mean acceleration showed significant repetition-related

improvements and a constant value of learning was attained

during initial skill-training, but not the acquired condition, with

the improved performance being retained and over-learned at the

start of the latter condition.

Changes in the mean acceleration of sessions 1–4 were separately

compared using one-way repeated-measures ANOVA, which

demonstrated a significant effect of time (*P = 0.03). The mean

(6 standard error of the mean [SEM]) accelerations in session 2

(1,6506120 cm/s2) and session 3 (1,7906170 cm/s2) were signif-

icantly increased compared with session 1 (1,2606130 cm/s2)

(*P = 0.02 in session 2 and *P = 0.05 in session 3), whereas the mean

acceleration in session 4 did not reach significance (1,6506170 cm/

s2) (P = 0.15) (Figure 2). This finding was in agreement with

previously reported data on the learning-related improvement in

elementary movement, which showed significant gains in acceler-

ation until the end of a 60-min learning period [19].

By contrast, in the acquired condition, one-way repeated

measures ANOVA demonstrated no effect of time (P = 0.43),

without additional gains in acceleration (1,6206160 cm/s2 in

session 1, 1,8106170 cm/s2 in session 2, 1,7506150 cm/s2 in

session 3 and 1,7406140 cm/s2 in session 4). Moreover, the mean

pinching force of the post session 3 was significantly increased

compared with the baseline (before session 1) in the initial skill-

training (mean 6 SD 6.661.5 kg for baseline and 7.661.9 kg for

post session 3, **P = 0.02, examined by paired t-test) (Figure 3A).

By contrast, it was not changed in the acquired condition

(7.262.8 kg before, 7.362.1 kg after, P = 0.8).

For the baseline of session 1, the mean acceleration was

significantly increased in the acquired condition of Day 2

(27.2%63.4) compared with initial skill-training, suggesting that

the improved performance was retained in the former

(**P = 0.007, examined by t-test). In the motor prepractice in

Day 2, one-way repeated measures ANOVA demonstrated no

effect of time (P = 0.93), without additional gains in acceleration

(1,5506200 cm/s2 in session 1, 1,6606160 cm/s2 in session 2,

1,7006190 cm/s2 in session 3 and 1,6406180 cm/s2 in session 4).

The mean acceleration did not differ significantly between block 1

and block 4 (P = 0.56) (Figure 3B). In addition, the mean

acceleration did not differ significantly between session 4 of Day

1 and session 1 of the acquired condition of Day 2 (P = 0.76), and

between session 4 of Day 1 and block 1 of the motor prepractice in

Day 2 (P = 0.49). This finding supports the notion that the

improved motor performance obtained during training in Day 1

was retained in Day 2, and that the performance was no further

improved after the prepractice of Day 2.

Comparison of the mean acceleration in sessions 1–4 between

initial skill-training and the acquired condition showed no

statistical difference (mean 6 SEM = 1,5906150 cm/s2 versus

1,7306160 cm/s2, P = 0.2, examined by t-test), suggesting that the

motor performance itself did not differ between the two

conditions.

11C-raclopride PET study
In the ROI analysis of 11C-raclopride BP, repeated measures

ANOVA demonstrated a significant main effect of place

(*P = 0.005) and condition (*P = 0.02), as well as an interaction

Figure 2. Mean acceleration changes in initial skill-training and acquired conditions. In initial skill-training, the mean accelerations were
significantly increased in sessions 2 and 3 compared with session 1, whereas the mean acceleration in session 4 did not reach statistical significance.
For the baseline, t-testing revealed a significant increase in mean acceleration for session 1 in the acquired condition compared with initial skill-
training. In the acquired condition, no additional gains in acceleration were observed in sessions 2–4. Y axis indicates the ratio of mean accelerations
compared with baseline of session1 on Day 1. Error bars show the SEM. *P,0.05, #P,0.01.
doi:10.1371/journal.pone.0031728.g002
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between condition and place (*P = 0.04). The post-hoc paired t-test

revealed that11C-raclopride BP was significantly reduced on Day 1

compared with Day 2 in the right putamen (*P = 0.02, F(1,9) = 8.0),

but not in the left putamen (P = 0.42, F(1,9) = 0.07), right caudate

(P = 0.98, F(1,9) = 0.001) or left caudate (P = 0.47, F(1,9) = 0.59)

(Figure 4). Thus, changes in striatal dopamine release were only

observed within the right putamen.

Voxel-wise analysis was performed to elucidate sub-regions of

the striatum that demonstrated a significant change between the

two conditions. 11C-raclopride BP in the right antero-dorsal to

lateral part of the putamen was reduced during initial skill training

compared with the acquired condition (initial skill-training –

BP,well-learned – BP) (Figure 5). The peak coordinate of the area

of BP reduction was within the anterior part of the putamen

(X = 30, Y = 4, Z = 12). No such reduction in BP was observed in

the acquired compared with the initial skill training conditions

(acquired – BP,initial skill-training– BP), and no significant BP

changes were detected in the bilateral caudate and left putamen.

Discussion

This study revealed a reduction in 11C-raclopride BP within the

right putamen during initial skill-training compared with acquired

conditions, which was associated with increased acceleration of

left-thumb movement. Voxel-wise analysis confirmed this finding,

and further localised the area of change to the right antero-dorsal

to lateral part of the putamen.

Role of striatal dopamine release during motor skill
acquisition

During initial skill-training, the mean acceleration of each session

was improved through repeated training sessions (session 2–3) until

performance approached asymptotic levels (session 4), whereas the

improved motor performance was retained from the beginning of

the acquired condition. The pinching force results revealed a similar

tendency in accordance with previous reports [18,19]. In the

present study, although subjects performed a 3-hour prepractice

session on Day 2 (acquired condition), there were no significant

behavioural changes in prepractice session and between the last

session of Day 1 and the first session of Day 2, suggesting that motor

skills are still retained two weeks after initial training.

On the other hand, the mean accelerations of sessions 1–4

did not differ between the two conditions, showing that the altered

motor performance did not influence dopamine release. There-

fore, these behavioural results indicate that initial skill-training is

associated with the intrinsic process of the acquisition of new

motor skills, whereas the acquired condition is associated with the

mere motor execution of the learned skill.

Figure 3. Mean pinching force changes in initial skill-training on Day 1 and mean acceleration changes in prepractice on Day 2. (A)
Changes of the mean pinching force in the initial skill training between baseline (before session 1) and post session 3. Y axis indicates mean pinching
force (kg). Error bars show the SD. *P,0.05. (B) Mean accelerations in the motor prepractice between block 1 and block 4. Y axis indicates mean
accelerations (cm/s2). Error bars show the SEM. N.S. not significant.
doi:10.1371/journal.pone.0031728.g003

Figure 4. 11C-raclopride BP changes in the bilateral putamen and caudate nucleus between the two conditions. In the right putamen,
11C-raclopride BP was significantly reduced during initial skill-training compared with the acquired condition, whereas no significant reduction was
observed in the left putamen. In the bilateral caudate, no significant changes were observed between the two conditions. The mean (6 SEM) BP
during initial skill-training was 2.7260.86 in the right putamen and 3.4260.99 in the left putamen.
doi:10.1371/journal.pone.0031728.g004
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Based on the time-activity curves of 11C-raclopride (life time,

20 minutes), BP reduction reflects endogenous dopaminergic

transmission related to the performance of different tasks during

the PET scan, particularly just before and until several hours after

the injection of 11C-raclopride [22,23]. Therefore, a reduction of
11C-raclopride BP in the right putamen during initial skill-training

compared with the acquired condition mainly reflects differences in

dopaminergic transmission in session 1–4 of Day 1 versus Day 2.

ROI analysis showed that 11C-raclopride BP was significantly

reduced in the right putamen on Day 1 compared with Day 2.

Dopaminergic signals in both the striatum and motor cortex play

essential roles in motor skill acquisition and the induction of

synaptic plasticity [30]. In animal studies, dopaminergic signalling

in the primary motor cortex is necessary for motor skill acquisition,

but not for the execution of a learned task [13]. The striatal

regional administration of a D1 receptor antagonist was previously

shown to impair the acquisition and consolidation of motor skill

memory [12,31].

In the human, dopamine was also found to be released in the

striatum during new motor sequence learning, [14], and its

administration can enhance the ability to encode an elementary

motor memory in the primary motor cortex [32]. Based on these

findings, it is conceivable that the different patterns of dopami-

nergic transmission found in the right putamen reflect the

encoding of new motor memory during motor skill acquisition,

but not the execution of a learned skill. The study by Lappin and

colleagues compared dopamine levels between the conditions of

motor-sequence learning and resting, so that the task-dependent

dopamine release might be contaminated by finger movements

during motor-sequence learning. The present study used the

acquired condition with finger movements as a control, such that

possible effects of motor components could be cancelled out.

The serial condition with performance reaching nears plateau

levels in Day 1 would be another important control. However, our

concept in the present study was not to evaluate behavioural

facilitated changes in finger movement within one day but the

intrinsic processing of motor memory over a period of weeks,

hence Day 2 was used as the control.

Striatal subdivisions associated with motor skill
acquisition

Voxel-wise analysis clarified sub-regions of the striatum. We

observed significant BP changes in the right antero-dorsal and

lateral parts of the putamen during initial skill-training compared

with the acquired condition; the peak coordinate was located in

the anterior putamen.

Based on anatomical and functional connectivity, the human

striatum can be divided into the following functional subdivisions:

the associative striatum (the caudate, anterior-dorsal and medial

putamen), the sensorimotor striatum (the posterior-lateral puta-

men) and the limbic striatum (the ventral putamen) [33,34]. The

regions related to the skill acquisition in the present study were

located in the antero-dorsal and lateral parts of the putamen,

which belong to the associative and sensorimotor striatum.

Our results are consistent with previous fMRI studies that show

a gradual shift of functional activation within the striatum

during the initial processing of motor sequence learning; that is,

a transfer of increased blood-oxygen-level-dependent (BOLD)

signal from the associative to the sensorimotor striatum

[35,36,37,38]. This dynamic shift is observed in the early learning

stage [39,40,41] where motor performance is improved through

repeated training sessions until performance nears asymptotic

levels that occur in the minutes to hours of a single training session

[4,42,43,44,45]. Lehericy et al. found that the shift of activation

from the anterior to the posterior putamen occurred within 10 to

50 minutes after the start of motor training [36], which is

consistent with that of initial skill-training in the present study.

Thus, right antero-dorsal and lateral parts of the putamen could

Figure 5. 11C-raclopride BP changes in sub-regions of the striatum between the two conditions. Left panel shows the grass brain map of
the voxel-based analysis of 11C-raclopride BP change (upper figure: initial skill-training condition , acquired condition and lower figure: acquired
condition , initial skill-training condition). Right panel shows coronal and axial sections of the statistical parametric map of 11C-raclopride BP change
in the initial skill-training condition versus acquired condition overlaying the MRI T1 image in stereotaxic space. Right side image corresponds to right
side brain. The displayed cluster shows the significant area of decreased 11C-raclopride BP in the right antero-dorsal and lateral part of the putamen.
The peak coordinate in the right putamen was located at X = 30, Y = 4, Z = 12. No BP change was observed in the left putamen.
doi:10.1371/journal.pone.0031728.g005
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possibly be related to the initial processing of motor memory

during motor skill acquisition.

The role of dopamine in the cortico-striatal circuit during
motor skill acquisition

Regarding the cortico-striatal anatomical connection, diffusion-

tensor imaging of fibre tracts has shown that the anterior-dorsal

putamen connects mainly to the premotor cortex, the supplemen-

tary motor area and the prefrontal cortex. By contrast, the

sensorimotor striatum connects mainly to the M1 [36,46,47,48].

In accordance with the ‘‘functional gradient of inputs’’ to the

striatum [49,50,51], the right antero-dorsal and lateral parts of the

putamen seem to be connected to the motor-related cortex.

The functional anatomy of motor sequence learning has been

extensively studied in both human and animal models, with fMRI

studies revealing that the cortico-striatal circuit contributes to the

early learning stage including the encoding and consolidation of a

motor memory [8,9,10,11,44,52,53]. Moreover, previous studies

have shown that dopamine selectively enhances active synapses in

a task-specific manner to increase the signal-to-noise ratio

[49,54]. Therefore, the gradual shift of functional activation

within the striatum during motor learning and the observed

dopamine release, especially in the lateral part of the putamen,

suggests that dopamine might be associated with primary motor

cortico-striatal circuit activation during the formation of new

motor memory.

Dopaminergic signalling related to synaptic plasticity
The early phase of skill acquisition is probably related to

synaptic plasticity in the striatum [55] [38]. Animal models have

shown that the dopaminergic signal projecting from the substantia

nigra is essential for inducing cortico-striatal synaptic plasticity in

the striatum [38,56,57,58,59]. Furthermore, regional and training-

specific changes in excitatory synaptic transmission in the striatum

were recorded in brain slices from trained mice [38]. Applying

TMS to patients with Parkinson’s disease (PD) resulted in a

dopamine-induced modification of cortical plasticity in the M1 via

a motor cortico-striatal circuit [60], suggesting that such

alterations to plasticity might be a physiological basis for motor

skill learning in humans.

The strengthening effect of the dopaminergic signal on synaptic

plasticity from the ventral tegmental area has also been reported to

cause memory formation [61]. Our study findings support the idea

that the cortico-striatal circuit plays a role in motor skill acquisition.

This contrasts with previous work with rats that showed that the

elimination of dopamine receptors and dopaminergic terminals in

the prefrontal cortex and the M1 specifically impairs the induction

of synaptic plasticity and motor skill acquisition [13,62,63]. This

discrepancy could be a result of the distinct distributions of

dopamine receptors in rats and the thresholds for dopamine

interference with motor behaviour [13,64,65].

Limitations of the study
The protocol design of this PET study has some limitations

because of group comparison between two different conditions of

skill acquisition. As the present study is based on acquisition of new

motor skill, it is difficult to totally exclude the effect of novelty to

BP changes. However, this protocol is designed to reduce novelty

effect. Firstly, since novelty difference between two conditions

mostly affect BP changes in session 1, subjects performed session 1

just before the PET scanning. Secondly, since it is difficult to

confirm the exact time when the BP change occurred in session

1–4, they performed session 1 also inside the PET scanner (not

outside) to adjust all physical and mental conditions throughout

sessions. As the previous study showed, the caudate subserve the

novelty effect during sequence learning task and motor responses

[66]. Caudate activation was found during the learning of novel

sequences of finger movements compared with those measured

during performance of prelearned sequential finger movements

[67]. In the present study, because we did not find 11C-raclopride

BP changes within the caudate in ROI analysis, novelty is less

likely to affect the result. Thus, we considered that the BP change

in the present study is related to not novelty but encoding

elementary aspects of motor behavior during skill acquisition.

In initial skill-training condition, although the mean acceler-

ation kept increasing until session 3 against previous session,

there was a slight decrease in the last session 4 against session 3.

This slight decrease curve of acceleration was seen in the session

3 against session 2 also in the acquired condition. Taking it into

the consideration that subjects had to perform repetitive

movement relatively longer time than previous studies using

the same task, even though we modified it to adjust to the PET

protocol as lower frequency and longer resting times, it was

likely to be caused by the variable across motor performance

due to exhaustion.

Furthermore, as our hypothesis in the present study is to evaluate

striatal dopamine changes in association with the encoding of new

motor memory during skill acquisition compared to the acquired

condition, we did not perform the direct comparison between each

conditions and rest. The present study used the acquired condition

with finger movements instead of rest, so that possible effects of the

movement-dependent dopamine release could be cancelled out.

Based on the previous study, the similar BP change was observed in

the sensorimotor striatum between the conditions of motor-

sequence learning and resting [14]. Therefore, findings of this

study represent real intrinsic differences in dopamine release

associated with the early stage of skill acquisition.

Conclusions
We have demonstrated effects of motor skill acquisition on

encoding elementary aspects of motor behavior and striatal

dopamine in human. As the dopamine change in the present

study was localised within the right antero-dorsal to lateral part of

the putamen, our findings suggest that striatal dopamine may play

a role in the dynamic cortico-striatal activation during encoding of

new motor memory in skill acquisition.
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