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ABSTRACT

Temperature and precipitation extremes and their potential future changes are evaluated in an ensemble

of global coupled climate models participating in the Intergovernmental Panel on Climate Change (IPCC)

diagnostic exercise for the Fourth Assessment Report (AR4). Climate extremes are expressed in terms of

20-yr return values of annual extremes of near-surface temperature and 24-h precipitation amounts. The

simulated changes in extremes are documented for years 2046–65 and 2081–2100 relative to 1981–2000 in

experiments with the Special Report on Emissions Scenarios (SRES) B1, A1B, and A2 emission scenarios.

Overall, the climate models simulate present-day warm extremes reasonably well on the global scale, as

compared to estimates from reanalyses. The model discrepancies in simulating cold extremes are generally

larger than those for warm extremes, especially in sea ice–covered areas. Simulated present-day precipita-

tion extremes are plausible in the extratropics, but uncertainties in extreme precipitation in the Tropics are

very large, both in the models and the available observationally based datasets.

Changes in warm extremes generally follow changes in the mean summertime temperature. Cold ex-

tremes warm faster than warm extremes by about 30%–40%, globally averaged. The excessive warming of

cold extremes is generally confined to regions where snow and sea ice retreat with global warming. With the

exception of northern polar latitudes, relative changes in the intensity of precipitation extremes generally

exceed relative changes in annual mean precipitation, particularly in tropical and subtropical regions.

Consistent with the increased intensity of precipitation extremes, waiting times for late-twentieth-century

extreme precipitation events are reduced almost everywhere, with the exception of a few subtropical

regions. The multimodel multiscenario consensus on the projected change in the globally averaged 20-yr

return values of annual extremes of 24-h precipitation amounts is that there will be an increase of about 6%

with each kelvin of global warming, with the bulk of models simulating values in the range of 4%–10% K�1.

The very large intermodel disagreements in the Tropics suggest that some physical processes associated with

extreme precipitation are not well represented in models. This reduces confidence in the projected changes

in extreme precipitation.

1. Introduction

Human activities and the environment are greatly

affected by climate and weather extremes. A growing

interest in extreme climate events is motivated by the

vulnerability of our society to the impacts of such

events. There is growing evidence suggesting that the

anthropogenic forcing is affecting the present climate

(International Ad Hoc Detection and Attribution

Group 2005) and will continue to do so in the future

(Cubasch et al. 2001). The impacts of the changing cli-

mate will likely be felt most strongly through changes in

intensity and frequency of climate extremes. It is there-

fore important to document future changes that might

be caused by anthropogenic activities.
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Simulations with global coupled ocean–atmosphere

general circulation models (CGCMs) forced with pro-

jected greenhouse gas and aerosol emissions are the

primary tools for studying possible future changes in

climate mean, variability, and extremes. Changes in

rainfall distributions have attracted much attention be-

cause of the particular vulnerability of human activities

to hydrological extreme events such as flood-producing

rains and droughts. The intensity of extreme precipita-

tion is projected to increase under global warming in

many parts of the world, even in the regions where

mean precipitation decreases (e.g., Kharin and Zwiers

2000, 2005; Semenov and Bengtsson 2002; Voss et al.

2002; Wilby and Wigley 2002; Wehner 2004). Future

increases in heavy precipitation are accompanied by

reduction in the probability of wet days, implying a

more extreme future climate with higher probabilities

of droughts and heavy precipitation events.

Changes in temperature extremes tend to follow

mean temperature changes in many parts of the world.

However, Kharin and Zwiers (2000, 2005) reported that

cold temperature extremes warm faster than warm ex-

tremes in mid- and high latitudes, mainly as a result of

snow and sea ice melting in winter under global warm-

ing. Increased temperature variability has been re-

ported in some studies over land in summer (Gregory

and Mitchell 1995; Kharin and Zwiers 2005), implying

potentially larger relative increases in warm extremes

than in mean summertime temperature.

The ability of the recent generation of atmospheric

general circulation models to simulate temperature and

precipitation extremes was recently documented by

Kharin et al. (2005) for models participating in the sec-

ond phase of the Atmospheric Model Intercomparison

Project (AMIP2). The purpose of the present study is

to document the performance of the current generation

of CGCMs in simulating present-day extremes of tem-

perature and precipitation and their potential changes

under different projections for the evolution of the an-

thropogenic forcing, using model output submitted to

the Program for Climate Model Diagnosis and Inter-

comparison (PCMDI; http://www-pcmdi.llnl.gov) in

support of the Intergovernmental Panel on Climate

Change (IPCC) Fourth Assessment Report (AR4).

The paper is organized as follows. Datasets are de-

scribed in the next section. Extreme value methodology

is summarized in section 3. The ability of the models to

simulate present-day precipitation and temperature ex-

tremes is documented in section 4. Their changes under

several emission scenarios are examined and discussed

in section 5. The paper is concluded by a summary in

section 6.

2. Datasets

The Working Group on Coupled Modeling (WGCM)

of the World Climate Research Program (WCRP) re-

quested that modeling groups submit daily model out-

put for a number of 20-yr time periods to PCMDI in

support of the IPCC AR4. In the present study we

analyze annual extremes of daily maximum and mini-

mum surface air temperature and of 24-h precipitation

amounts for the time period 1981–2000 from simula-

tions of the twentieth-century climate (20C3M), and for

two 20-yr time periods 2046–65 and 2081–2100 from the

Special Report on Emissions Scenarios (SRES) B1,

A1B, and A2 experiments. Figure 1 illustrates the time

evolution of carbon dioxide concentrations and sulfate

aerosol loadings in these three emission scenarios. The

gray shaded areas indicate the 20-yr time periods for

which daily temperature and precipitation output was

available for most of the models.

The B1 emission scenario, also known as the 550-

ppm stabilization experiment, envisions the slowest

growth of anthropogenic greenhouse gas concentra-

tions, followed by the A1B experiment, or the 720-ppm

stabilization experiment, with somewhat more rapid

forcing. Many groups continued these simulations up to

year 2300 with the concentrations held at the year-2100

level, but these stabilizations phases are not considered

in the present study. The fastest growing greenhouse

gas concentrations are specified in the A2 experiment

with roughly 1% per year of CO2 increase in the second

half of the twenty-first century. The CO2 concentra-

tions are similar in the A1B and A2 emission scenarios

up to the middle of the twenty-first century, but the A2

scenario also specifies somewhat greater sulfate aerosol

concentrations, which are thought to have a cooling

FIG. 1. The time evolution of the CO2 concentrations (solid

lines, y axis on the left-hand side) and globally averaged sulfate

aerosol loadings scaled to year 2000 (dashed lines, y axis on the

right-hand side) as prescribed in the IPCC SRES B1, A1B, and

A2 experiments. The gray shaded areas indicate the time periods

analyzed in the present study.
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effect on surface temperature (e.g., Ramanathan et al.

2001).

The CGCMs that we analyzed are listed in Table 1

together with their horizontal grid resolutions and the

number of vertical levels in the corresponding atmo-

spheric components. Spectral atmospheric models are

also characterized by the spectral type and truncation.

Model output was available on a variety of grids with

resolution ranging from 72 � 45 to 320 � 160, with

the median resolution being 128 � 64. The vertical

resolution varies from 12 levels to 56 levels with the

median of 26 levels. Table 1 also lists estimates of equi-

librium climate sensitivities compiled from the PCMDI

IPCC model documentation Web site (http://www-

pcmdi.llnl.gov/ipcc/model_documentation/ipcc_model_

documentation.php and references therein). Equilib-

rium climate sensitivity is defined as the global surface

air temperature change under CO2 doubling in slab

ocean experiments and ranges from 2.1 K in the Insti-

tute of Numerical Mathematics Coupled Model version

3.0 (INM-CM3.0) and National Center for Atmo-

spheric Research (NCAR) Parallel Climate Model

(PCM) to 4.3 K and larger in the L’Institut Pierre-

Simon Laplace Coupled Model version 4 (IPSL-CM4)

and Model for Interdisciplinary Research on Climate

3.2, high-resolution version [MIROC3.2(hires)]. A

number of modeling groups submitted daily output

from several ensemble members per scenario. These

models will be identified when the results of the ex-

treme value analysis are presented in the next sections.

Daily precipitation and daily temperature output for

all three scenarios was not available for all models

listed in Table 1. Daily model output from the A2 ex-

periment was not available for two models: the God-

dard Institute for Space Studies (GISS) Atmosphere–

Ocean Model (AOM) and the MIROC3.2(hires). Daily

temperature extremes were not available for the

NCAR Community Climate System Model version 3

(CCSM3). Daily temperature output from the NCAR-

PCM model was excluded from the analysis because

daily maximum and minimum temperature extremes

appear to be (erroneously) identical in 1981–2000. In

total, daily model output for years 1981–2000 was avail-

able from 14 models for temperature and from 16 mod-

els for precipitation.

To ensure consistency of the results for all three sce-

TABLE 1. List of IPCC global coupled climate models analyzed in the present study and their horizontal and vertical resolutions.

Model resolution is characterized by the size of a horizontal grid on which model output was available, and by the number of vertical

levels. Spectral models are also characterized by their spectral truncations. Equilibrium climate sensitivity is provided where available.

Model label and

climate sensitivity Resolution Institution and reference

CGCM3.1(T47) 3.6 K 96 � 48 L32 T47 Canadian Centre for Climate Modelling and Analysis

(http://www.cccma.ec.gc.ca/models/cgcm3.shtml)

CGCM3.1(T63) 3.4 K 128 � 64 L32 T63 Canadian Centre for Climate Modelling and Analysis

(http://www.cccma.ec.gc.ca/models/cgcm3.shtml)

CNRM-CM3 n/a 128 � 64 L45 T63 Centre National de Recherche Météorologique, France (Salas-Mélia et al. 2006,

manuscript submitted to Climate Dyn.)

ECHAM5/MPI-OM 3.4 K 192 � 96 L31 T63 Max-Planck-Institut für Meteorologie, Germany (Jungclaus et al. 2006)

ECHO-G 3.2 K 96 � 48 L19 T30 Meteorological Institute of the University of Bonn, Germany, Meteorological

Research Institute, South Korea (Min et al. 2005)

GFDL-CM2.0 2.9 K 144 � 90 L24 Geophysical Fluid Dynamics Laboratory (Delworth et al. 2006; Gnanadesikan

et al. 2006)

GFDL-CM2.1 3.4 K 144 � 90 L24 Geophysical Fluid Dynamics Laboratory (Delworth et al. 2006; Gnanadesikan

et al. 2006)

GISS-AOM n/a 90 � 60 L12 Goddard Institute for Space Studies Laboratory (Russell et al. 1995;

http://aom.giss.nasa.gov)

GISS-ER 2.7 K 72 � 46 L20 Goddard Institute for Space Studies Laboratory (Schmidt et al. 2006;

Russell et al. 2000)

INM-CM3.0 2.1 K 72 � 45 L21 Institute of Numerical Mathematics, Russia (Diansky and Volodin 2002)

IPSL-CM4.0 4.4 K 96 � 72 L19 Institut Pierre-Simon Laplace, France

(http://dods.ipsl.jussieu.fr/omamce/IPSLCM4/DocIPSLCM4)

MIROC3.2(hires) 4.3 K 320 � l60 L56 T106 Center for Climate System Research, Japan (Hasumi and Emori 2004)

MIROC3.2(medres) 4.0 K 128 � 64 L20 T42 Center for Climate System Research, Japan (Hasumi and Emori 2004)

MRI-CGCM2.3.2 3.2 K 128 � 64 L30 T42 Meteorological Research Institute, Japan (Yukimoto et al. 2001, 2006)

NCAR-CCSM3 2.7 K 256 � l28 L26 T85 National Center for Atmospheric Research (Collins et al. 2006)

NCAR-PCM 2.1 K 128 � 64 L26 T42 National Center for Atmospheric Research (Washington et al. 2000; Meehl

et al. 2006)

15 APRIL 2007 K H A R I N E T A L . 1421



narios and to minimize possible effects of different mul-

timodel ensembles on the multimodel mean response,

the analysis of changes in climate extremes is per-

formed only for models for which daily model output

was available for all three emission scenarios. As a re-

sult, analysis of changes in precipitation extremes was

performed for 14 models [all models in Table 1 except

for GISS AOM and MIROC3.2(hires)]. Changes in

temperature extremes are analyzed for 12 models (ex-

cluding also NCAR-CCSM3 and NCAR-PCM). For

completeness, the analysis was repeated for all avail-

able models, but the conclusions of the study remained

essentially unaffected.

Several diagnostics describing simulated 1981–2000

climate extremes are compared to those derived from

four reanalyses. The two older reanalyses are the Na-

tional Centers for Environmental Prediction (NCEP)–

NCAR reanalysis (Kalnay et al. 1996) denoted hereaf-

ter as NCEP1, and the 15-yr European Centre for Me-

dium-Range Weather Forecasts (ECMWF) Re-

Analysis (ERA-15: Gibson et al. 1997). The two more

recent ones are the NCEP–Department of Energy

(DOE) AMIP-II reanalysis (Kanamitsu et al. 2002), de-

noted as NCEP2, and 40-yr ECMWF Re-Analysis

(ERA-40; Simmons and Gibson 2000). We also per-

formed an analysis of annual extremes of nonoverlap-

ping 5-day mean precipitation rates (pentads), and used

for verification the Climate Prediction Center (CPC)

Merged Analysis of Precipitation (CMAP) pentad

dataset that is a blend of gauge observations, satellite

observations, and precipitation fields from the NCEP–

NCAR reanalysis (Xie et al. 2003). These are essen-

tially the same validation sources that are used in the

recent atmospheric model intercomparison study by

Kharin et al. (2005) but updated for the 1981–2000 pe-

riod whenever possible.

3. Methodology

Climate extremes are multifaceted meteorological

phenomena and can be characterized in terms of inten-

sity, frequency, or duration of one or more climatologi-

cal parameters. To address the multitude of possible

extreme value statistics, the WCRP/WGCM also re-

quested that modeling groups submit a number of ex-

tremes indices, as described in Frich et al. (2002). These

indices are not analyzed here but are the subject of

several other diagnostic subprojects (http://www-

pcmdi.llnl.gov/ipcc/diagnostic_subprojects.php; e.g.,

Tebaldi et al. 2006).

Here we follow the approach of Zwiers and Kharin

(1998), Kharin and Zwiers (2000), and Kharin et al.

(2005) and analyze extremes of surface air temperature

and precipitation in terms of return values, or return

levels, of their annual extremes. Note that there seems

to be no universally agreed definition of return values.

A conventional but somewhat loose definition of a T-

year return level as the level that is exceeded on aver-

age every T years is problematic in a nonstationary en-

vironment. We more precisely define a T-year return

value as the threshold that is exceeded by an annual

extreme in any given year with the probability p � 1/T,

where T is expressed in years. In particular, a 20-yr

return value is the level that an annual extreme exceeds

with probability p � 5%. The quantity T � 1/p indicates

the “rarity” of an extreme event and is usually referred

to as the return period, or the waiting time for an ex-

treme event.

Return values defined as above are essentially the

quantiles of a distribution of annual extremes and are

estimated from a generalized extreme value (GEV) dis-

tribution fitted at every grid point to samples of annual

temperature and precipitation extremes. The “three

type” GEV distribution comprises the three classical

asymptotic extreme value models, Gumbel, Frèchet,

and Weibull (Jenkinson 1955). Its three parameters, lo-

cation, scale, and shape, are estimated by the robust

method of “L-moments” (Hosking 1990, 1992), also

known as the method of probability-weighted mo-

ments, with the minor modification of Dupuis and Tsao

(1998) to ensure the feasibility of the parameter esti-

mates (i.e., to ensure that all observed or simulated

annual extremes are in fact permitted by the estimated

GEV distribution). This method of return value esti-

mation is well documented in the aforementioned stud-

ies and is therefore not presented here.

We note that the GEV distribution theory is valid

only asymptotically, that is, when extremes are drawn

from increasingly larger samples. In the present study,

annual extremes are drawn from samples of size 365 (or

366 for leap years). However, serial correlation and the

presence of an annual cycle may substantially reduce

the effective sample size. Therefore, it is imperative to

evaluate whether the asymptotic GEV distribution pro-

vides a reasonable description of the behavior of a

sample of observed annual extremes by performing

goodness-of-fit tests. We routinely conduct standard

Kolmogorov–Smirnov goodness-of-fit tests (Stephens

1970) that measure the overall difference between the

empirical and fitted cumulative distributions for all

available samples. These tests indicate that a GEV dis-

tribution is generally a reasonable approximation for a

distribution of annual extremes of the considered vari-

ables in most models. The goodness-of-fit is diminished

for annual precipitation extremes in extremely dry re-

gions in some models, most notably in IPSL-CM4.0.

The GEV fit is also somewhat problematic for annual
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precipitation extremes in the Tropics in both GFDL

models. Tropical annual precipitation extremes in these

two models exhibit a somewhat intermittent behavior

when more moderate annual extremes in some years

are alternated with very large values in other years. As

an additional check, we routinely estimate empirical

quantiles of annual extremes for moderate return peri-

ods and compare them to the corresponding L-moment

return value estimates. In most cases regionally aver-

aged empirical and parametric return value estimates

compare reasonably well and are not overly too differ-

ent even in situations where a GEV fit appears to be

problematic.

The choice of the L-moment method over the fre-

quently used method of maximum likelihood for esti-

mating the parameters of a GEV distribution is primar-

ily dictated by relatively short 20-yr samples as are

available for analysis. The standard maximum likeli-

hood estimator is less efficient than the L-moment es-

timator in short samples for typical values of the shape

parameter (Hosking et al. 1985). Coles and Dixon

(1999) argue that this is mainly due to unreliable esti-

mates of the shape parameter that translates to poor

performance for return values. There have been efforts

to improve the efficiency of the maximum likelihood

estimator. For example, Martins and Stedinger (2000)

propose a generalized maximum likelihood analysis by

specifying a geophysical prior distribution to restrict the

shape parameter to a physically plausible interval

within a Bayesian framework. Coles and Dixon (1999)

modify the likelihood function by introducing a penalty

term to restrict the shape parameter values to the range

for which the GEV distribution has finite mean. Both

approaches require user decisions about the specifica-

tion of the prior distribution or the weight and form of

the penalty term. The benefits of these, more general

and potentially more powerful but also somewhat more

complex techniques, do not override, in our opinion,

the simplicity of the L-moment method in the present

setting.

A potential drawback of the L-moment method in a

transient climate change setting is that it assumes the

stationarity of annual extremes. Kharin and Zwiers

(2005) demonstrated that the violation of this assump-

tion may introduce bias in return value estimates that is

comparable to sampling variance. Their finding was

based on three-member ensemble simulations with a

single CGCM, but its significance is diminished for the

present multimodel study. First, as will be demon-

strated further on, sampling errors in local return value

estimates for moderate return periods are generally

smaller than discrepancies between individual models

and therefore do not represent the main source of un-

certainty. Second, the bias is minor as compared to

sampling variance when return values are estimated

from short 20-yr samples from a single realization that

are available for the majority of models in the present

study. Third, the short sample size prohibits the use of

more complex statistical models with time-varying

GEV distribution parameters, as was done by Kharin

and Zwiers (2005). Such models can be fitted with the

maximum likelihood method but are less competitive

than models with constant parameters in short samples.

Any benefits that might be gained in reducing the bias

by employing a more complex statistical model are

likely to be offset by increased sampling variance.

Overall, the L-moment method appears to be an ap-

propriate and viable technique for the task in the

present setting.

Alternatives to the annual extremes approach in-

clude peak-over-threshold techniques based on a gen-

eralized Pareto distribution, and r-largest extremes

analysis with a GEV distribution (e.g., Palutikof et al.

1999; Zhang et al. 2004). Successful implementation of

these methods generally requires more decisions from

the user (e.g., declustering of extremes, specification of

a sufficiently large threshold, dealing with the annual

cycle, etc.). Thus applying these techniques in an auto-

mated manner in a multimodel ensemble setting across

a variety of very different climatological zones is a

rather difficult task. The main argument for using one

of these alternative techniques is that they may use the

available information more efficiently, which could po-

tentially result in more accurate return value estimates.

However, as will be demonstrated further on, sampling

errors are not the main source of uncertainty in the

multimodel/multiscenario setting. We therefore do not

consider the use of other methods in the present study.

Most of the analysis that follows is performed for the

return period of 20 yr, or equivalently, for the exceed-

ance probability by annual extremes of 5%. Longer

return periods, such as 50 yr (exceedance probability of

2%), or even 100 yr (exceedance probability of 1%),

are less advisable given the relatively short 20-yr

samples and considering the fact that only one climate

simulation was available for each emission scenario for

most models. Estimating return levels for very long re-

turn periods is prone to larger sampling errors and po-

tentially larger biases due to inexact knowledge of the

shape of the tails of a distribution of annual extremes.

The GEV distribution methodology also allows us to

examine changes in the exceedance probability of

events of a certain size. In particular, we examine pro-

jected changes in the exceedance probability p of late-

twentieth-century 20-yr return levels and express these

changes in terms of changes in waiting times T � 1/p.
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For example, we anticipate that late-twentieth-century

warm extremes will generally be exceeded more fre-

quently in a warmer climate, and therefore their wait-

ing times will decrease, while waiting times for occur-

rences of late-twentieth-century cold extremes will in-

crease.

Return values of cold and warm annual temperature

extremes, and of annual 24-h precipitation extremes,

are estimated for each model on its native grid. The

resulting statistics are then interpolated onto a common

256 � 128 Gaussian grid for averaging and intercom-

parison purposes. Regionally averaged extreme value

statistics are evaluated for a number of extratropical,

subtropical, and tropical zonal bands, and also the con-

tinental regions displayed in Fig. 2 and defined in Table

2. The purpose of spatial averaging in the present study

is twofold: 1) to reduce sampling errors and perhaps

reduce some uncertainties associated with modeling er-

rors at local scales and 2) to provide a condensed sum-

mary of typical and regionally representative ampli-

tudes of extreme events, their uncertainties, and pos-

sible future changes.

There are no known analytical expressions for calcu-

lating standard errors and confidence intervals of the

L-moment estimates, similar to those available for the

maximum-likelihood estimates. We therefore use the

nonparametric bootstrap (Efron and Tibshirani 1993),

a resampling technique that allows us to estimate the

uncertainties in return values that result from in-sample

variability. For each model or observational dataset,

1000 bootstrap samples are generated by randomly

sampling with replacement global fields of annual ex-

tremes from the original dataset. Global fields are re-

sampled to preserve possible spatial dependencies.

Local return values and their regional averages are

calculated for each bootstrap sample. The resulting col-

lection of 1000 resampled statistics is used to derive

bootstrap confidence intervals.

The L-moment return value estimates based on short

samples are slightly biased, even when the stationarity

assumption is satisfied (Hosking et al. 1985). The bias is

generally negligible when compared to standard errors

of local estimates but becomes noticeable when local

estimates are averaged over large regions so that sam-

pling variance is greatly reduced. As a result, the boot-

strap distribution of regionally averaged return values

is not centered at the return value estimate obtained for

the original sample. In the following we corrected re-

gionally averaged return values for the bootstrap esti-

mate of bias, defined as the mean of resampled statistics

minus the statistic for the original sample, when pre-

senting regionally averaged statistics.

4. Simulated late-twentieth-century climate

extremes

We start the analysis of temperature and precipita-

tion extremes by documenting their present-day clima-

tologies. For space reasons, we are not able to display

individual maps of extremes for each of the models

analyzed in this study. Instead we limit the presentation

by showing zonally and regionally averaged statistics

simulated by individual models, together with maps of

the multimodel ensemble mean and a measure of the

discrepancy between models expressed in terms of the

standard deviation about the multimodel mean.

a. Temperature extremes

Zonally averaged 20-yr return values of 1981–2000

annual warm and cold extremes simulated by 14 IPCC

FIG. 2. Continent-wide regions and zonal bands considered in

the present study. The coordinates of the regions are given in

Table 2.

TABLE 2. Coordinates of continental-scale regions, as described

in Fig. 2.

Region Label Latitudes Longitudes

Global scale

Globe GLB 180° to 180° 90°S–90°N

Land LND 180° to 180° 90°S–90°N

Zonal bands

NH extratropics NHE 180° to 180° 35°–90°N

SH extratropics SHE 180° to 180° 90°–35°S

Tropics TRO 180° to 180° 10°S–10°N

NH subtropics NTR 180° to 180° 10°–35°N

SH subtropics STR 180° to 180° 35°–10°S

Subcontinents

Africa AFR 20°W–60°E 40°S–30°N

Central Asia ASI 45°E–180° 30°–65°N

Australia AUS 105°E–180° 45°–10°S

Europe EUR 20°W–45°E 30°–65°N

North America NAM 165°–30°W 25°–65°N

South America SAM 115°–30°W 55°S–25°N

South Asia SAS 60°–160°E 10°S–30°N

Arctic ARC 180° to 180° 65°–90°N

Antarctic ANT 180° to 180° 90°–65°S
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models over land and the corresponding estimates from

the NCEP2 and ERA-40 reanalyses are displayed in

Fig. 3 (top). The model results are represented by col-

ored curves, one curve for each ensemble member if

there is more than one ensemble realization. The en-

semble size is indicated in brackets after the model

name in the legends. In principle, all ensemble mem-

bers could have been concatenated together into one

longer sample from which more accurate estimates of

return values could have been obtained. Here, we plot-

ted the return values for each ensemble member sepa-

rately to get an idea of the uncertainty that arises due to

FIG. 3. (top) Zonally averaged 1981–2000 Tmax,20 and Tmin,20 as simulated over land by 14 IPCC AR4 models.

Several models are represented by several climate simulations, one curve for each ensemble member. The en-

semble size is indicated in brackets after the model labels. The NCEP2 and ERA-40 estimates are displayed in

black together with the 95% bootstrap confidence intervals in gray. (middle) The difference between zonally

averaged 1981–2000 temperature extremes Tmax,20 and Tmin,20 and the corresponding extremes of the annual cycle

max T ac
max and min T ac

min. (bottom) Boxplots of regionally averaged 1981–2000 Tmax,20, Tmin,20, max T ac
max, and min

T ac
min. Boxplots indicate the central 50% intermodel range, the median, and the lower and upper bounds. The

downward- and upward-pointing triangles represent the regionally averaged statistics estimated from NCEP2 and

ERA-40, respectively.
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the interannual variability of annual extremes in 20-yr

samples, as compared to model-to-model differences.

The NCEP2 and ERA-40 reanalyses are represented by

the black solid line and dashed line curves, respectively.

We also display in gray the 95% bootstrap confidence

intervals for the zonally averaged estimates of 20-yr

return values for the two reanalyses.

Sampling errors do not appear to play a significant

role in the uncertainty of zonally averaged estimates of

20-yr return values. The corresponding bootstrap con-

fidence intervals are very narrow in comparison to the

differences between individual models or reanalyses

(the width of the confidence intervals in Fig. 3 is only

marginally larger than the thickness of the curves). This

is also supported by the fact that the curves obtained

for individual ensemble members lay nearly on top of

each other for models with more than one realization.

The latter indicates that sampling errors are generally

small and that possible natural variability on decadal

and longer time scales has only a small effect on the

amplitude of return values, at least for the zonally av-

eraged return value statistics in the models considered.

The two reanalyses agree fairly well on the magni-

tude of zonally averaged warm extremes. The NCEP2

warm extremes tend to be only slightly warmer than the

corresponding ERA-40 extremes over landmasses.

However, NCEP2 cold extremes are much colder than

their ERA-40 counterparts in many regions, by as much

as 15°C and more, and are colder than those simulated

by the majority of the models. Note that the ERA-40

temperature extremes are derived from data that are

sampled every 6 h (4 times daily). Kharin et al. (2005)

found that this coarser temporal resolution does not

seriously compromise the accuracy of return values of

annual temperature extremes. In particular, zonally av-

eraged 20-yr return values of NCEP2 annual tempera-

ture extremes calculated from 6-hourly sampled data

(not shown here) nearly coincide with the estimates

based on the original diurnal temperature extremes.

The discrepancies between the reanalyses are therefore

unlikely to be due to the difference in temporal reso-

lution of two datasets.

Similar to the AMIP2 study (Kharin et al. 2005), cold

extremes are generally less reliably simulated by the

models than warm extremes. The discrepancies be-

tween the models (and between the reanalyses) are

generally larger for cold extremes than for warm ex-

tremes. However, there are some exceptions. In par-

ticular, there is a substantial warm bias in the warm

extremes in subtropical regions in the Model for Inter-

disciplinary Research on Climate 3.2, medium-

resolution version [MIROC3.2(medres)], and to a

lesser degree in MIROC3.2(hires) and Canadian Cen-

tre for Climate Modelling and Analysis (CCCMA)

CGCM3.1. There is also a large cold bias over Antarc-

tica in the Meteorological Research Institute (MRI)

CGCM2.3.2 model.

Some, but not all, of the biases can be attributed to

differences in the model climatologies. Since warm and

cold extremes tend to occur during the time of year

when mean temperatures are the warmest or coldest,

respectively, we examine the differences between warm

and cold extremes relative to the respective warm or

cold climatological mean temperatures. The middle

panel of Fig. 3 displays the difference between the zon-

ally averaged warm and cold extremes displayed in the

upper panel, and the corresponding maximum and

minimum of the climatological annual cycle, denoted as

max Tac
max and min Tac

min., respectively. The annual cycle

is defined as the 1981–2000 average of monthly Tmax or

Tmin for each calendar month. The magnitude of devia-

tions from zero indicates the extent to which tempera-

ture extremes deviate from the mean temperature con-

ditions in individual models and reanalyses.

There is better agreement between models and re-

analyses with respect to such deviations for warm ex-

tremes than for cold extremes, except for MIROC3.2 in

subtropical regions. Differences among models and re-

analyses are largest over snow and sea ice–covered re-

gions. Most notably, temperature occasionally deviates

farther below the climatological mean temperature in

NCEP2 as compared to ERA-40 or most models. The

NCEP2 reanalysis (and the older NCEP1 reanalysis;

not shown here) is somewhat exceptional in this regard

(Kharin et al. 2005).

A boxplot summary of regionally averaged cold and

warm extremes is displayed in the bottom panel of Fig.

3. The regions are defined in Table 2 and displayed in

Fig. 2. Boxplots indicate the central 50% intermodel

range (25th–75th percentiles), the median, and the

lower and upper bounds in the multimodel ensemble.

Generally speaking, simulated warm extremes compare

well with the reanalyses on the considered regional

scales, although the models have a tendency for a warm

bias in tropical and subtropical regions in the models.

Consistent with the findings above, regional differences

are larger for cold extremes, both among the models

and among the two reanalyses.

Figure 4 displays the multimodel ensemble mean of

warm and cold extremes, and the differences between

the ensemble mean extremes and the corresponding

temperature extremes in NCEP2 and ERA-40. Warm

extremes tend to be slightly colder in the models, on

average, than in the reanalyses over oceans in the

Northern Hemisphere but slightly warmer over South

and Central America, North Africa, the Middle East,
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and Central Asia. Cold extremes are well simulated

over ice free oceans, as compared to the reanalyses but,

as noted previously, NCEP2 cold extremes are more

severe over land and sea-ice-covered regions than in

the models and in ERA-40.

Globally and land-only averaged statistics are sum-

marized in Table 3. The multimodel mean of globally

averaged simulated 1981–2000 warm extremes corre-

sponds closely to that in NCEP2 and ERA-40. The mul-

timodel mean of globally averaged cold extremes is

FIG. 4. (top) The multimodel ensemble mean average of 20-yr return values of 1981–2000 (left) annual maximum temperature

(Tmax,20) and (right) annual minimum temperature (Tmin,20) as simulated by 14 IPCC AR4 models. (middle) The difference between

the multimodel ensemble means of Tmax,20 and Tmin,20 and the corresponding temperature extremes estimated from NCEP2. (bottom)

The difference between the multimodel ensemble mean of Tmax,20 and Tmin,20 and the corresponding extremes estimated from ERA-40.

Units are °C. Global averages are indicated in the titles.
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warmer than in NCEP2 but colder than in ERA-40.

The discrepancies amongst the models and reanalyses

are substantially smaller for warm and cold mean tem-

peratures than for extreme temperatures.

Figure 5 summarizes intermodel differences of local

20-yr return value estimates and the estimated return

value sampling standard errors. The upper two panels

display the intermodel standard deviation of simulated

warm and cold extremes. Model differences are larger

over land and sea ice than over ice free oceans and are

generally larger for cold extremes than for warm ex-

tremes, particularly over snow-covered regions. The

bottom two panels display the estimate of sampling

standard errors of local 20-yr return values obtained as

the multimodel average of standard deviations of 1000

bootstrap resamples obtained for each model. Sampling

errors are generally larger for cold extremes than for

warm extremes due to generally larger interannual vari-

FIG. 5. (top) The intermodel standard deviation of 1981–2000 (left) Tmax,20 and (right) Tmin,20 as simulated by 14 IPCC AR4 models.

(bottom) The multimodel ensemble mean of the bootstrap sampling standard errors of local (left) Tmax,20 and (right) Tmin,20. Units are

°C. Global averages are indicated in the titles.

TABLE 3. The multimodel ensemble mean average of 20-yr return values of annual maximum and minimum temperature (Tmax,20 and

Tmin,20) and the corresponding maximum and minimum of the annual cycle, max T ac
max and min T ac

min, averaged over the globe and land

only as simulated by 14 IPCC AR4 models in 1981–2000 in the twentieth-century experiment (20C3M) and in the NCEP2 and ERA-40

reanalyses. The central 50% intermodel range is displayed to the right of the ensemble mean value.

Tmax,20 (°C) Tmin,20 (°C) maxT ac
max (°C) maxT ac

min (°C)

Globe Land Globe Land Globe Land Globe Land

20C3M 26.026.8
25.3 33.235.2

31.7 �0.9�0.4
�2.5 �18.7�15.6

�22.8 21.521.8
21.0 24.525.3

23.7 6.67.4
5.8 �6.0�4.7

�7.5

NCEP2 26.3 33.1 �2.9 �24.3 21.7 23.7 7.3 �5.5

ERA-40 26.2 31.6 0.4 �15.8 21.6 23.8 7.8 �3.9
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ability of cold temperatures. However, sampling errors

constitute only a small fraction of the total uncertainty

in local estimates of temperature extremes.

b. Precipitation extremes

The upper two panels of Fig. 6 display zonally aver-

aged 20-yr return values of 1981–2000 annual extremes

of 24-h precipitation amounts (P20) and of nonoverlap-

ping 5-day mean precipitation rates (P5
20) as simulated

by 16 IPCC AR4 models and estimated from reanalyses

and CMAP. The precipitation extremes are fairly con-

sistently simulated in the moderate and high latitudes

but much less so in the Tropics and subtropical regions.

With the exception of the older NCEP1 reanalysis, the

amplitude of precipitation extremes in other reanalyses

in the Tropics is larger, zonally averaged, than in any of

the models. Kharin et al. (2005) speculated that the

weak tropical precipitation extremes in NCEP1 are per-

haps not very trustworthy due to a known “spinup”

deficiency for convection in the forecast model in that

reanalysis.

The differences between simulated 5-day extremes

are somewhat smaller than those between daily ex-

tremes but are still very large in tropical regions. The

CMAP 5-day extremes are more moderate than those

in the more recent reanalyses. Coincidently, the multi-

model ensemble mean of 5-day precipitation extremes

is closer to the CMAP extremes than to those estimated

from any of the reanalyses. The 20-yr return values of

annual 5-day precipitation extremes appear somewhat

problematic in the CMAP dataset over Antarctica. The

very large return value estimates are mainly caused by

exceptionally large annual extremes in a single year,

1987, that are well in excess of 80 mm day–1 in some

Antarctic regions, which perhaps points toward some

extrapolation or other postprocessing problems associ-

ated with Antarctica’s sparse observational network.

A number of models are represented by several

curves in Fig. 6, one for each ensemble member. The

ensemble size is indicated in brackets after the model

label in the legends. We also show the 95% bootstrap

confidence intervals derived from the observational

datasets. It is evident that the differences in zonally

averaged extremes between individual model realiza-

tions performed with the same model are generally

much smaller than the differences between different

models. The bootstrap confidence intervals that char-

acterize sampling variability of zonally averaged 20-yr

return values are also relatively narrow, as compared to

the intermodel differences. The very wide confidence

interval for the CMAP extremes over Antarctica is due

to the aforementioned peculiarity in this dataset.

The bottom panel of Fig. 6 displays a boxplot sum-

mary of regionally averaged 24-h (in red) and 5-day (in

blue) precipitation extremes plotted on a log scale.

Symbols to the right of the boxplots indicate the cor-

responding regional statistics estimated from observa-

tionally based datasets. The height of the symbols cor-

responds to the 95% bootstrap confidence intervals of

the regionally averaged observational estimates. In

most cases, sampling errors of regionally averaged ex-

tremes are small compared to the corresponding inter-

model differences. Not unexpectedly, model-to-model

discrepancies (as indicated by the central 50% inter-

model range) are generally smaller for 5-day precipita-

tion extremes than for daily precipitation extremes.

The intermodel uncertainties are relatively small for

regions located well outside of the Tropics, such as Eu-

rope (EUR), North America (NAM), or North and

Central Asia (ASI) but are much larger for tropical

regions.

Multimodel mean P20 is displayed in the upper-left

panel of Fig. 7, and the ratio of the multimodel mean

extreme precipitation over that in ERA-40 is shown the

upper-right panel. The ensemble mean amplitude of

20-yr return values of annual precipitation extremes is

comparable to that in ERA-40 in the extratropics

where departures from ERA-40 are generally within

the �20% range. The models simulate, on average,

more intense precipitation extremes in the generally

very dry regions of northern Africa and off the sub-

tropical west coasts of Africa and North and South

America. However, they simulate much weaker ex-

tremes in the narrow band along the equator. Similar

features are present when the ensemble mean extreme

precipitation is compared to NCEP2 (not shown), ex-

cept that the maximum of tropical extreme precipita-

tion in NCEP2 is broader than in ERA-40. Some re-

gional statistics are summarized in Table 4.

The lower two panels of Fig. 7 display the magnitude

of intermodel differences and the typical amplitude of

sampling errors of P20 estimates derived from 20-yr

samples. The estimated intermodel standard deviation

of P20 displayed in the lower-left panel is normalized by

the ensemble mean P20 There is better agreement be-

tween models in midlatitudes where intermodel stan-

dard deviations are about 20% of the ensemble mean

amplitude. Differences amongst the simulated precipi-

tation extremes are much larger in the Tropics and sub-

tropical regions where they become comparable to the

ensemble mean in some regions. The bootstrap sam-

pling standard errors obtained for individual models for

1981–2000 are also normalized by the respective esti-

mates of P20. The lower-right panel of Fig. 7 shows the

ensemble mean of such normalized standard errors,

which are typically smaller than 10% in midlatitudes
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and are slightly larger in tropical and polar regions.

Overall, sampling variance is generally only a small

fraction of total intermodel variability.

As in Kharin et al. (2005), the dependence of the

magnitude of precipitation extremes on the spatial

resolution in different models is found to be weak. In

the extratropics, there is some evidence of somewhat

stronger precipitation extremes in models with higher

FIG. 6. Zonally averaged 20-yr return values of 1981–2000 annual extremes of (top) 24-h precipitation rates (P20)

and (middle) nonoverlapping 5-day mean precipitation rates (P5
20) as simulated by 16 IPCC AR4 models plotted

on a log scale. Units are mm day�1. Some models are represented by several ensemble members, one curve for

each ensemble member. The ensemble size is indicated in brackets after the model labels. Precipitation extremes

estimated from the reanalyses and CMAP pentad dataset are displayed in black together with the 95% bootstrap

confidence intervals in gray. (bottom) Boxplots of simulated regionally averaged 1981–2000 P20 and P5
20. Symbols

to the right of the boxplots indicate the corresponding statistics estimated from the reanalyses and CMAP pentad

dataset. The height of the symbols corresponds to the 95% bootstrap confidence interval of the corresponding

regional means.
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horizontal resolution. For example, the weakest extra-

tropical extremes are simulated in the lower-resolution

models, GISS-ER and GISS-AOM, while the strongest

extremes are simulated in MIROC3.2(hires), which has

the highest spatial resolution. The amplitude of ex-

tremes increases with resolution in simulations per-

formed with models from the same modeling group.

For example, the amplitude of precipitation extremes

is about 15% larger, on average, in the simulation

performed with the higher-resolution model

CGCM3.1(T63), as compared to the lower-resolution

version CGCM3.1(T47). A more dramatic increase in

spatial resolution from T42 L20 in MIROC3.2(medres)

to T106 L56 in MIROC3.2(hires) is accompanied by a

TABLE 4. The multimodel ensemble mean and the central 50% intermodel range of 20-yr return values of annual extremes of daily

precipitation P20 (mm day�1) and 5-day precipitation P5
20 (mm day�1) averaged over the globe, land, the extratropical Northern

Hemisphere (NHE; 35°–90°N), and the Tropics (TRO; 10°S–10°N) as simulated by 16 IPCC AR4 models in 1981–2000 in the

twentieth-century experiment and the corresponding estimates from the NCEP2 and ERA-40 reanalyses and CMAP dataset.

P20 (mm day�1) P5
20 (mm day�1)

Globe Land NHE TRO Globe Land NHE TRO

20C3M 51.964.7
40.6 43.152.1

31.5 38.342.2
33.9 70.5100.1

46.1 21.425.0
19.0 17.320.0

14.8 13.814.6
12.8 33.845.0

26.8

NCEP2 82.9 66.8 46.5 155.8 31.3 25.1 16.7 58.6

ERA-40 77.8 56.4 38.7 184.6 29.6 20.5 13.3 75.8

CMAP — — — — 24.1 18.5 13.3 37.0

FIG. 7. (top left) The multimodel ensemble mean of 20-yr return values of 1981–2000 annual extremes of daily precipitation (mm

day�1) as simulated by 16 IPCC AR4 models. (top right) The ratio of the multimodel ensemble mean of P20 estimates over P20

estimated from ERA-40. (bottom left) The intermodel standard deviation of P20 estimates divided by their multimodel ensemble mean.

(bottom right) The multimodel ensemble mean of the ratios of the bootstrap sampling standard deviations over the corresponding

1981–2000 P20 estimates for individual models. Global averages are indicated in the titles.
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larger increase in extreme precipitation amplitude of

about 40%.

On the other hand, models developed by different

modeling groups do not necessarily confirm this ten-

dency. A typical example is given by the reanalyses.

Extratropical precipitation extremes are about 20%

stronger in NCEP2 than in ERA-40 although the atmo-

spheric component of NCEP2 has lower resolution

(T62 L28) than ERA-40 (T159 L60). Note, however,

that ERA-40 data were available on a lower-resolution

144 � 73 regular grid that was obtained by a bilinear

interpolation from its higher-resolution “reduced”

Gaussian 320 � 160 grid. This reduction in resolution is

unlikely to explain the differences between the two re-

analyses. We verified this by bilinearly interpolating

NCEP2 precipitation from the 192 � 94 NCEP2 grid

onto the 144 � 73 ERA-40 grid; return values were

reduced just by a few percent.

Overall, it does appear that the amplitude of extreme

precipitation increases with resolution, particularly, in

models with similar representations of dynamical and

physical processes. However, this dependence is not

very robust across different models. In particular, there

is no statistically significant dependence of precipita-

tion extremes on the model resolution simulated by

different models in the Tropics where the details of the

deep convection parameterizations seem to be of dom-

inant importance at the spatial resolutions considered

(Scinocca and McFarlane 2004).

Figure 8 offers an alternative way to summarize the

degree of disagreement between the models in simulat-

ing extreme precipitation in the Tropics and extratro-

pics. It shows the empirical cumulative distribution

functions of the regional estimates of 10-, 20-, and 50-yr

return values of annual 24-h precipitation extremes in

the northern extratropics (35°–90°N, left-hand dia-

gram) and Tropics (10°S–10°N, right-hand diagram)

simulated by 16 models. The empirical cumulative dis-

tribution function of x is defined as the fraction of mod-

els that simulate return values less than, or equal to, x.

The multimodel cumulative distributions of return val-

ues for different return periods are better separated in

the extratropics than in the Tropics, indicating better

intermodel consensus on the exceedance probability of

a specified level in the extratropics than in the Tropics.

However, the overlap between the distributions is still

fairly large, even in the extratropics, indicating that the

exceedance probability of specified precipitation events

is presently not very reliably determined by the models.

5. Future changes in extreme values

In this section we document future changes in tem-

perature and precipitation extremes as simulated by the

IPCC AR4 multimodel ensemble. A particular aspect

of this analysis is that we compare changes in extremes

to the corresponding changes in time mean climatolo-

gies. Some previous studies (e.g., Kharin and Zwiers

FIG. 8. Empirical cumulative distribution functions of regional estimates of 10-, 20-, and 50-yr return values of

annual precipitation extremes averaged over (left) the northern extratropics (35°–90°�) and (right) the Tropics

(10°S–10°�) as simulated by 16 IPCC AR4 models in 1981–2000 in the twentieth-century experiments. The x axis

is on a log scale. The vertical dashed lines indicate the multimodel ensemble median values. Models are indicated

by numbers as 1: CCCMA CGCM3.1/T47, 2: CCCMA CGCM3.1/T63, 3: Centre National de Recherches

Météorologiques Coupled Global Climate Model version 3 (CNRM CM3), 4: ECHAM and the global Hamburg

Ocean Primitive Equation (ECHO G), 5: Geophysical Fluid Dynamics Laboratory Climate Model version 2.0

(GFDL CM2.0), 6: GFDL CM2.1, 7: GISS AOM, 8: GISS ER, 9: INM CM3.0, 10: IPSL CM4, 11:

MIROC3.2(hires), 12: MIROC3.2(medres), 13: Max Planck Institute (MPI) ECHAM5, 14: MRI CGCM2.3.2, 15:

NCAR CCSM3, and 16: NCAR PCM1.
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2005) indicate that changes in return values of simu-

lated temperature extremes on a global scale are mainly

associated with changes in the location of the distribu-

tion of annual extremes. Here, we compare changes in

warm and cold temperature extremes to the corre-

sponding changes in the maxima and minima of the

annual cycle, that is, to changes in mean temperatures

of the climatologically warmest and coldest seasons, re-

spectively. Relative changes in extreme precipitation

are compared to changes in annual mean precipitation.

Simulated changes in years 2046–65 and 2081–2100

are calculated relative to the 1981–2000 baseline pe-

riod. To evaluate the statistical significance of changes

in the multimodel ensemble, the climate change

anomalies obtained for individual models are treated as

a sample of random and independent realizations from

a “population of models.” We then performed two

types of statistical tests: the Student’s t test and its non-

parametric alternative, the Wilcoxon signed–rank test

(Wilcoxon 1945) that does not require assumptions

about the form of the distribution. Both tests produced

very similar results. Results on statistical significance

presented below are based on the Wilcoxon test per-

formed at the 10% significance level. Note that these

statistical tests account both for sampling uncertainties

of the extreme value statistics and for intermodel un-

certainties.

a. Changes in temperature extremes

Figure 9 displays multimodel mean differences be-

tween 2046–65 and 1981–2000 20-yr return values of

annual warm and cold extremes as simulated by the

IPCC AR4 models in the SRES A1B experiment. The

upper panels show absolute changes in Tmax,20 and

Tmin,20. The middle panels display changes in extreme

temperatures relative to the corresponding changes in

the maxima and minima of the annual cycle, that is,

�(Tmax,20– maxTac
max) and �(Tmin,20– minTac

min). Positive

values in these diagrams indicate that changes in ex-

treme warm or cold temperatures exceed changes in the

corresponding mean temperature of the warmest or

coldest month of the year. The bottom two panels dis-

play the estimated probability in 2046–65 of exceeding

the late-twentieth-century 20-yr return levels of annual

warm and cold temperature extremes expressed in

terms of waiting times. Only those changes that are

significant at the 10% significance level according to

the nonparametric Wilcoxon test are displayed in color.

Changes in warm and cold extremes are comparable

over ice free oceans. The models tend to simulate some-

what larger increases in warm extremes than in cold

extremes over subtropical land regions, most notably

over the Iberian Peninsula and North Africa but also in

South Africa, southwestern Australia, Central America,

and central South America (Fig. 10). These are regions

that become generally drier. Larger increases in warm

extremes are presumably attributed to reduced mod-

eration by evaporative cooling from the land surface.

Cold extremes warm significantly faster over extratro-

pical landmasses and over high-latitude oceans. The en-

hanced warming of cold extremes is apparently attrib-

uted to the positive snow and sea ice albedo feedback

effect in these regions (see also, e.g., Zwiers and Kharin

1998; Kharin and Zwiers 2000, 2005). It is also evident

that changes in warm extremes closely follow changes

in the mean summertime temperature virtually every-

where over the globe. Globally averaged, warm ex-

tremes increase only a few hundredths of a degree Cel-

sius more than the mean temperature in the climato-

logically warmest month. On the other hand, changes in

cold extremes substantially exceed changes in the mean

temperature in the climatologically coldest month in

regions where snow and sea ice retreat with global

warming.

Not surprisingly, there are substantial projected

changes in the exceedance probability of warm and cold

events that are considered as extreme at the end of the

twentieth century. In particular, the exceedance prob-

ability of 20-yr return values of 1981–2000 annual warm

extremes doubles in high latitudes and more than

triples in more moderate latitudes over land (i.e., wait-

ing times are reduced by a factor of 2–4). Late-

twentieth-century warm extremes are exceeded virtu-

ally every year in 2046–65 in the lower latitudes. On the

other hand, late-twentieth-century cold extremes be-

come less frequent and are practically never exceeded

over most of the globe by the middle of the twenty-first

century under the A1B forcing scenario.

Figure 11 displays the multimodel mean changes in

zonally averaged Tmax,20 and Tmin,20 as simulated with

the B1 (blue curves), A1B (green curves), and A2 (red

curves) emission scenarios. The 2046–65 changes are

indicated by the dashed-line curves while 2081–2100

changes are displayed as the solid-line curves. The up-

per two panels show absolute changes in warm and cold

temperature extremes, while the lower two panels dis-

play their changes relative to the changes in mean tem-

perature of the climatologically warmest or coldest

months of year, respectively. The central 50% inter-

model range of zonally averaged changes is also shown

for the A1B experiment in both time periods by light

green cross-hatching.

As expected, the smallest warming is simulated in the

B1 experiment, which has the slowest growth of the

greenhouse gas concentrations. The midcentury re-

sponses in the A1B and A2 experiments are compa-
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rable, as expected from the similar magnitudes of the

greenhouse forcing in these two scenarios leading up to

this period. Warming in the A1B scenario tends to be

slightly stronger than in the A2 scenario in the middle

of the century, but not very significantly so, consistent

with the larger sulfate aerosol loadings in the A2 sce-

nario (see Fig. 1). The greatest warming is simulated in

2081–2100 under the A2 scenario as a result of the

strong greenhouse forcing in this period. The late-

twenty-first-century warming with the B1 emission sce-

FIG. 9. (top) The multimodel mean change in 20-yr return values of annual (left) warm temperature extremes and (right) cold

temperature extremes as simulated by 12 IPCC AR4 models in 2046–65 relative to 1981–2000 in the SRES A1B experiment. (middle)

The corresponding changes in temperature extremes relative to the changes in the maximum (for Tmax,20) or minimum (for Tmin,20) of

the annual cycle. Units are °C. (bottom) Waiting times (yrs) for late-twentieth-century temperature extremes Tmax,20 and Tmin,20 in

2046–65. Changes that are not statistically significant at the 10% level are masked out in white. Global averages (or global medians for

the waiting times) are indicated in the titles.
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nario is comparable to that simulated in 2046–65 in the

other two scenarios.

Figure 12 displays boxplot summaries of regionally

averaged projected changes in temperature extremes

for 2081–2100 relative to 1981–2000 when the three sce-

narios diverge in their degree of anthropogenic forcing.

The multimodel mean change and the central 50% in-

termodel range of globally and land-averaged changes

in temperature extremes are documented in Table 5.

Cold extremes warm faster than the warm extremes by

about 30%–40%, on average over the globe, and by

about 25% over land. The warming of cold extremes is

more than twice as large as that of warm extremes in

the Arctic, about 50% larger in the North American

region and about 30% larger in the European region.

Changes in snow cover and sea ice are likely respon-

sible for the greater warming of cold extremes in these

regions.

The uncertainty of changes in temperature extremes

simulated by individual models tends to be larger for

cold extremes than for warm extremes. Over the

oceans, the larger spread is confined to areas adjacent

to sea ice and is likely associated with uncertainty in

simulating sea ice changes under global warming. Over-

all uncertainty in warm extreme changes is dominated

by intermodel differences in mid and high latitudes,

while forcing uncertainty dominates in tropical and sub-

tropical regions. This is, for example, evident in the plot

of zonally averaged responses shown in Fig. 11 (top

FIG. 11. Multimodel mean changes in zonally averaged (left) Tmax,20 and (right) Tmin,20 simulated by 12 IPCC AR4

models in 2046–65 (solid lines) and 2081–2100 (dashed lines) relative to 1981–2000 in the SRES B1 (blue curves), A1B

(green curves), and A2 (red curves) experiments. The upper panels display absolute changes in temperature extremes.

The lower panels display changes in temperature extremes relative to the corresponding changes in the maximum (for

Tmax,20) or minimum (for Tmin,20) of the annual cycle. Light green hatching indicates the central 50% intermodel range

for the A1B scenario in the two time periods. Units are °C.

FIG. 10. The difference between the multimodel mean changes

in Tmax,20 and Tmin,20 as simulated by 12 IPCC AR4 models in

2081–2100 relative to 1981–2000 in the SRES A1B experiment.

Units are °C. Changes that are not statistically significant at the

10% level are masked out in white.
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left). The late-twenty-first-century zonally averaged

multimodel mean Tmax,20 responses in the B1 and A2

experiments are well outside of the central 50% inter-

model range in the A1B experiment between 45°S and

45°N but are generally within the intermodel range at

higher latitudes. The boxplots of regionally averaged

changes in warm extremes also confirm this tendency

(Fig. 12, top left). There is only little overlap between

the typical intermodel ranges of responses in warm ex-

tremes for different emission scenarios in Africa, South

America, and in tropical and subtropical zonal bands,

while the intermodel differences are comparable to, or

larger than, interscenario differences in North America,

Europe, the Arctic, and Antarctica. A similar tendency

is found for uncertainty in changes in cold extremes

except that the regions of comparatively larger inter-

model differences, as compared to interscenario differ-

ences, are less uniformly distributed in northern mid

and high latitudes but mainly confined to extratropical

oceans and land regions in the vicinity of the retreating

snow cover line.

b. Changes in precipitation extremes

The multimodel ensemble change in precipitation ex-

tremes is displayed as the multimodel median response

instead of the ensemble mean response. Both the mean

TABLE 5. The multimodel ensemble mean and interquartile

range of changes in 20-yr return values of annual warm and cold

extremes (�Tmax,20 and �Tmin,20, °C) averaged over the globe and

land as simulated by 10 IPCC AR4 models in 2046–65 and 2081–

2100 relative to 1981–2000 in the SRES B1, SRES A1B, and

SRES A2 experiments.

2046–65 2081–2100

B1 A1B A2 B1 A1B A2

�Tmax,20 (°C) globe 1.21.4
1.1 1.71.9

1.5 1.71.8
1.6 1.71.9

1.4 2.52.9
2.2 3.23.5

2.9

�Tmax,20 (°C) land 1.72.0
1.5 2.32.6

2.0 2.32.4
2.1 2.32.6

1.9 3.54.0
3.0 4.34.7

4.0

�Tmin,20 (°C) globe 1.72.0
1.4 2.32.5

2.1 2.12.4
1.9 2.42.8

2.0 3.53.9
3.2 4.14.4

4.0

�Tmin,20 (°C) land 2.12.4
1.8 2.93.2

2.8 2.83.1
2.6 2.93.5

2.5 4.55.0
4.2 5.45.8

5.2

FIG. 12. Boxplots of changes in regionally averaged (left) warm temperature extremes Tmax,20 and (right) cold temperature extremes

Tmin,20 as simulated by 12 IPCC AR4 models in 2081–2100 relative to 1981–2000. (top) Absolute changes in temperature extremes.

(bottom) Changes in temperature extremes relative to the corresponding changes in the maximum (for Tmax,20) or minimum (for

Tmin,20) of the annual cycle.
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and the median are measures of the central tendency in

the ensemble response. The two measures are generally

very similar for changes in temperature extremes pre-

sented in the previous section, indicating that the dis-

tributions of responses in extreme temperatures simu-

lated by individual models are reasonably symmetric

about the central value. The situation is somewhat dif-

ferent for ensemble changes in extreme precipitation.

The distribution of tropical changes (not shown) is

skewed toward relatively larger responses. In particu-

lar, the two GFDL models simulate very large re-

sponses in the tropical extreme precipitation by ap-

proximately doubling the magnitude of 20-yr return

values by the end of the twenty-first century in the

SRES A2 experiment. The tendency toward generally

wider upper tails and shorter lower tails in the distri-

butions of ensemble responses is also present in the

extratropics. A general skewness to the right is not sur-

prising considering the fact that precipitation is a non-

negatively defined quantity. Therefore, possible outli-

ers seem more likely to occur at the upper end of the

distribution. The median response appears to be less

sensitive to such outliers than the mean response.

The median value may also be a more appropriate

choice as a measure of central tendency when the sta-

tistic in question depends on the location of the parent

distribution in a highly nonlinear fashion. A typical ex-

ample is the probability of exceedance above some

large threshold. A positive shift of the overall distribu-

tion would result in a relatively larger increase in ex-

ceedance probability than would a negative shift of the

same amplitude. For example, shifting the mean of a

normal distribution one standard deviation to the right

will result in a 30% increase in the probability of ex-

ceeding the original 90th percentile, while a negative

change of the same amplitude will decrease the exceed-

ance probability by only about 9%. This asymmetry in

probability response will generally result in a positive

bias of the ensemble mean probability response when

averaged across a mixture of positive and negative re-

sponses. The median value seems to be less prone to

such biases.

A similar effect is also expected for changes in wait-

ing times of extreme precipitation events exceeding a

specified threshold. By definition, the waiting time is

1/p, where p is the probability of an extreme event and

is bounded from below by one but unbounded from

above, occasionally resulting in very large waiting times

when the probability of an event approaches zero. Thus

the arithmetic mean of estimated waiting times will

likely be positively biased and thus the median value

again seems to be a more appropriate measure of the

central tendency of changes in waiting times. This is

also true when calculating regional estimates of waiting

times. Thus, in the following we use the spatial median

value instead of the spatial mean value when reporting

regional estimates of changes in waiting times for the

late-twentieth-century extreme precipitation events.

The top two panels in Fig. 13 display the multimodel

median response in annual mean precipitation as simu-

lated by the IPCC AR4 models in 2046–65 (left panel)

and 2081–2100 (right panel) in the SRES A1B experi-

ment. The middle two panels display the corresponding

changes in 20-yr return values of annual 24-h precipi-

tation extremes. The changes are expressed as a per-

centage of 1981–2000 values. Mean precipitation in-

creases in the Tropics and in the mid- and high latitudes,

while it decreases in the subtropics. Negative changes in

extreme precipitation occur over much smaller regions,

as compared to those for mean precipitation, and are

generally not statistically significant. There are exten-

sive subtropical areas where the IPCC models predict

an increase in the intensity of precipitation extremes,

while mean precipitation decreases. The multimodel

median globally averaged change in mean precipitation

is 1.9% in 2046–65 and 3.4% in 2081–2100 in the SRES

A1B experiment in the considered models. The corre-

sponding changes in extreme precipitation are 7.7%

and 12.3%. These findings are consistent with the re-

sults from a recent study by Emori and Brown (2005),

who also found comparatively larger increases in ex-

treme precipitation as compared to changes in mean

precipitation in an ensemble of six climate models.

The bottom two panels of Fig. 13 display the multi-

model ensemble median of waiting times for annual

24-h precipitation extremes of the size of 1981–2000

20-yr return values. Except for a few small subtropical

regions where the amplitude of extreme precipitation

decreases, waiting times for the late-twentieth-century

extreme precipitation events are reduced almost every-

where over the globe. Not surprisingly, the changes in

waiting times are consistent with changes in the ampli-

tude of extreme precipitation. Roughly speaking, the

waiting times are reduced by a factor of 2 with a 10%

increase in the amplitude of P20. Waiting times de-

crease almost everywhere over landmasses, except for

North Africa where waiting times tend to increase. The

spatial median value of the waiting times over land is

reduced from 20 yr to about 12 yr in 2046–65 and less

than 10 yr in 2081–2100 in the SRES A1B experiment

(see Table 6). The greatest reductions in waiting time

occur in tropical regions and high latitudes.

Interscenario differences are illustrated in Fig. 14.

The change in mean precipitation is small or negative in

the 45°–10°S and 10°–40°N zonal bands, whereas the

magnitude of extreme precipitation increases by up to
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15%–20% in these regions, on average. Elsewhere,

both mean and extreme precipitation increase. The

Arctic appears to be the only region where the pro-

jected relative changes in mean precipitation exceed

those in extreme precipitation.

Regional changes in mean and extreme precipitation

and in waiting times are summarized in boxplot dia-

grams in Fig. 15 and in Table 6. It is evident from the

boxplots that intermodel uncertainties in extreme pre-

cipitation changes are much larger than in mean pre-

FIG. 13. The multimodel median relative change (%) in the (top) annual mean precipitation rate and (middle) in 20-yr return values

of annual extremes of daily precipitation as simulated by 14 IPCC AR4 models in (left) 2046–65 and (right) 2081–2100 relative to

1981–2000 in the SRES A1B experiment. The lower panels display the corresponding median of waiting times (yr) for late-twentieth-

century P20. Changes that are not statistically significant at the 10% level are masked out in white. Global averages (or global medians

for the waiting times) are indicated in the titles.
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cipitation and that these uncertainties increase quite

substantially with the increased anthropogenic forcing

by the end of the twenty-first century. The largest

spread in extreme precipitation changes simulated by

individual models occurs in the Tropics, especially over

the tropical Pacific. Globally averaged relative changes

in mean and extreme precipitation are comparable to

those averaged over landmasses only. Mean precipita-

tion in the northern extratropics north of 35°N and in

the Tropics (10°S–10°�) increases by about equal per-

centages (Table 6). However, simulated relative in-

creases of the intensity of extreme precipitation in the

Tropics exceed those in the northern extratropics by a

factor of approximately 1.5, on average.

Allen and Ingram (2002) and Trenberth et al. (2003),

among others, argue that, while global mean precipita-

tion is primarily constrained by the energy budget, the

intensity of heavy precipitation events should increase

with the availability of moisture at a rate close to the

Clausius–Clapeyron rate of about 6%–7% per kelvin.

To verify this contention in the present ensemble of

global climate models, the left panel of Fig. 16 displays

the relative changes (%) in globally averaged P20 as a

function of global annual mean temperature changes as

simulated by the IPCC AR4 models in 2046–65 and

2081–2100 under the three emission scenarios. Daily

mean temperature is approximated by the average of

daily Tmax and Tmin. A histogram of the “hydrological

sensitivities” for extreme precipitation, �P20(%)/

�T(K), is shown in the right-hand panel of Fig. 16.

The median sensitivity of about 6% K�1 is consistent

with the projected Clausius–Clapeyron rates cited

above. However, it is also evident that there is a great

deal of intermodel variability. Four models particularly

stand out. The two GFDL models simulate extremely

large increases in globally averaged extreme precipita-

tion, mostly in the Tropics, and are well outside the

range of the remaining collection of models on the up-

per end. The lowest sensitivity of extreme precipitation

to changes in mean temperature of 2%–3% K�1 is

found in the INM-CM3.0 and GISS-ER models. The

remaining models simulate the sensitivities in the range

4%–10%. It is also interesting to note that there seems

to be no apparent relationship between the hydrologi-

cal sensitivity for extreme precipitation and global tem-

perature response. For example, the GFDL CM2.0 and

INM-CM3.0 models have comparable global tempera-

ture changes but vastly different responses in extreme

precipitation.

6. Summary

The present study documents the performance of

global coupled climate models that participated in the

IPCC diagnostic exercise for the Fourth Assessment

Report in simulating annual extremes of surface tem-

perature and daily precipitation rates and their changes

as simulated by the models under the three emission

scenarios, SRES B1, A1B, and A2. Among these three

scenarios, B1 envisions the slowest growth of anthro-

pogenic greenhouse forcing while A2 projects the fast-

est growing forcing.

Climate extremes are evaluated in terms of 20-yr re-

turn values of annual extremes for three time periods,

1981–2000, 2046–65, and 2081–2100. The 1981–2000 pe-

riod serves as the baseline for future changes. Late-

TABLE 6. Multimodel ensemble median and interquartile range of relative changes in regional estimate of mean precipitation �P (%),

20-yr return values of annual 24-h precipitation extremes �P20 (%), and the waiting times for present-day P20 (T, yr) averaged over the

globe, land, NHE (35°–90°N) and TRO (10°S–10°N) as simulated by 12 IPCC AR4 models in 2046–65 A2 experiments. Regional

estimates of waiting times are defined as the area weighted median values.

2046–65 2081–2100

B1 A1B A2 B1 A1B A2

�P (%) globe 2.22.5
1.9 2.93.2

2.3 2.43.2
1.7 3.63.9

3.1 4.65.7
3.4 5.36.1

3.8

�P (%) land 2.43.4
1.9 3.74.3

3.0 3.44.3
2.1 4.25.1

3.0 5.76.6
4.4 6.87.7

5.9

�P (%) NHE 4.04.4
3.5 5.06.2

4.1 4.35.6
3.6 6.16.8

5.4 8.210.3
5.7 8.811.3

6.5

�P (%) TRO 3.94.8
3.6 5.26.0

4.0 4.75.8
3.9 5.97.2

5.5 7.79.4
6.3 9.710.8

6.6

�P20 (%) globe 7.410.0
4.7 10.515.5

6.2 9.613.7
7.0 10.813.6

6.7 16.322.3
10.0 19.432.8

12.0

�P20 (%) land 7.311.1
4.6 10.316.0

5.9 10.014.7
5.5 10.315.1

6.9 16.224.3
9.8 19.533.8

11.6

�P20 (%) NHE 7.710.0
5.8 10.613.8

8.7 10.612.2
7.0 10.714.3

8.1 17.922.0
13.2 21.824.1

16.0

�P20 (%) TRO 10.514.9
5.9 15.222.1

7.9 13.718.9
9.3 15.519.0

8.9 24.929.8
10.4 29.247.9

17.8

T (yr) globe 13.214.8
12.2 11.513.2

10.2 11.513.0
10.9 12.213.3

9.8 9.510.7
7.2 7.59.3

6.2

T (yr) land 13.214.5
11.9 10.712.2

10.1 11.612.8
10.4 11.812.4

9.7 9.010.3
7.1 7.28.9

5.8

T (yr) NHE 12.613.6
10.8 10.611.7

9.2 10.712.1
10.0 10.811.7

9.0 8.29.4
6.4 6.67.5

5.8

T (yr) TRO 11.414.7
10.7 9.413.5

8.0 9.512.0
8.8 9.412.1

8.3 6.911.3
5.2 5.79.5

4.2
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twentieth-century temperature and precipitation ex-

tremes are evaluated for 14 and 16 models, respectively.

Changes in extremes are evaluated only for models for

which daily output was available for all three scenarios,

resulting in a 12-model ensemble for temperature ex-

tremes and a 14-model ensemble for precipitation ex-

tremes. The analysis of changes was also repeated for

all available models but without any substantial modi-

fications in the results.

The simulated late-twentieth-century extremes are

compared to those estimated from four reanalyses, the

older NCEP–NCAR and ERA-15 products and the

more recent NCEP–DOE AMIP-II and ERA-40 prod-

ucts. Model-simulated extremes of precipitation pen-

tads (nonoverlapping 5-day means) were also com-

pared to those estimated from the CMAP pentad

dataset. Changes in the amplitude of warm and cold

temperature extremes are compared to the correspond-

ing mean changes for the climatologically warmest and

coldest calendar months, respectively. Changes in the

exceedance probabilities are also examined and ex-

pressed in terms of changes in waiting times for late-

twentieth-century extreme events.

The results of the analysis are summarized as follows.

• Warm temperature extremes of the late-twentieth-

century climate are plausibly simulated by the IPCC

AR4 models. The multimodel mean globally aver-

aged 20-yr return value of annual warm extremes

Tmax,20 corresponds closely to estimates derived from

the NCEP2 and ERA-40 reanalyses. The 50% inter-

model range of globally averaged Tmax,20 estimates is

FIG. 14. Multimodel median relative change (%) in (top) the zonally averaged annual mean precipi-

tation rate, (middle) 20-yr return values of annual extremes of 24-h precipitation rates, and (bottom) the

zonal median of the waiting times for present-day P20 (yr) as simulated by 14 IPCC AR4 models in

2046–65 (dashed lines) and 2081–2100 (solid lines) relative to 1981–2000 in the SRES B1 (blue), A1B

(green), and A2 (red) experiments. Light green hatching indicates the central 50% intermodel range for

the A1B scenario in the two time periods.
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fairly narrow indicating that most of the models per-

form well on a global scale. Model differences are

generally larger over land than over oceans.

• Uncertainties in model-simulated cold extremes for

the late-twentieth-century climate are larger than

those for warm extremes. The available estimates

from reanalyses are also less consistent. For example,

the NCEP2 and ERA-40 estimates of 20-yr return

values of annual cold extremes Tmin,20 disagree sig-

nificantly over land, with the former being colder by

more than 8°C than the latter on average. The mul-

timodel ensemble mean of Tmin,20 estimates, aver-

FIG. 15. Boxplots of relative changes (%) in (top) the regionally averaged annual mean precipitation rate (P5
20), (middle) 20-yr return

values of annual extremes of 24-h precipitation rates (�P20), and (bottom) the waiting times for late-twentieth-century P20 as simulated

by 14 IPCC AR4 models in (left) 2046–65 and (right) 2081–2100 relative to 1981–2000 with the SRES B1 (blue), A1B (green), and A2

(red) emission scenarios. The boxes indicate the central 50% intermodel range and the median. The whiskers extend to the lower and

upper model extremes. The regions are defined in Table 2.
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aged over the globe or over land, falls between the

estimates from the two reanalyses. The central 50%

intermodel range of simulated Tmin,20 averaged glo-

bally or over land coincides approximately with the

range between the reanalyses.

• The performance of the IPCC AR4 CGCMs in simu-

lating extreme precipitation is comparable to that of

the AMIP2 atmospheric models reported by Kharin

et al. (2005). The coupled models agree satisfactorily

on the amplitude of 20-yr return values of annual

precipitation extremes (P20) in the extratropics but

exhibit very large differences in the Tropics. For ex-

ample, the intermodel standard deviation of P20 in

temperate regions is about 20% of the ensemble

mean value, whereas it is more than 60% of the en-

semble mean value in tropical regions. The models

compare reasonably well with the observational evi-

dence in the extratropics. But, the available reanaly-

ses do not provide a reliable consensus on the mag-

nitude of the observed precipitation extremes in the

Tropics where differences between reanalyses are

comparable to those between the models. In the

Tropics, models simulate more moderate precipita-

tion extremes than in the ERA-40, NCEP2, and

ERA-15 reanalyses. There is a tendency for stronger

precipitation extremes in models with higher hori-

zontal resolution, but the dependence on resolution is

not robust across different models, particularly in the

Tropics.

• Changes in warm extremes more or less follow

changes in the mean temperature of the climatologi-

cally warmest month. That is, changes in the summer-

time mean temperature are reasonably good predic-

tors of changes in warm extremes, at least on a global

scale. The ensemble mean changes in Tmax,20 over

land range from 1.7°C in 2046–65 in the SRES B1

experiment to 4.2°C in 2081–2100 in the SRES A2

experiment. The spread in the responses generally

increases with the strength of the anthropogenic forc-

ing, which is an indication of different climate sensi-

tivities of the models. For example, the globally av-

eraged root-mean-square (rms) difference from the

ensemble mean response is about 0.7°C in 2046–65 in

the B1 scenario but increases to 1.2°C in 2081–2100 in

the A2 scenario when the forcing is substantially

stronger. Multimodel mean increases in warm ex-

tremes averaged over land are about 35%–40%

larger than those averaged over the globe in the con-

sidered scenarios and time periods.

• Cold extremes warm faster than warm extremes by

about 30%–40% over the globe, on average, or about

25% over landmasses. Most of this excessive warming

is confined to regions where snow and sea ice retreat

under the global warming. For example, the magni-

tude of the warming in cold extremes in the Arctic

regions north of 65°� is more than a factor of 2

greater than the corresponding warming in warm ex-

tremes. Cold extremes warm faster than warm ex-

tremes by about 30% in the European region and up

to 50% in the North American region. Changes in the

cryosphere are also likely responsible for faster

warming of cold extremes as compared to changes in

FIG. 16. (left) Relative changes (%) in globally averaged 20-yr return values of annual 24-h precipitation extremes

(�P20) plotted on a log scale as a function of globally averaged changes in mean surface temperature �T (K) simulated

by the IPCC AR4 models in the SRES B1 (circles), A1B (squares), and A2 (diamonds) experiments in 2046–65 (empty

symbols) and 2081–2100 (gray symbols). The median slope of 6.2% K�1 and the 15th and 85th percentiles are indicated

by the bold dashed and dotted lines, respectively. (right) Histogram of �P20/�T (% K�1) simulated by the IPCC AR4

models in the three scenarios and two time periods. The models are indicated by numbers in both panels as 1: CCCMA

CGCM3.1(T47), 2: CCCMA CGCM3.1(T63), 3: CNRM CM3, 4: ECHO G, 5: GFDL CM2.0, 6: GFDL CM2.1, 7: GISS

AOM, 8: GISS ER, 9: INM CM3.0, 10: IPSL CM4, 11: MIROC3.2(hires), 12: MIROC3.2(medres), 13: MPI ECHAM5,

and 14: MRI CGCM2.3.2.
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the mean wintertime temperature. The ensemble

mean change in Tmin,20 over land ranges from 2.1°C in

2046–65 in the SRES B1 experiment to 5.4°C in 2081–

2100 in the A2 experiment. The intermodel uncer-

tainty of these changes tends to be somewhat larger

than for warm extremes. To a large degree, the larger

spread of the model responses for cold extremes is

confined to regions adjacent to the sea ice line and is

likely associated with uncertainties in simulating sea

ice changes under the global warming.

• Fractional increases in the intensity of precipitation

extremes generally exceed those for mean precipita-

tion. Extreme precipitation decreases in only a small

fraction of the subtropical area where mean precipi-

tation decreases. Globally averaged, the multimodel

P20 increase is about 10% in the SRES B1 experi-

ment, 16% in the A1B experiment, and 20% in the

A2 experiment by the end of the twenty-first century.

When compared to the corresponding changes in

global mean temperature, changes in extreme pre-

cipitation translate roughly to a consensus of about

6% K�1 of global warming, which is consistent with

the predicted change implied by the Clausius–

Clapeyron relation, with most of the models simulat-

ing values in the range of 4%–10% K�1. Consistent

with changes in the magnitude of extreme precipita-

tion, waiting times for late-twentieth-century extreme

precipitation events are reduced almost everywhere

over the globe. Waiting times in the Tropics and in

mid and high latitudes are reduced by a factor of

about 2 in 2046–65 and by a factor of about 3 in

2081–2100 in the SRES A1B and A2 experiments,

with more moderate changes in the B1 experiment.

The very large intermodel disagreements in the Trop-

ics suggest that some physical processes associated

with extreme precipitation are not well represented

in models. This reduces our confidence in the pro-

jected changes in extreme precipitation.

• Model differences, rather than sampling error, ap-

pear to be the main source of uncertainty in the simu-

lated late-twentieth-century temperature and precipi-

tation extremes in the considered multimodel en-

semble. The overall uncertainty in local changes in

temperature extremes is dominated by intermodel

differences and sampling errors in mid and high lati-

tudes while forcing uncertainty becomes important in

the Tropics and subtropical regions. Intermodel dif-

ferences generally dominate the uncertainty in

changes in precipitation extremes.

Acknowledgments. We acknowledge the interna-

tional modeling groups for providing their data for

analysis, the Program for Climate Model Diagnosis and

Intercomparison (PCMDI) for collecting and archiving

the model data, the JSC/CLIVAR Working Group on

Coupled Modelling (WGCM) and their Coupled Model

Intercomparison Project (CMIP) and Climate Simula-

tion Panel for organizing the model data analysis activ-

ity, and the IPCC WG1 TSU for technical support. The

IPCC Data Archive at the Lawrence Livermore Na-

tional Laboratory is supported by the Office of Science,

U.S. Department of Energy. We are thankful to three

anonymous reviewers for their helpful comments and

constructive recommendations.

REFERENCES

Allen, M. R., and W. J. Ingram, 2002: Constraints on future

changes in climate and the hydrologic cycle. Nature, 419, 224–

232.

Coles, S. G., and M. J. Dixon, 1999: Likelihood-based inference

for extreme value models. Extremes, 2, 5–23.

Collins, W. D., and Coauthors, 2006: The Community Climate

System Model version 3 (CCSM3). J. Climate, 19, 2122–2143.

Cubasch, U., and Coauthors, 2001: Projections of future climate

change. Climate Change 2001: The Scientific Basis, J. T.

Houghton et al., Eds., Cambridge University Press, 525–582.

Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global

coupled climate models. Part I: Formulation and simulation

characteristics. J. Climate, 19, 643–674.

Diansky, N. A., and E. M. Volodin, 2002: Simulation of present-

day climate with a coupled atmosphere-ocean general circu-

lation model. Izv. Atmos. Oceanic Phys., 38, 732–747.

Dupuis, D. J., and M. Tsao, 1998: A hybrid estimator for the

Generalized Pareto and Extreme-Value Distributions.

Comm. Stat. Theory Methods, 27, 925–941.

Efron, B., and R. Tibshirani, 1993: An Introduction to the Boot-

strap. Chapman and Hall, 436 pp.

Emori, S., and S. J. Brown, 2005: Dynamic and thermodynamic

changes in mean and extreme precipitation under changed

climate. Geophys. Res. Lett., 32, L17706, doi:10.1029/

2005GL023272.

Frich, P., L. V. Alexander, P. Della-Marta, B. Gleason, M. Hay-

lock, A. M. G. Klein Tank, and T. Peterson, 2002: Observed

coherent changes in climate extremes during the second half

of the twentieth century. Climate Res., 19, 193–212.

Gibson, J. K., P. Kalberg, S. Uppala, A. Hernandes, A. Nomura,

and E. Serrano, 1997: ERA Description. ECMWF Reanalysis

Report Series 1, ECMWF, Reading, United Kingdom, 72 pp.

Gnanadesikan, A., and Coauthors, 2006: GFDL’s CM2 global

coupled climate models. Part II: The baseline ocean simula-

tion. J. Climate, 19, 675–697.

Gregory, J. M., and J. F. B. Mitchell, 1995: Simulation of daily

variability of surface temperature and precipitation over Eu-

rope in the current and 2xCO2 climate using the UKMO

high-resolution climate model. Quart. J. Roy. Meteor. Soc.,

121, 1451–1476.

Hasumi, H., and S. Emori, 2004: K-1 coupled model (MIROC)

description. K-1 Tech. Rep. 1, Center for Climate System

Research, University of Tokyo, 34 pp.

Hosking, J. R. M., 1990: L-moments: Analysis and estimation of

distributions using linear combinations of order statistics. J.

Roy. Stat. Soc. (Ser. A), B52, 105–124.

——, 1992: Moments or L-moments? An example comparing the

15 APRIL 2007 K H A R I N E T A L . 1443



two measures of distributional shape. Amer. Stat., 46, 186–

189.

——, J. R. Wallis, and E. F. Wood, 1985: Estimation of the gen-

eralized extreme-value distribution by the method of prob-

ability-weighted moments. Technometrics, 27, 251–261.

International Ad Hoc Detection and Attribution Group, 2005:

Detecting and attributing external influences on the climate

system: A review of recent advances. J. Climate, 18, 1291–

1314.

Jenkinson, A. F., 1955: The frequency distribution of the annual

maximum (or minimum) values of meteorological elements.

Quart. J. Roy. Meteor. Soc., 81, 158–171.

Jungclaus, J. H., and Coauthors, 2006: Ocean circulation and

tropical variability in the coupled model ECHAM5/MPI-

OM. J. Climate, 19, 3952–3972.

Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Re-

analysis Project. Bull. Amer. Meteor. Soc., 77, 437–471.

Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo,

M. Fiorino, and G. L. Potter, 2002: NCEP-DOE AMIP-II

Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631–1643.

Kharin, V. V., and F. W. Zwiers, 2000: Changes in the extremes in

an ensemble of transient climate simulations with a coupled

atmosphere–ocean GCM. J. Climate, 13, 3760–3788.

——, and ——, 2005: Estimating extremes in transient climate

change simulations. J. Climate, 18, 1156–1173.

——, ——, and X. Zhang, 2005: Intercomparison of near surface

temperature and precipitation extremes in AMIP-2 simula-

tions, reanalyses, and observations. J. Climate, 18, 5201–5223.

Martins, E. S., and J. R. Stedinger, 2000: Generalized maximum-

likelihood generalized extreme-value quantile estimators for

hydrological data. Water Resour. Res., 36, 737–744.

Meehl, G. A., and Coauthors, 2006: Climate change projections

for the twenty-first century and climate change commitment

in the CCSM3. J. Climate, 19, 2597–2616.

Min, S.-K., S. Legutke, A. Hense, and W.-T. Kwon, 2005: Internal

variability in a 1000-year control simulation with the coupled

climate model ECHO-G. Part I: Near surface temperature,

precipitation, and mean sea level pressure. Tellus, 57A, 605–

621.

Palutikof, J. P., B. B. Brabson, D. H. Lister, and S. T. Adcock,

1999: A review of methods to calculate extreme wind speeds.

Meteor. Appl., 6, 119–132.

Ramanathan, V., P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld,

2001: Atmosphere—Aerosols, climate, and the hydrological

cycle. Science, 294, 2119–2124.

Russell, G. L., J. R. Miller, and D. Rind, 1995: A coupled atmo-

sphere–ocean model for transient climate change studies. At-

mos.–Ocean, 33, 683–730.

——, ——, ——, R. A. Ruedy, G. A. Schmidt, and S. Sheth, 2000:

Comparison of model and observed regional temperature

changes during the past 40 years. J. Geophys. Res., 105,

14 891–14 898.

Schmidt, G. A., and Coauthors, 2006: Present-day atmospheric

simulations using GISS ModelE: Comparison to in situ, sat-

ellite, and reanalysis data. J. Climate, 19, 153–192.

Scinocca, J. F., and N. A. McFarlane, 2004: The variability of

modeled tropical precipitation. J. Atmos. Sci., 61, 1993–2015.

Semenov, V. A., and L. Bengtsson, 2002: Secular trends in daily

precipitation characteristics: Greenhouse gas simulation with

a coupled AOGCM. Climate Dyn., 19, 123–140.

Simmons, A. J., and J. K. Gibson, 2000: The ERA-40 project plan.

ECMWF ERA-40 Project Report Series 1, 63 pp.

Stephens, M. A., 1970: Use of the Kolmogorov-Smirnov, Cramer-

von-Mises and related statistics without extensive tables. J.

Roy. Stat. Soc. (Ser. A), 32B, 115–122.

Tebaldi, C., K. Hayhoe, J. M. Arblaster, and G. A. Meehl, 2006:

An intercomparison of model-simulated historical and future

changes in extreme events. Climatic Change, 79, 185–211.

Trenberth, K. E., A. Dai, R. M. Rasmussen, and D. B. Parsons,

2003: The changing character of precipitation. Bull. Amer.

Meteor. Soc., 84, 1205–1217.

Voss, R., W. May, and E. Roeckner, 2002: Enhanced resolution

modelling study on anthropogenic climate change: Changes

in extremes of the hydrological cycle. Int. J. Climatol., 22,

755–777.

Washington, W. M., and Coauthors, 2000: Parallel climate model

(PCM) control and transient simulations. Climate Dyn., 16,

755–774.

Wehner, M. F., 2004: Predicted twenty-first-century changes in

seasonal extreme precipitation events in the Parallel Climate

Model. J. Climate, 17, 4281–4290.

Wilby, R. L., and T. M. L. Wigley, 2002: Future changes in the

distribution of daily precipitation totals across North

America. Geophys. Res. Lett., 29, 1135, doi:10.1029/

2001GL013048.

Wilcoxon, F., 1945: Individual comparisons by ranking methods.

Biometrics, 1, 80–83.

Xie, P., J. E. Janowiak, P. A. Arkin, R. Adler, A. Gruber, R.

Ferraro, G. J. Huffman, and S. Curtis, 2003: GPR pentad

precipitation analyses: An experimental dataset based on

gauge observations and satellite estimates. J. Climate, 16,

2197–2214.

Yukimoto, S., and Coauthors, 2001: The new Meteorological Re-

search Institute coupled GCM (MRI-CGCM2)—Model cli-

mate and variability. Pap. Meteor. Geophys., 51, 47–88.

——, A. Noda, T. Uchiyama, and S. Kusunoki, 2006: Climate

change of the twentieth through twenty-first centuries simu-

lated by the MRI-CGCM2.3. Pap. Meteor. Geophys., 56,

9–24.

Zhang, X., F. W. Zwiers, and G. Li, 2004: Monte Carlo experi-

ments on the detection of trends in extreme values. J. Cli-

mate, 17, 1945–1952.

Zwiers, F. W., and V. V. Kharin, 1998: Changes in the extremes of

the climate simulated by CCC GCM2 under CO2 doubling. J.

Climate, 11, 2200–2222.

1444 J O U R N A L O F C L I M A T E VOLUME 20




