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Changes in temperature and precipitation extremes over the Greater Horn of 1 

Africa region from 1961 to 2010 2 

 3 

ABSTRACT: Recent special reports on climate extremes have shown evidences of changes in 4 

the patterns of climate extremes at global, regional and local scales. Understanding the characteristics of 5 

climate extremes at regional and local levels is critical not only for the development of preparedness and 6 

early warning systems, but is also fundamental in the development of any adaptation strategies.  There is 7 

still very limited knowledge regarding the past, present and future patterns of climate extremes in the 8 

Greater Horn of Africa (GHA). This study, which was supported by the World Bank Global Facility for 9 

Disaster Reduction and Recovery (WB-GFDRR) and implemented by the World Meteorological 10 

Organization, was organized in terms of three workshops with three main objectives; (i) analysis of daily 11 

rainfall and temperature extremes for ten countries in the GHA region using observed in-situ data running 12 

from 1971 to 2006, (ii) assessing whether the United Kingdom Met-office and Hadley centre Providing 13 

REgional Climates for Impact Studies (UK-PRECIS) modeling system can provide realistic 14 

representation of the past and present climate extremes as observed by available in-situ data, and (iii) 15 

studying the future regional climate extremes under different scenarios to further assess the expected 16 

changes in climate extremes. This paper, therefore, uses the outputs of these workshops and also includes 17 

post-workshop analyses to assess the changes of climate extremes within the GHA. The results showed a 18 

significant decrease in total precipitation in wet days greater than 1 mm and increasing warm extremes, 19 

particularly at night, while cold extremes are decreasing. Considering a combination of geophysical 20 

models and satellite gravimetry observations from the Gravity Recovery And Climate Experiment 21 

(GRACE) mission in the frame of GRACE daily Kalman-smoothing models, for the years 2002 to 2010, 22 

we explored a decline in total water storage variations over the GHA.  23 
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1. Introduction 1 

Extreme events not only cause property damage, injury, hunger, loss of life and threaten the 2 

existence of some species (see, e.g., Downing 1991), but also drive changes in natural and 3 

human systems much more than average climate (Parmesan et al., 2000; Peterson et al., 2008, 4 

Tierney et al., 2013). Impacts of extreme climate change and variability lead to human suffering, 5 

particularly for the poor as witnessed, e.g., during the prevalent droughts and floods in the GHA 6 

region (Lyon and DeWitt, 2012). Analysis of changes in extreme climate events, therefore, is 7 

important due to the potentially high social, economic, and ecological impact of such events 8 

(e.g., Bohle et al., 1994; Arnell, 2004). Limited availability of long records of daily climate data 9 

in some parts of the world, including the GHA, hampers efforts to analyze the impacts of climate 10 

change and variability on the frequency and severity of climate extremes (Folland et al., 2001). 11 

Long records of daily climate data for the GHA region are discussed in Camberlin and Philippon 12 

(2002); WMO (2003); Brant et al. (2012) and Omondi (2011, 2012). Availability of long term 13 

high quality data in the region is hampered by inadequate monitoring networks; gaps in the 14 

records; a general decline of number of stations; chronic under-funding; differences in 15 

processing and quality control; and differences in data policies (WMO, 2003). It is evident that 16 

the GHA countries share pronounced climatic trends (Tierney et al., 2013) and variability and are 17 

vulnerable to extreme climatic conditions (e.g., Downing, 1991; Schreck and Semazzi, 2004; 18 

Anyah and Qiu, 2012 and Omondi et al., 2012).  19 

It is increasingly becoming apparent that behind the ongoing research and debate on climate 20 

change, many parts of Africa are already witnessing dire consequences of erratic climatic 21 

conditions (Anyah and Qui, 2011; Shongwe et al., 2011) that are likely associated with regional 22 

climatic changes (Funk et al., 2008, 2012). This is expected to pose unprecedented challenges to 23 

most African economies that are significantly hinged on a predominantly rain-fed agriculture. 24 

Further challenges lie in understanding low frequency multi-decadal and centennial climate 25 

variability in the vastness and uniqueness of the complex African terrain and climate systems 26 

over eastern Africa (Omondi et al., 2012; Tierney et al., 2013). 27 

In recent years over the GHA region, particularly in Kenya, Ethiopia and Somali, climate related 28 

extremes have been the dominant trigger of natural disasters. The region has recently witnessed 29 

frequent episodes of both excessive (e.g. Anyah and Semazzi, 2006; Hastenrath et al., 2010; 30 

Kijazi and Reason, 2009a; Viste et al., 2012) and deficient rainfall (e.g. Hastenrath et al., 2007, 31 

2010; Kijazi and Reason, 2009b; Omondi et al., 2012). Consequently, there has been an upsurge 32 

in interest both from the scientific communities (e.g., van Oldenborgh et al., 2005; Omumbo, 33 

2011) and policy makers to the risk of increased extreme climatic events. A recent climate 34 

analysis for East Africa was conducted by Christy and co-authors examining air temperature 35 

trends at 60 stations across Kenya (Christy et al., 2009). After spatially interpolating the station-36 

based data, the study reports finding a statistically significant upward trend in minimum 37 

temperature (Tn) in the Kenyan Highlands region. Omumbo et al. (2011) found evidence of a 38 

warming trend in observed maximum, minimum and mean temperatures at Kericho during the 39 

period 1979 to 2009 using gold standard meteorological observations. An upward trend of 40 

≈0.2°C/decade was observed in all three temperature variables (P < 0.01). Mean temperature 41 

variations in Kericho were associated with large-scale climate variations including tropical SST 42 

(r = 0.50; p < 0.01). Other authors have also studied malaria resurgence using extreme climatic 43 

events over the region (e.g., Hay et al., 2002; Pascal et al., 2006 among others). Analysis of 44 

rainfall, minimum and maximum temperatures records showed increasing trends in annual 45 

minimum and maximum temperatures from 1951 to 2002 (0.4 °C/decade and 0.2 °C/decade, 46 
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respectively) but little trend in rainfall from 1901–50, 1951–2002 and 1901–2002 (Conway et al., 1 

2004). In analysis of rainfall seasonality index (SI), precipitation concentration index (PCI) and 2 

modified Fournier index (MFI), Elagib (2010) found no statistically significant trends in 3 

observed rainfall for the hyper-arid region of Sudan during the common data period of 1945–4 

2007. 5 

Some recent studies using Global Climate Models (GCMs) have shown that changes in climate 6 

over the region are expected in a global warming scenario (IPCC, 2007; Shongwe, 2010; Anyah 7 

and Qiu, 2012). These are likely to include changes in the intensity, duration, and frequency of 8 

droughts and floods, heat waves, etc, and will have serious implications on agriculture, human 9 

health, as well as human activities. It is well documented that some parts of the GHA region is 10 

perennially prone to droughts and floods (Hastenrath et al., 2007; Kijazi and Reason, 2009a, b; 11 

Omondi, 2011; Bradfield and DeWitt, 2012).  12 

Although there is a lack of long records of daily data for extreme climate change detection, 13 

international collaboration is significantly improving the situation, culminating in an analysis 14 

(see, e.g., Alexander et al., 2006) that provided a near-global perspective on changing climate 15 

extremes for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report 16 

(IPCC, 2007). Yet quantifiable information, describing how weather and climate extremes are 17 

changing over the GHA region has been unavailable. In preparation for the Intergovernmental 18 

Panel on Climate Change (IPCC) Fifth Assessment Report, a major effort by the Expert Team on 19 

Climate Change Detection and Indices (ETCCDI) has been undertaken to analyze how extremes 20 

are changing over as much of the world as possible (Alexander et al., 2006). This included 21 

intensive international collaboration on data exchange and analysis, and, where data were not 22 

available, holding regional climate change workshops to generate information on extremes 23 

(Alexander et al., 2006). This global assessment initiative has greatly benefited from the 24 

contributions from a series of workshops (Peterson and Manton, 2008) coordinated by ETCCDI 25 

which is jointly sponsored by the WMO Commission for Climatology (CCl), the Joint 26 

Commission for Oceanography and Marine Meteorology (JCOMM), as well as the Research 27 

Programme on Climate Variability and Predictability (CLIVAR). The ETCCDI workshops seek 28 

to bring participants together from countries within a data sparse region to fill in data gaps and to 29 

provide capacity building. 30 

The availability of daily observation data is steadily improving and has led to the development of 31 

gridded regional (Haylock et al., 2008) and global datasets (Caesar et al., 2006). For some areas 32 

such as the GHA region where daily data availability is still relatively poor, assembling and 33 

research using this data would be useful in decision making and policy formulation on the 34 

climate sensitive sectors of the region. 35 

To address the issue of data shortage in GHA, therefore, and in line with global standard practice 36 

(e.g., Alexander et al., 2006), this study is intended to help fill the data gap in the region by 37 

assembling the necessary climate observations. Further, the understanding and use of regional 38 

climate downscaling tool known as PRECIS would help GHA countries design adaptation 39 

policies and reduce climate associated risks.  40 

This study is divided into four parts namely (i)  the assessment of  the adequacy of regional 41 

climate observations and trends for adaptation purposes, (ii) the assessment of the adequacy and 42 

reliability of available model based climate projections for adaptation needs, (iii)  the assessment 43 

of the expected changes in climate extremes needed to assist in developing effective adaptation 44 

and climate risk management strategies, and (iv) the analysis of changes in total water storage for 45 

the period 2002 to 2010 in order to assess recent vulnerability of GHA region to climatic 46 
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variations. The study is inherently regional in nature since, to be useful, regional climate models 1 

need observational support from as wide a region as possible. Climate does not recognize 2 

national boundaries, so in order to analyze and validate models, it is necessary to take a regional 3 

approach. 4 

The presentation is organized as follows; in section 2, the study area, data used, and the analysis 5 

methods are presented. Section 3 presents the results, which are discussed in section 4. The study 6 

is then concluded in Section 5. 7 

2. Data and methods  8 

2.1. The Greater Horn of Africa 9 

At the time of this study, the GHA region comprised of Burundi, Djibouti, Ethiopia, Eritrea, 10 

Kenya, Rwanda, Somalia, Sudan, Tanzania and Uganda (Figure 1). But currently, South Sudan 11 

that recently ceased and became sovereign state on 9
th

 of July 2011 forms the 11
th

 country in the 12 

GHA region. Majority of these countries are classified as least developed where most of the 13 

societies survive on less than one dollar per day (UNDP 2004). Its climate may be classified as 14 

arid and semi-arid with frequent recurrences of floods and droughts. The recurrences of floods 15 

and droughts have been associated with many socio-economic miseries. Furthermore, the region 16 

is often faced with serious food insecurity and resource-based conflicts. For example, 2010-2011 17 

has been shown to be the driest period in 60 years with more than 12 million people in need of 18 

emergency relief (CRS Report, 2012). Recent assessments (IPCC, 2007) showed that climate 19 

change is real and the poor are the most vulnerable due to the already high level of vulnerability 20 

and low coping capacity. The vulnerability is amplified by the fact that many of East Africans 21 

livelihoods are dependent on farming and livestock; two sectors that are especially sensitive to 22 

perturbations in the climate system. Climate change is, therefore, likely to set back development 23 

and food production in many of the predominantly agro-based economies of most communities. 24 

The GHA countries, like other African countries have short and/or fragmented climate records, 25 

often as a result of armed conflict at various times in the last 50 years. In a few cases, the 26 

available records are too short to be used for the adequate calculation of climate trends, but they 27 

are still valuable in providing a baseline for future analyses, as well as monitoring inter-annual 28 

climate variability.  29 

2.2. Station data and quality control 30 

It is important to note that three workshops were organized to aid with the collection of data 31 

from the member countries that would hitherto not be possible when organized by an individual 32 

country. The workshop participants brought along with them selection of their best quality 33 

digitized daily temperature and precipitation series (Figure 2). 34 

Daily observed station data for maximum and minimum temperatures together with precipitation 35 

for a total of 73 stations from the 10 countries are employed in the analysis (Figure 1 and Table 36 

1). These data sets were subjected to quality control and homogeneity of their series using 37 

RClimDex software (Peterson et al., 2002; Zhang et al., 2009). RHtest software was also used to 38 

perform homogeneity tests (Aguilar et al., 2005, 2009). These packages were downloaded from 39 

the ETCCDI website
1
 . 40 

                                                           
1http://cccma.seos.uvic.ca/ETCCDI/ 

http://cccma.seos.uvic.ca/ETCCDI/
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Inhomogeneities in all the time series were identified and corrected. Linear trends were identified 1 

via a least-squares regression analysis with statistical significance assessed using a two-tailed t-2 

test. These ‘standard’ meteorological observations were compared with spatially interpolated 3 

temperature datasets that have been developed for regional or global applications (Omumbo et 4 

al., 2011). The statistical and visual procedures contained in the RClimDex package were 5 

complemented by the required tests, following the guidelines given in Brunet et al. (2008). In 6 

fact, the tests are focused on the detection of nonsystematic errors usually caused by data 7 

processing, which happens most frequently during digitization procedure (Aguilar et al., 2005, 8 

2009). Ambiguous values (e.g. negative precipitation or maximum temperature lower than 9 

minimum temperature) were identified. Also, the distribution of the precipitation data was 10 

visually inspected, as were plots of the temperature and precipitation time series in order to 11 

detect outlying values. 12 

In the case of temperature, statistical outliers, identified as daily values outside a threshold of the 13 

mean value for that particular day plus/minus four standard deviations were also flagged (see 14 

Section. 2.4). The suspicious data were validated, set to missing value or corrected on the basis 15 

of subjective inspection of partial time series for the adjacent days at the same period with other 16 

years and by spatial comparison with those available close neighboring stations.  17 

Once the data passed the quality control checks, they were evaluated for homogeneity. The 18 

station data underwent homogeneity testing using the RHtest software package (Aguilar et al., 19 

2005, 2009), which helps in identifying step changes in a time series by comparing the goodness 20 

of fit of a two-phase regression model with that of a linear trend for the entire series (Wang, 21 

2003, 2008a, 2008b). RHtest is used to help identify series break points for further 22 

investigations. Selection of data for analysis was based on series length and completeness, 23 

quality control and homogeneity (Aguilar et al., 2005, 2009). In this study, we used a base period 24 

of 1961–1990 and 1971-2000 where most of the station data are available. In some cases such as 25 

in Somalia, Sudan and Rwanda; we used a shorter base period; for example, the data supplied for 26 

Gikongoro in Rwanda began in 1967, so we used a base period of 1967–1996. To be included in 27 

the analysis, time series need to be sampled for at least 30 years and contain fewer than 10% of 28 

missing/rejected values. The reference period of 1971–2000 was chosen to maximize the number 29 

of stations with available data for calculation of the percentile-based indices. Even with this 30 

maximization, only 8 countries with a total 58 of the 73 original stations had long enough 31 

homogeneous periods to be included in the analysis, and not all the indices were calculated for 32 

all the stations. Figure 1 shows the location of stations and Figure 2 the data availability for these 33 

stations. 34 

Of the ten countries that had participants in the workshop, Somalia and Sudan had data time 35 

series falling outside the 1971-2000 period (Figure 2). Since many of the stations had data 36 

problems prior to 1970, the analysis was limited to the period 1971 to 2009. For percentile-based 37 

indices (e.g., the number of days exceeding the 90th percentile of minimum temperature), the 38 

methodology uses bootstrapping for calculating the baseline period values in order to avoid 39 

discontinuities in the indices time series at the beginning or end of the base period following the 40 

approach by Zhang et al. (2005).  41 

The PRECIS modeling system was applied over the region to develop high-resolution climate 42 

scenarios. It was driven with initial and lateral boundary conditions using the UK Met Office 43 

Hadley Center Regional Climate Model (HadRM3P), which is a high-resolution atmospheric 44 

component of the Hadley Centre coupled ocean-atmosphere GCM-HadCM3, with a resolution of 45 

1.875
0
 in longitude and 1.25

0
 in latitude. Details of the Global Climate Models (GCMs) used in 46 
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verification of the PRECIS Regional Climate Model (RCM) can be obtained in Simon et al. 1 

(2004). 2 

2.3 Gravity Recovery And Climate Experiment (GRACE) 3 

Global and regional water cycles are related to different phenomena within the Earth system, 4 

including variations in atmosphere, hydrosphere, ice cover and land surface in various ways, 5 

while ranging from sub-seasonal and inter-annual to decadal and secular interactions. These all 6 

make it difficult to develop realistic models to simulate or predict water variations. 7 

The gravity field of the Earth and its temporal variations, measured globally by GRACE (a joint 8 

US-German satellite mission launched in March 2002) however, are interrelated to total water 9 

storage (TWS) variations of the Earth (Wahr et al., 1998). This offers the unique opportunity to 10 

detect spatio-temporal variations of water within the Earth system from space (Tapley et al., 11 

2004a, b). 12 

The GRACE mission consists of two identical spacecrafts flying approximately 220 km apart in 13 

the same near-polar orbit of about 450 km (Tapley et al., 2004a, b). The main observable is the 14 

distance between the two satellites, measured using a microwave ranging system. Additional 15 

tracking information is provided by Global Positioning System (GPS) receivers on board each of 16 

the spacecraft and Satellite Laser Ranging (SLR) reflector. On-board accelerometers sense non-17 

conservative forces such as atmospheric drag and solar radiation pressure. Time-variable gravity 18 

field solutions are obtained by the exploitation of GRACE observation data over certain time 19 

intervals, namely daily to monthly gravity field solutions. The solutions are computed in terms of 20 

spherical harmonics (SHs). GRACE time-variable products have been frequently used to study 21 

water variations and their relations to climate change, as documented, e.g., in Ramillien et al. 22 

(2004), Awange et al. (2008, 2009, 2011), Becker, et al. (2010) and Forootan et al. (2012). 23 

This study made use of the ITG-GRACE2010 daily solutions (Kurtenbach et al., 2009), which 24 

are computed up to the SHs of degree and order 40, covering October 2002 to September 2009. 25 

For computation of such daily fields, the WaterGAP global hydrology model (WGHM), the 26 

atmospheric model European Centre for Medium-Range Weather Forecasts (ECMWF), and the 27 

ocean circulation model (OMCT) have been used, within the framework of a Kalman-smoother 28 

procedure, to derive the temporal correlations while using GRACE observations as the main 29 

information for computation of the gravity models. Details of computations can be found in 30 

(Kurtenbach, 2011). 31 

The priority of using daily solutions for studying water variations when it is compared to those 32 

of monthly solutions is that it allows to recover fast gravity field (its equivalent water) variations 33 

as detailed as possible with reasonable temporal resolution. For studying TWS variation over 34 

the GHA, first 2588 daily gravity solutions covering October 2002 to September 2009 were 35 

downloaded from the official website of the Astronomical Physical und Mathematical Geodesy 36 

(APMG) group at Bonn University
2
 . These fields were then used to generate the global TWS 37 

values according to the approach of Wahr et al. (1998) and the boundary of the GHA as it is 38 

shown in Figure 1 was extracted from the fields. Finally, spatially averaged TWS along with 39 

their corresponding cumulated TWS variations were computed (see Figure 7b). Daily GRACE 40 

products, in this study, have been used to examine the impact of climate variability on total 41 

water storage variations for recent years (2002 to 2009) when the station data sets were not 42 

                                                           
2
 http://www.igg.uni-bonn.de/apmg/index.php?id=itg-grace2010   

http://www.igg.uni-bonn.de/apmg/index.php?id=itg-grace2010#content1221
http://www.igg.uni-bonn.de/apmg/index.php?id=itg-grace2010#content1221
http://www.igg.uni-bonn.de/apmg/index.php?id=itg-grace2010
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available. In fact, TWS variability reflected in GRACE data indicates the prolonged impact of 1 

decadal climate change over the region. Discussions on the use of GRACE-TWS for drought 2 

monitoring, for instance, can be found in Houborg et al. (2012).  3 

2.4. Analysis methods 4 

2.4.1 Trend calculation and Indices 5 

All stations from different countries were analyzed. Trends for individual stations were 6 

calculated by adapting Sen’s (1968) slope estimator. This method has been applied in other 7 

similar works describing extreme indices (Aguilar et al., 2005, 2009; Zhang et al., 2005; Caesar 8 

et al., 2010) and also adapted to climatological data by Zhang et al. (2000) in a study of annual 9 

temperatures over Canada and by Wang and Swail (2001) in their analysis of extreme wave 10 

heights over the Northern Hemisphere. Trends are significant at the 5% level when results are 11 

±1.96 standard deviations from the median trend. We require at least 70% of annual data to be 12 

non-missing to calculate a trend and refer to trends as being significant if they are determined to 13 

be statistically significant at the 5% level. To avoid biased estimates, station level trends were 14 

not calculated for series with excessive missing values. 15 

A total of 27 indices, based upon recommendations of the ETCCDI, were calculated using 16 

RClimDex (Caesar et al., 2006, 2010). Many of the indices use locally defined thresholds, 17 

making it easier to compare results over a wide region. The indices are primarily based on station 18 

level thresholds calculated over a base period, such as the 90th percentile of minimum 19 

temperature. These thresholds are determined for each day of the year using data from that day 20 

and two days on either side of it over the course of the base period. Table 2 lists the indices 21 

presented in this paper while detailed descriptions of the indices and the exact formulae for 22 

calculating them are available on the ETCCDI web page
3
 .    23 

All the indices are essentially anomalies from the same base period. However, some precipitation 24 

indices could potentially be dominated by those stations with the greatest precipitation, as those 25 

stations may see precipitation vary from year to year by more than the total annual precipitation 26 

at stations with the least total precipitation (Aguilar et al., 2009). To determine whether this was 27 

the case for the stations analyzed, precipitation indices were also calculated by first standardizing 28 

the indices (dividing by the index’s standard deviation). As a comparison of both approaches 29 

revealed similar shape and trends, the standardized indices are not used and the results are 30 

provided through the analysis of the simple anomaly series. 31 

2.4.2. Modeling of extreme rainfall and temperature  32 

Using the PRECIS regional climate modeling system, this study analyses the distribution of 33 

extremes of temperature and precipitation in GHA in the recent past (1961–1990) and in a future 34 

(2071–2100) climate under the IPCC SRES A2 and B2 emissions scenarios (IPCC 2007, chapter 35 

19 page 18). Rainfall and temperature were simulated by PRECIS RCM and compared with 36 

observations (in areas in which data are available) for the period 1961–1990. The main task here 37 

is to evaluate the simulations of current climate (particularly precipitation) of regional climate 38 

model by comparing them with currently available data, and thereby assessing the uncertainty 39 

associated with future climate predictions.  The UK-Met Office high resolution PRECIS model 40 

runs are compared with available data to assess its performance.  The model is used to generate 41 

future climate projections to demonstrate how they can be used and interpreted at the national 42 

                                                           
3
 http://cccma.seos.uvic.ca/ETCCDI/ 

http://cccma.seos.uvic.ca/ETCCDI/
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level.  Emphasis is placed on determining the extremes, trend and the variance explained by each 1 

model. The purpose of the simulation of regional climate is to examine and compare statistics 2 

relevant to the region in observations extremes and regional circulation model. This further 3 

demonstrates value of climate observations and regional models for decision making, to provide 4 

advice on model performance and limitations, and to improve capabilities across the region for 5 

using climate data records and model projections. 6 

2.4.3. Temporal Independent Component Analysis of GRACE spatio-temporal total water 7 

storage products 8 

Independent component analysis (ICA) is a higher-order statistical technique, which can be 9 

viewed as an extension to the commonly used Principle Component Analysis (PCA) (Forootan 10 

and Kusche, 2012, 2013). Using an ICA algorithm, the input data (spatio-temporal observations) 11 

are assumed to consist of a linear mixture of unknown source signals, which cannot be directly 12 

measured. By incorporating higher order statistical information contained in the data in the 13 

decomposition procedure, ICA extracts statistically independent components that reflect spatial 14 

and temporal manifestations of physical processes hidden in the data (Lotsch et al., 2003; 15 

Hannachi et al., 2009).   16 

Generally, there are two alternative ways to implement ICA on a temporal sequence of gridded 17 

datasets in which either temporally independent components or spatially independent time series 18 

can be estimated. The methods are respectively called temporal ICA and spatial ICA (for details 19 

see e.g., Forootan and Kusche, 2012 and Forootan et al., 2012).  This study made use of temporal 20 

ICA method, since the scope of the study is to extract the temporal behavior of TWS changes for 21 

the period 2002 to 2010, to further investigate the impacts of rainfall after the long-term study of 22 

1970 to 2000.   23 

3. Results 24 

3.1 Trends in temperature indices 25 

Trends for the temperature indices for some selected countries are shown in Table 3 in 26 

comparison to global and other regional indices. The two countries i.e., Ethiopia and Kenya are 27 

used for comparison purposes since their data coverage is relatively good and trends calculated 28 

include similar window period of 1971 to 2003. The warm extremes are increasing while cold 29 

extremes decreasing, these series clearly indicate significant warming. Individual stations show 30 

most spatial coherence in the TN90p index, that is, frequency of nights warmer than the 90th 31 

percentile. Nearly half of the available stations indicate a significant increase in this index over 32 

the period 1971–2004. Sample time series for the percentile-based temperature indices are shown 33 

in Fig. 3 for Asmara in Eritrea. The frequencies of warm days and nights, relative to the base 34 

period 1961–1990, increased strongly between 1961 and 1990, with a large increase in the 35 

number of nights per year exceeding the 90th percentile threshold. There were also large 36 

reductions in the frequency of cold nights and cold days over the 49 years. The warmest day and 37 

night of the year is warming at a rate approximately comparable to the global average.  38 

In general, over the entire region, the frequency of warm days and warm nights has increased, 39 

and the frequency of cold days and cold nights has decreased. This agrees with the results from 40 

other studies that have analyzed these trends across different parts of the world (Griffiths et al., 41 

2005; Klein Tank et al., 2006; Choi et al., 2009; Caesar et al., 2010). However, the results for the 42 

absolute temperature indices (TXx, TNx, etc.) defined for the entire region are sensitive to the 43 

large variability in these indices across the region. The percentile indices (e.g. TN90p) are more 44 

robust across large regions because they account for the influence of local climate effects. There 45 
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has been a significant increase in the absolute annual maximum of both daily maximum and 1 

minimum temperatures, again in common with the global picture (Griffiths et al., 2005; Klein 2 

Tank et al., 2006; Choi et al., 2009; Caesar et al., 2010). The coldest day and night of the year is 3 

warming slower than the global average, although planetary trend for the coldest day is not 4 

significant. 5 

3.2 Trends in precipitation indices 6 

The map in Figure 4b depicts total precipitation in wet days (> 1 mm) (PRCPTOT) and it is an 7 

example indicating relative lack of spatial coherence for precipitation in the region. The number 8 

of stations with significant negative or positive trends is low. Sample graphs of trends, calculated 9 

for various precipitation indices are shown in Figures 4a, 5a and 5b, while Table 4 compares 10 

similar trends at regional and global scales (Alexander et al. 2006, Caesar et al., 2010) at similar 11 

window period. Western Lake Victoria, southern Sudan and western Ethiopia generally show 12 

significant decreases in total precipitation (e.g., see Figure 4b). For Asmara (Figure 4a) and 13 

Djibouti (Figure not shown), there are sharp drops in the total annual precipitation time series 14 

around 2000 to 2010. Likely associated with the decrease in total precipitation, the length of the 15 

maximum number of consecutive dry days is increasing in Asmara and Djibouti, while the length 16 

of the maximum number of consecutive wet days shows a significant decrease (figure not 17 

shown). The Simple Daily Intensity Index (SDII), which takes into account the number of days 18 

with rainfall greater than or equal to 1mm shows no significant changes. In general, decreasing 19 

trend in total precipitation in wet days (> 1 mm) is observed in the north western sector (western 20 

Ethiopia and southern Sudan), and equatorial sector around Lake Victoria, while much of 21 

Ethiopia had significant positive increase (Figure 4b). The precipitation due to very wet days 22 

greater than 95
th

  percentile (R95p) index (Figure 5(a)) indicate that the annual amount of 23 

precipitation contributed on days exceeding the long-term 95th percentile has decreased from 24 

about 50 mm to around 30 mm in Khartoum, but this change is non-significant (Figure 5a). The 25 

highest precipitation amount in five-day period or maximum 5-day precipitation (RX5day) index 26 

(Figure 5b) depicts significant reduction over the 40-year period. 27 

Similar time series of R95p for the southern sector is represented by Dodoma (Figure 6a).  There 28 

are increases in R95p over the southern sector, a marginal decrease over the equatorial sector, 29 

and a decrease over the northern sub-region. Between them, only the change within the southern 30 

sector is statistically significant. 31 

Table 4 lists the regional trends for the precipitation indices and also the global trends. The same 32 

problems exist with defining some of the precipitation indices across the whole region that 33 

applied to the absolute temperature indices, and indices defined relative to a local climatology 34 

(e.g. percentile based) are preferable for comparing across such a large region.  35 

Compared to the temperature indices, there are fewer significant trends in the precipitation 36 

indices. In contrast to the other sub-regions, the northern sector has decreasing trends in all 37 

precipitation indices, apart from the consecutive dry day index, suggesting a consistent change 38 

towards drier conditions. However, it must be emphasized that these trends are non-significant. 39 

Over the region as a whole, the precipitation trends are mixed (Funk et al., 2008, 2012). This 40 

does not parallel the global results of Caesar et al. (2010) indicating consistent trends towards 41 

wetter conditions across nearly all of the indices, although it should be noted that analysis was 42 

for a different time period (1971–2005) and had only limited coverage of the tropics. 43 

3.3 Relationship between precipitation and TWS changes 44 



11 

 

Regarding the precipitation results, it was clear that the overall precipitation over the GHA is 1 

declining. To support the precipitation results of the last 7 years of the study (2002-2009), we 2 

used daily TWS products as described in Section 2.3. The goal was to see whether the total water 3 

availability of the region is affected by climate variations or not. As a matter of fact, TWS tells 4 

quite more sophisticated story of water variations over the study region by providing information 5 

on daily precipitation minus evaporation minus run-off over the region. Our results of spatially-6 

averaged TWS over the GHA (Fig. 7) show that TWS declined between 2002 and 2007. An 7 

increase in TWS in 2007 is associated with the El Niño southern oscillation phenomenon, which 8 

usually brings rainfall to most parts of the region (Ogallo et al., 1988; Janowiak, 1988; Indeje, 9 

2000; Mutemi, 2003). This has been followed again by a decline in TWS variations over the 10 

GHA up to the end of the study period. The cumulative TWS over the study period supports the 11 

results of precipitation (e.g., Figure 4a), showing that the total water availability has decreased 12 

over the GHA during the last 7 years of the study (see Fig. 7b, bottom). 13 

 Applying the ICA method on GRACE-TWS data over the GHA shows that the first ICA mode 14 

(IC1) extracts 75% of variability in TWS changes. The spatial pattern of IC1 shows a dipole 15 

spatial structure with respect to the Equator.  The temporal pattern of IC1 shows a dominant 16 

annual water cycle over the study area. The second ICA mode (IC2) corresponds to 15% of the 17 

variance, while the temporal pattern shows a summation of a long-term trend and an inter-annual 18 

variability. Considering the spatial pattern, therefore, a declining rate for the regions of the Lake 19 

Victoria Basin and the surrounding lakes were found. The declining pattern of TWS is also 20 

extended up to the south of Sudan (c.f., figure 4b). In contrast, over the tropical regions as well 21 

as Ethiopia a slight increase of TWS during 2002 to 2010 is seen (c.f., figure 4b). The spatial and 22 

temporal patterns of IC2, therefore, confirm the results of precipitation, which was derived for 23 

the long-term period during 1970 to 2000.      24 

3.4 Modeling precipitation extremes 25 

PRECIS Regional Climate Model (RCM) analyzed correctly and reproduced the mean seasonal 26 

and annual cycles of precipitation for the period 1961-1990 over the southern (Figure 8a), 27 

northern (Figure 8b) and equatorial (Figure 8c) sectors. The mean surface temperature 28 

climatology for all the four seasons of the region i.e. March-May (MAM), June-August (JJA), 29 

October-December (OND) and December-February (DJF) are spatially and temporally (Figure 30 

8d) simulated for the baseline period of 1961-1990 compared with the observed Climate 31 

Research Unit (CRU) data (gridded data based on the set aggregated to the RCM grid). The 32 

results show that, compared to CRU, the model underestimates rainfall over most parts of eastern 33 

highlands during OND while over the central sector (around Lake Victoria area) and southern 34 

sector of the region, the model overestimates rainfall (Figure 8a). On the contrary, over northern 35 

sector, the model produces the observed rainfall reasonably well (figure not shown). It is thus 36 

evident that the simulated rainfall by the PRECIS model is fairly consistent with the observed 37 

values over most parts of the study area. Results from the inter-annual variability of PRECIS 38 

simulated surface air temperature showed that during JJA season, some sections of the region 39 

recorded the lowest temperature and the warmest temperatures during the DJF season (Figure 40 

8b). The model results agree reasonably well with the observed patterns in terms of the spatial 41 

location of the extreme maximum temperatures. 42 

The trends calculated for projected precipitation indices for the period 2010-2040 are shown in 43 

Figure 9. Only central Uganda represented by Mbarara, Masindi and Jinja show significant 44 

increases in total precipitation. Sample time series for Gulu is shown by Figure 9a and regional 45 

projected trends in Figure 9b. Total annual rainfall (PRCPTOT) showed a decreasing trend for 46 
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many of the stations over Sudan except for the Khartoum that had significant positive trend. 1 

Generally, consecutive wet days (CWD) showed a decreasing trend while the consecutive dry 2 

days (CDD) showed an increasing trend. While temperature indices vary from station to station, 3 

the dominant features seem to be an increasing trend in the number of cold nights (TN10p) with 4 

a decreasing trend in the number of warm nights (TN90p). Time series for projected Total 5 

Rainfall (PRCPTOT) over Rwanda, where three stations (Kigali, Kamembe, and Gikongoro) 6 

were analyzed showed evidence of decreasing trends in rainfall. Results show general increasing 7 

trend in Consecutive Dry Days (CDD) and decreasing trend for Consecutive Wet Days (CWD) 8 

for Gikongoro.  9 

4. Discussion  10 

A set of daily station observations from countries in the GHA region were for the first time 11 

compiled and analyzed to enable assessment of changes in climate extremes over the region. 12 

Most stations showed decrease of total precipitation in wet days greater than 1 mm (PRCPTOT) 13 

as well as heavy rainy days (R10mm), maximum one-day precipitation (Rx1day), maximum 14 

five-day precipitation (Rx5day), heavy precipitation days (R10mm) and warm spell duration 15 

(WSDI). Index for warm days (Tx90P) showed increasing trend, while the index for cool days 16 

(TX10P) showed decreasing trend. The TXn index (monthly minimum value of daily maximum 17 

temperature) showed an increasing trend in most parts of the region. The TNx index (monthly 18 

maximum value of daily minimum temperature) showed an increasing trend over most parts of 19 

the region, and more significantly in the north-eastern and southern sectors of the region; 20 

indicating that there is a general increasing trend of warm nights for most of the stations in the 21 

region. Increasing trend in warm nights is indicative of significant night time warming. 22 

Thus, increasing trends for warm nights were the most spatially coherent index consistent with 23 

the results of other regional workshops (Klein Tank et al., 2006, Choi et al., 2009) and the global 24 

analysis (Alexander et al., 2006, Caesar et al., 2010). Less spatial coherence trends in 25 

precipitation indices across the region and fewer trends that are locally significant when 26 

compared with the temperature indices are observed. In the few cases where statistically 27 

significant trends in precipitation indices are identified for regions and sub-regions, there is 28 

generally a trend towards wetter conditions consistent with the global results of Alexander et al. 29 

(2006).  30 

5. Conclusion  31 

The study aimed at: 32 

(i) Assessing the adequacy of regional climate observations and trends for adaptation 33 

purposes. In this regard, the study found that there is inadequate in-situ data for an 34 

individual country analysis but provided sufficient ground for regional level climate 35 

analysis. The results further showed increasing/decreasing trend in warm/cold extremes. 36 

Furthermore, frequencies of warm days and nights increased strongly, with a large 37 

increase in the number of nights per year exceeding the 90th percentile threshold 38 

between 1961 and 1990. On the contrary, precipitation patterns are mixed with fewer 39 

significant trends except significant decrease in total precipitation in wet days greater 40 

than 1 mm across the whole region. 41 

(ii)  Assessing the adequacy and reliability of available model based climate projections for 42 

adaptation needs. To this end, the study found that the simulated climate is fairly 43 

consistent with the observed values over most parts of the study area.  44 
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(iii) Assessing the expected changes in climate extremes needed to assist in developing 1 

effective adaptation and climate risk management strategies. Here, the study established 2 

that, generally, the model projected decreasing/increasing trend in consecutive wet/dry 3 

days with variations in temperature indices from one station to another. The dominant 4 

features in the region seem to be an increasing trend in the number of cold nights with a 5 

decreasing trend in the number of warm nights. Increasing trends for warm nights were 6 

the most spatially coherent index consistent with the results of other regions of the globe. 7 

(iv) Assessing changes in the total water storage for the period 2002-2010. Here, the study 8 

established a decline in total water availability over the GHA region during the last 7 9 

years.  10 

Our findings therefore showed that increasing trends in both night and day temperatures had the 11 

most spatially coherent indices. The model simulates well the spatial distribution of extreme 12 

temperature and rainfall events when compared with present climate observations, with 13 

temperature simulation being more realistic across the region. Overall, the future occurrence of 14 

warm days and nights are projected to be more frequent in the entire GHA, while the occurrence 15 

of cold night events is likely to decrease. The overall precipitation in the region decreased 16 

between 2002 and 2007 from the TWS products. 17 
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List of Figures 1 

 2 

Figure 1: Location of the Greater Horn of Africa region in Africa together with stations used 3 

in the study (see Table 1 for full names, the values of latitude and longitude for each station).  4 
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Figure 2: Available data for the time series used in the analysis. White indicates no data; upper box indicate rainfall while the lower one 

indicates temperature. The arrows show the common years available for all the countries. 
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(a) Asmara TX10P       (b) Asmara TX90P  

           
(c) Asmara TN10P       (d) Asmara TN90P 

Figure 3: 1971–2010 time series for (a) cold days, (b) warm days, (c) cold nights and (d) warm nights (units: %). Bold line indicates 

ordinary least squares fit for Asmara, Eritrea. 
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(a) Asmara          (b) Regional trend 

Figure 4: Precipitation Total (PRCPTOT). Individual station’s time series and regional trend (a) Individual time series 1980–2010 for Asmara in 

Eritrea, (b) Regionally averaged station trends. Positive (negative) trends are shown in red (blue) circles. Large (small) circles indicate 

significant (insignificant) trends. 
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(a) Khartoum R95p                                               (b) Khartoum RX5day 

Figure 5: 1961–2000 time series for (a) contribution from very wet days (R95p, units: mm) and (b) annual maximum 5-day precipitation 

amounts (RX5day, units: mm) for Khartoum. Bold lines indicate ordinary least squares fit. 

 

(a) Dodoma R95p                   (b) Dodoma RX5day 

Figure 6: 1970 –2010 time series for (a) contribution from very wet days (R95p, units: mm) and (b) annual maximum 5-day precipitation 

amounts (RX5day, units: mm) for Dodoma. Bold lines indicate ordinary least squares fit. 
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Figure 7a: (top) Spatially-averaged total water storage (EWT) variations over the GHA, derived from 

daily Kalman-smoother GRACE products, (bottom) Accumulated EWT changes over the GHA 
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Figure 7b: Implementing the temporal ICA method over 2588 days of TWS maps over the GHA, 

computed from Kalman-smoother daily GRACE products provided by the APMG group at Bonn 

University. Independent patterns are ordered according to the variance they represent. One can 

reconstruct each mode of TWS variability by multiplying the spatial patterns with their corresponding 

temporal components.  
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(a) Southern sector  
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(b) Northern Sector 
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(c) Equatorial sector 
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(d) Mean surface temperature 

Figure 8:  Simulated and observed mean climate cycles for some stations located in various sectors of the 

region.
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(a) Gulu         (b) Projected regional trend 

Figure 9: Projected Precipitation Total (PRCPTOT). Individual station time series and regional trend (a) Individual time series 2010–2040 for 

Gulu in Uganda, (b) Regionally averaged station trends. Positive (negative) trends are shown in red (blue) circles. Large (small) circles indicate 

significant (nonsignificant) trends. 
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Table 1. List of stations (see Fig. 1 for their exact location). 

NO STATION STN CODE LON LAT PERIOD 

1 ABU HAMAD ABH 62640 33.3 19.5 1960-2002 

2 ARBA MINCH ABM 63500 37.7 6.1 1986-2007 

3 ASMARA ASM 63021 38.9 15.3 1960-2009 

4 ATBARA ATB 62680 34.0 17.7 1960-2000 

5 AWASSA AWA 63460 38.5 7.1 1971-2007 

6 BUJUMBURA BUJ 64390 29.3 -3.3 1970-2010 

7 BUKOBA BUK 63729 31.8 -1.3 1960-1991 

8 GIKONGORO GIK   30.1 -1.6 1967-2010 

9 GISENYI GNY   29.3 -1.7 1971-2010 

10 KAMEMBE KMBE   28.9 -2.5 1971-2010 

11 METE METE   39.9 8.87 1983-2007 

12 NAAMA NAA   34.08 12.44 1963-2000 

13 NAHOUD NHD   28.26 12.42 1960-2000 

14 OBIED OBE   30.14 13.1 1960-2000 

15 ORE ORE   35.53 8.15 1951-2007 

16 DAGORETTI DAG 63741 36.8 -1.3 1960-1991 

17 DAR.I.AIRP. DIA 63894 39.2 -6.9 1971-2009 

18 DEBRE MARCOS DMKOS 63334 37.7 10.4 1970-2003 

19 DIRE DAWA DDAWA 63471 41.9 9.6 1970-2003 

20 DJIBOUTI DJB 63125 43.2 11.6 1979-2010 

21 DODOMA DOD 63862 35.8 -6.2 1971-2009 

22 GENEINA GEN 62770 22.5 13.5 1960-2001 

23 GONDAR GON 63331 37.4 12.5 1970-2003 

24 GORE GOR 63403 35.6 8.2 1970-2003 

25 JINJA JIN 63682 33.2 0.5 1970-2003 

26 JUBA JUB 62941 31.4 4.5 1960-2000 

27 KHARTOUM KHA 62721 32.6 15.6 1960-2000 

28 KIGALI KIG 64387 30.1 -2.0 1971-2010 

29 KOSTI KOS 62772 32.4 13.1 1960-2000 

30 LODWAR LOD 63612 35.6 3.1 1960-1991 

31 MAKINDU MAK 63766 37.8 -2.3 1960-1991 

32 MALAKAL MAL 62840 31.7 9.6 1960-2000 

33 MASINDI MAS 63654 31.7 1.7 1960-1991 

34 MBEYA MBE 63932 33.5 -8.9 1970-2009 

35 MWANZA MWA 63756 32.9 -2.5 1960-1991 

36 NDONGOLA NDO 62650 30.5 19.2 1960-2000 

37 NEKEMTE NEK 63340 36.6 9.1 1952-2007 

38 NYALA NYA 62790 24.9 12.1 1960-2000 

39 ROBE ROB 63474 40.0 7.1 1983-2007 

40 *SOMALIA SOM 
    * Missing Data 
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Table 2. List of the ETCCDI indices used in this study 

ID Indicator Name Description Units 

FD * frost days count of days where TN (daily minimum temperature) < 

0°C 

Days 

 SU  summer days count of days where TX (daily maximum temperature) > 

25°C 

Days 

ID icing days count of days where TX < 0°C Days 

TR tropical nights count of days where TN > 20°C Days 

GSL * growing season length annual count of days between first span of at least six days 

where TG (daily mean temperature) > 5°C and first span in 

second half of the year of at least six days where TG < 5°C. 

Days 

TXx  monthly maximum value of daily maximum temperature °C 

TNx  monthly maximum value of daily minimum temperature °C 

TXn  monthly minimum value of daily maximum temperature °C 

TNn  monthly minimum value of daily minimum temperature °C 

TN10p cold nights count of days where TN < 10th percentile % 

TX10p cold day-times count of days where TX < 10th percentile % 

TN90p* warm nights count of days where TN > 90th percentile % 

TX90p warm day-times count of days where TX > 90th percentile % 

WSDI * warm spell duration 

index 

count of days in a span of at least six days where TX > 90th 

percentile 

% 

CSDI cold spell duration index count of days in a span of at least six days where TN > 10th 

percentile 

Days 

DTR diurnal temperature 

range 

mean difference between TX and TN (°C)  

RX1day maximum one-day 

precipitation 

highest precipitation amount in one-day period mm 

RX5day * maximum 5-day 

precipitation 

highest precipitation amount in five-day period mm 

SDII * simple daily intensity 

index 

mean precipitation amount on a wet day mm 

R10mm * heavy precipitation days count of days where RR (daily precipitation amount) ≥ 10 
mm 

Days 

R20mm very heavy precipitation 

days 

count of days where RR ≥ 20 mm Days 

Rnnmm  count of days where RR ≥ user-defined threshold in mm Days 

CDD * consecutive dry days maximum length of dry spell (RR < 1 mm) Days 

CWD consecutive wet days maximum length of wet spell (RR ≥ 1 mm) Days 

R95p TOT*  precipitation due to very wet days (> 95th percentile) mm 

R99pTOT  precipitation due to extremely wet days (> 99th percentile) mm 

PRCPTOT  total precipitation in wet days (> 1 mm) mm 

Full definitions are available from the ETCCDI website http://cccma.seos.uvic.ca/ETCCDI/  

http://cccma.seos.uvic.ca/ETCCDI/
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Table 3: Regional Trends in Temperature Indices
a 

 

Index Guinea Central 

Africa 

Zimbabwe Global Kenya Ethiopia Units 

Warmest day 0.14 0.25 0.15 0.21 0.35 0.11 
o
 C /decade 

Warmest night 0.17 0.21 0.10 0.30 0.17 0.33 
o
 C /decade 

Coldest day 0.23 0.13 0.00 0.37 0.02 0.10 
o
 C /decade

 

Coldest night 0.04 0.23 0.02 0.71 0.21 0.32 
o
 C /decade

 

DTR 0.12 0.00 0.11 -0.08 0.22 0.61 
o
 C /decade

 

Cold Night 

frequency 

 

-0.21 
 

-1.71 

 

-1.24 

 

-1.26 

 

-1.10 

 

-1.23 

 

% of days in a year/Decade 

Cold Day 

frequency 
 

-2.15 

 

-1.22 

 

-1.05 

 

-0.62 

 

-1.6 

 

-1.0 

 

% of days in a year/Decade
 

Warm night 

frequency 
 

1.19 

 

3.24 

 

0.71 
 

1.58 

 

1.44 

 

2.14 

 

% of days in a year/Decade
 

Warm day 

frequency 
 

1.56 

 

2.87 

 

1.86 

 

0.89 

 

1.07 

 

0.65 

 

% of days in a year/Decade
 

a
The trends for the globe area from Alexander et al. (2006) and Caesar et al. (2010) based on the time period 

1955-2003. A trend significant at the 5% level is marked with bold font.  

 

Table 4: Regional and global trends in precipitation Indices for the period 1971-2005 

Index Indian 

Ocean 

Himalayas Indo- 

Pacific 

Global Northern 

sector 

Equatorial 

sector 

Southern 

sector 

Units 

PRCPTOT 81.84 41.77 -2.86 5.91 -2.92 -0.85 10.3 
 
mm /decade 

SDII 1.05 1.55 0.25 0.05 -0.81 -0.89 -0.13 mm/day/decade 

CDD 0.66 2.61 -1.01 -1.19 0.37 0.32 0.45 Days /decade
 

CWD 0.10 -0.24 -0.13 -0.07 -0.05 -0.50 -0.07 Days /decade
 

RX1day 1.12 1.70 -1.12 0.26 0.48 -0.33 -0.72 
 
mm /decade

 

RX5day 5.96 16.39 0.90 0.73 0.67 -0.67 0.12 mm /decade 

R10mm 2.09 0.00 -0.14 0.03 -0.29 -0.28 0.35 Days /decade
 

R20mm 1.26 0.53 -0.04 0.06 -0.01 -0.04 0.14 Days /decade
 

R95p 22.66 82.30 12.24 4.68 12.9 -0.50 1.79 mm/Decade
 

R99p -12.61 32.39 4.98 3.38 51.1 -2.30  8.05 mm/Decade 

Note that global trends were calculated from Alexander et al. (2006) together with Caesar et al. (2010) data and 

referred to the period 1971 to 2003. Trends significant at the 5% level are shown in bold font.  

 

 


