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ABSTRACT 

Tenderness, an important quality attribute of meat, is affected 

by many factors, including rate of heating. The purpose of this in

vestigation was to study the changes occurring in beef semitendinosus 

muscle and intramuscular connective tissue heated at rates comparable 

to oven roasting at 93 and 149 °C. The sequence of changes occurring 

during heating was followed by evaluating samples heated to four end 

points, 40, 50, 60 and 70 °C. Cores of meat and isolated connective 

tissue samples in buffer were heated in a water bath "programmed" to 

produce.the desired rate of heating. 

As. internal temperature increased Warner Bratzler shear values 

of cores decreased (P � 0.00 1) . Slow .heating produced more (P <. 0. OS) 

tender cores than faster heating. Shear values were negatively related 

(P<:. 0.05) to percent connective tissue solubilized during heating. 

More (P <:.0.0 1) connective tissue was solubilized in slowly heated 

cores and solubilization increased (P<:: 0.00 1) with internal tempera

ture. 
Enzyme activity was exhibited in cores heated to all end points 

but decreased (P <0.0 1) from 60 to 70 °C. Small amounts 'OJ/ activity 

were found in.the drip lost during heating. Activity in the drip de

creased (P < 0.05) with heating, more slowly (P <. 0.05) at the slow 

rate than at the fast rate of heating. It is postulated that enzyme 

activity could affect the difference in tenderness between the slow and 

fast heated cores. 
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iv 
Isolated connective tissue heated in buffer was solubilized to 

a greater (PC::::. 0 .. 001) extent when heated at the slow rate than at the 
fast rate. Solubilization increased (P<:. 0.001) as end point temper
ature increased. Peptides in samples heated to 70 °C were estimated to 
be longer (P.C:::. 0.05) than those heated to lower temperatures. Solu
bility of the heated connective tissue in guanidine hydrochloride de
creased (P <.0 .. 001) with. heating and to a greater (P <: 0. OS) extent 
in the slowly heated samples. 

From the results of this study it would appear that solubiliza
tion of connective tissue is not the only factor affecting the increased 
tenderness of slowly heated meat. General proteolytic activity may 

play a role in this increased tenderness. Further investigation of the 
residual connective tissue and the effects of the two heating rates on 
myofibrillar proteins is needed to explain the differing effects of 
slow and fast rates of heat penetration. 
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CHAPTER I 

INTRODUCTION 

The effect of heating on the tend.erness of meat is an extremely 

complex problem. Al though tenderness re lat�d� c_hanges occurring in 

meat du�ing heating have been studied extensively many questions re

main unanswered. Several including Paul (1963), Hamm (1966) and 

Draudt (1972)' have theorized that heat related changes in meat tender

ness result from two opposing effects. C.�anges in connective tissue 

have a tenderizing effect while hardening of the myofibrillar proteins 

has a toughening effect. 

Roasting of beef at very low oven temperatures (66-121°C) for 

long periods of time produced more tender meat than roa.sting at a 

higher temperature (149-163° C) for a shorter period of time (Bramblett 

et al., 1959; Bramblett and Vail, 1964; Bayne et al., 1969). The 

slower rate of heat penetration resulting in a prolonged period of 

time in the 57-60 °C range may promote greater degradation or soften

ing of connective tissu·e without extensive hardening of muscle fibers 
(Paul, 1963). 

In studies focusing on changes in connective tissue, alkali in

soluble.collagen decreased during heating (Ritchey and Cover, 1962; 

Ritchey et al. , 1963; McClain et al. , 1965a; Bayne et al. , 1971). How

ever, Bayne et al. (1971) did not find that the amount of residual 

collagen differed with respect to heating rate. 
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Tenderness of meat has been related to the cross linkages of 
collagen in a number of studies. These studies have been related to 
changes in chronological age (Hill, 1966; Herring et al., 1967) and 
to changes in tenderness as a result of varying methods of suspension 
during post mortem aging (Kruggel and Field, 1971). Little work on 
cross linkage in relation to changes occurring during heating was re
ported in the literature. 

Increased tenderness of meat cooked at very low temperatures 
for long periods of time may be attributable partially to the action 
of enzymes. Laakkonen et al. (1970b) reported the presence of pro
teolytic and collagenase-like enzymatic activity in meat heated at 
slow rates. Further work is needed to confirm these results in order 
to better define the role, if there is one, of enzymes in the tender
ization of meat during long, slow heating. 

The present investigation focused on changes in the connective 
tissue component of sernitendinosus cores heated in a water bath at 
rates comparable to oven roasting at 93 °C (200 °F) and 149 °C (300 °F) 
in relation to changes in tenderness as measured by warner Bratzler 
shear. To evaluate these changes progressively, samples were heated 
to four end point temperatures, 40, 50, 60 and 70 °C. Changes in con
nective tissue heated in the intact muscle tissue and in connective 
tissue isolated from muscle tissue prior to heating were both evalu
ated. Solubilization of connective tissue in the intact tissue was 
studied and more specific changes in the collagen molecule were studied 
in the isolated connective tissue. The occurrence of general 
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proteolytic activity in the muscle and in the drip lost during heating 
also was investigated. 



CHAPTER II 

REVIEW OF LITERATURE 

Tenderness has been repeatedly described as the most important 
quality attribute of meat to the consumer, overshadowing color and 
flavor (Bailey, 1972) . Factors affecting tenderness are many. Paul 
(1972) discussed the following as factors that influence the tender
ness of meat: genetic factors including species, breed and sire; 
animal influences including feed, exercise and stress; slaughter and 
post mortem treatment; muscle structure, composition and function; 
and processing and cooking methods. These factors have been studied 
in relation to the two components of muscle that are responsible for 
the tenderness or lack of tenderness of a piece of meat. The effect 
of heating on tenderness and the effect of heating on the connective 
tissue component of muscle have been the subjects of many investiga
tions. Limited work on the role of enzymes in the tenderization of 
meat during heating has been reported. 

I. THE EFFECT OF HEATING ON nm TENDERNESS OF BEEF 

In an early study, Sartorius and Child (1938) reported that 
semitendinosus muscle heated at 150 °C increased in tenderness when 
heated to 58 and 67°C. A decrease in tenderness was noted at 75 °C. 

Muscle fiber diameters decreased up to 67°C and remained constant from 
67  to 75 °C. In relating these changes in tenderness to alterations in 
muscle fibers and connective tissue, the investigators suggested that 

4 
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during heating to ·58 and 67°C, hydrolysis of collagen was evidently 
more effective than increased density due to muscle fiber coagulation 

as a determinant of tenderness. The reverse was true from 67 to 75 °C. 
They postulated that it might be expected that very tender cuts con
taining little collagen would decrease in tenderness during heating 
whereas less tender cuts would become more tender. 

Roasting of beef at very low oven temperatures (66-121°C) for 
long periods of time has been shown to produce.more tender meat than 

higher temperature (149-163°C), shorter time methods of oven roasting 

in a number of studies. Time rather than oven temperature was sug
gested by Cover (1943) as the important factor in tenderizing during 
heating. When the rate of heat penetration was low enough to require 
30 hours or more to reach the well done stage, a tender product was 
always produced. Roasts were not always scored as tender if less time 
was required. Roasts heated to well done in an 80 °C oven were scored 
more tender subjectively and objectively than the pair mates heated in 
a 125 °C oven. 

U. S. Standard grade beef round roasts cooked at 63°C for 30 
hours were more tender than the pair mates heated in a 68°C oven for 
18 .hours (Bramblett et al., 1959). The decisive factors appeared to 
be the length of time that the meat was held in the 57 to 60 °C range. 
Shear values decreased (P <. 0 :·o 1) as the length of time in this temper
ature range increased. Changes in both. the muscle fiber and connective 
tissue components resulting in more tender meat seemed to be occurring 
in this temperature range. 
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In a later study, Bramblett and Vail (1964) found that muscles 
from rounds of U. S. Good grade carcasses heated to an internal 
temperature of 65 °C in a 69 °C oven were more tender than the pair 
mates heated in a 93°C oven to the same end point. Heating times 
were two to four times longer in the 69 °C oven. 

Bayne et al. (1969)  studied the effect of two rates of heating 
on paired large and small rib and top round roasts. Oven temperatures 
of 93°C and 149 °C were used to heat the roasts to end points of 67°C 

and 70 °C respectively . Roasts heated at the slower rate were more 

.CP<:0.00 1) tender than those heated at 149 °C .  Both shear values and 
panel scores for tenderness showed this difference. As in several 
other studies, the authors postulated that the slower rate of heat 

penetration at 93° C could have promoted increased degradation of 
collagen resulting in a more tender product. 

In a study of the effect of low-temperatu·re, long-time heating 
on bovine muscles, Laakkonen et al. (1970a) noted an increase in 
tenderness with heating. Slices of semitendinosus muscle were heated 
in a water bath increasing in temperature at a rate of 0. 1 ° C per 
minute to 60 °C and held for a total cooking time of 10 hours. The 
major increase in tenderness occurred between the fourth and sixth 
hours of heating. The temperature of the meat increased from 50 to 
60 °C during that period of time. 

In order to define the effect of various time-temperature treat
ments on the shear values of semitendinosus muscle, Machlik and Draudt 
( 1963) chose to heat small cores of meat in test tubes in a water bath. 
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Cores were heated for varying lengths of time at temperatures ranging 

from 50 to 90 ° C. A decrease in shear became apparent in the 55-56 ° C 

range and was attributed to the collagen shrinkage reaction. Time 

required for completion of this reaction varied with. temperature. In 

the 57-59°C range one hour was required whereas the reaction was 

.:·· essentially complete in 15 minutes or less at 60-65 ° C. Shear values 

increased from 66 to 80 ° C and began to decrease again in the 80-90 ° C 

range. 

The results of this study and other work from his laboratory 

led Draudt (1972) to conclude that the shear values of meat cooked at 

various temperatures reflect changes occurring in muscle fibers and 

connective tissue during the heating process. He proposed that the 

following factors contribute to changes in shears at various tempera

tures. At 40 ° C the mechanical properties of meat have not been sig

nificantly affected by heat; therefore, shears at this point are in

dicative of initial tenderness. At 50 °C denaturation of most of the 

contractile proteins has occurred. Collagen shrinkage or solubiliza

tion and hardening of the myofibrillar proteins have not yet occurred. 

Therefore shear values are at a maximum point prior to collagen shrink

age. Shear values of meat heated at 60 ° C reflect the effect of the 

collagen shrinkage reaction without any appreciable myofibrillar hard

ening. At 74 °C the magnitude of hardening and limited collagen solu

bilization can be seen. Solubilization of collagen may be reflected 

at 94 ° C. 
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Hamm ( 1966) also concluded that changes in the rnyofibrillar and 

connective tissue components can be broken into steps according to 

temperatures of heating. He used ranges rather than individual points 

in his description of the changes that occur. From 20-30 °C changes 

in these two components are not evident. Myofibrillar changes in the 

30-50 °C range include an.unfolding of peptide chains. A tighter net

work of protein structure results from the formation of unstable cross 

linkages. These changes affect the rigidity of the tissue. Stable 

cross links form from 50 to 55 ° C. At 65 °C coagulation of most of the 

myofibrillar and globular muscle proteins has occurred. At tempera

tures around 63 ° C collagen shrinkage occurs. Hamm stated that at 

higher temperatures an increase in tenderness attributable to co�lagen 

transformation to gelatin may occur. 

II. TIIE STRUCTURE AND PROPERTIES OF COLLAGEN IN 

RELATION 'IO TENDERNESS 

Collagen, the major component of white connective tissue, is 

present in varying quantities in animal tissue. Its composition may 

vary slightly from species to species but certain basic characteristics 

can be enumerated. Glycine is present as every third residue in a 

polypeptide chain of the collagen molecule, except in a small atypical, 

non-helical portion of the chain. ·collagen contains two amino acids 

of unique character. Hydroxyproline and hydroxylysine represent 

approximately 25 residue percent. Triplets of the polypeptide chain 

can be represented by the scheme, -GLY�X-Y-. Hydroxyproline is found 
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only in the Y position whereas proline may be found in the X or the Y 
position (Veis, 1970). 

The collagen molecule is composed of three helical polypeptide. 
chains. The chains are wound around each other in a type of coiled 
coil. A regular array of hydrogen bonds within the molecule serves a 
stabilizing function. Stereochemical restrictions due to the high 
content of pyrrolidine rings of proline and hydroxypreline also con
tribute to the stability of the molecule. The exact molecular weight 
of collagen is unknown but is somewhat less than 300,000 (Piez, 19 6 6; 
Veis, 1970) . 

Individual collagen molecules are linked together by a system 
of intermolecular cross linkages. Harding (19 65) explained that the 

insolubility of all-but a small portion of mature collagen fibers in 
any aqueous or organic solvent that does not attack collagen chemically 
is an. indication of a highly cross linked system. Small p ortions of 
collagen can be extracted from collagenous materials with dilute acid 

buffers, alkali buffers and salt solutions. These extracts contain 
individual trimers, dimers and· monomers. Such soluble components can 
have no covalent intermolecular cross links. Mature collagen fibers 
are insoluble in dilute acid and salt solutions (Schubert and Hamerman, 
19 68). 

Bornstein et al. (19 6 6) noted that disulfide bonds are net pos
sible in collagen since cystine is present in insignificant amounts. 

The nature of cross linking has been difficult to study. Consequently, 
exact mechanisms have.not been described. 
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Of particular interest to meat scientists are studies regarding 
t he occurrence of aldehyde derived cross linkages in collagen. Early 
evidence for t his type of linkage was noted in studies regarding the 
disorder lat hyrism (Page and Benditt, 1967; Levene, 1962) . T he con
dition is characterized by a dramatic increase in the amount of soluble 
collagen present in tissues. Lat hyrism has been induced c hemically in 
experimental animals wit h beta aminopropionitrile fumarate whic h in
hibits aldehyde formation from lysine in a �eptide linkage. Piez 

(1968) noted that bot h intra- and intermolecular cross linkages are 
in hibited by lat hyrogenic compounds and concluded t hat alde hyde forma
tion is involved in bot h cross linking processes. 

Bornstein et al . (1966) pointed out that evidence from 14c-lysine 
studies suggested that a cross link is formed in collagen via an aldol 
type condensation of two lysine derived aldehydes in separate protein 

c hains to produce a new aldehyde. The new aldehyde in vivo or in t he 

process of extraction became unsaturated to form an �,�-unsaturated 
aldehyde. T he exact chemistry of the formation of the bond was not 

determined . T he investigators suggested that the aldehyde linkage 
may occur within t he collagen molecule involving lysine residues in 
t he atypical end of the.molecule. An intermolecular link may involve 
a condensation of a lysine derived aldehyd� in the atypical portion of 
one molecule with t he E-amino group of lysine in. the helica 1 portion 

of another mole�ule. 
Kruggel et al. (1970) used several methods to study t he molecular 

structure of epimysial acid soluble collage� (ASC) f�om meats of varying 
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tenderness. ASC is a soluble form of collagen that still contains 

appreciable amounts of cross links. ASC with a lesser degree of cross 

links as measured by sucrose-density gradient ultracentrifugation was 

extracted from epimysial connective tissue of more tender meat. In

trinsic viscosity studies confirmed this finding. Lysine occurred in 

greater amounts in ASC frorn�less tender meat suggesting a potential for 

more frequent aldehyde linkages. Chemical estimation of the aldehyde 

type cross linkages with 2, 4-dinitrophenylhydrazine showed that epi

mysial ASC from less tender meat contained more aldehyde than that of 

more tender meat. The workers emphasized that the collagen studied 

was epimysial rather than intramuscular in origin. The intramuscular 

collagen would have a more direct influence on tenderness. Further

more, all collagen in a tissue might be related and therefore exhibit 

the same degree of cross linking. 

Kruggel and Field ( 19 7 1) reported a decrease in the aldehyde 

content of guanidine hydrochloride soluble intramuscular collagen 

(GSIC) extracted from muscles that were stretched during aging. 

Guanidine hydrochloride is a denaturing agent capa�le of extracting 

high molecular weight aggregates of collagen containing inter- and 

intramolecular cross links. Tenderness ·was greater in muscles that 

were stretched during aging than in those aged normally. 
In a comparable study, Pfeiffer et al. (1972) reported similar 

but nonstatistically significant changes. The � or single chain 

component of GSIC increased with stretching as well as with aging for' 

21 days. As the amount of the � component present increased, shear 
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values of steaks prepared from adjacent areas of the muscle decreased. 
Shear values decreased as . the amount of Y component or trimers de-

·creased. This constituted evidence that molecular configuration of 
intramuscular collagen is associated with tenderness. Stretc�ing had 

no effect on the amount ·of labile collagen released from GSIC samples 
during heating in Ringer's solution. Similarities in the composition 
of the soluble collagen fractions studied indicated that if differ
ences in covalent cross linking occur they must be within the insoluble 

collagen fractions. 
� Most studies regarding cross linking of collagen in relation to 

tenderness or factors affecting. it have taken a less direct approach. 
Heat labile collagen, the fraction solubilized during heating in 

Ringer's solution or in water, is an indirect measure of cross linking 
thought to be related to tenderness . As the extent of cross linking 
increases the proportion of heat labile collagen decreases. 

Chronological age also is a factor in the tenderness of meat. 
Changes in collagen with age may be responsib�e for the decrease in 
tenderness . Herring et al . (1967) reported that collagen solubility 
decreased with advancing chronologic. al age. Collagen solubility was 
greater in the longissimus than in a less tender muscle, · the s'emi
membranosus. 

Hill (1966) also reported that while there is no increase in the 

total collagen content with increasing chronological age, solubility 
of the collagen decreases indicating the formation of more frequent 
and stronger cross bonds. Therefore, the degree of solubility of 
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collagen as well as the total content should be considered in studies 

of the cause of lack of tenderness in meat. 

Similar findings were noted by Goll et al. ( 19 64a). Collagen 

residues from animals in four groups representing advancing maturity 

were heated at varying temperatures in a buffered medium of pH 7. 

As age increased, the amount of soluble materials released decreased. 

In addition, advancing age resulted in an increase in the thermal 

shrinkage temperature. For the reported work, the thermal shrink 

temperature was��at.temperature at which a sudden release of soluble 

hydroxyproline containing materials occurred. 

Collagen is not a simple component of the muscle. It may con

sist of a number of forms of the molecule ranging from the soluble 

forms to the very insoluble forms. Several of these fractions of 

intramuscular collagen have been studied in relation to tenderness. 

McClain et al. ( 1965b) found no significant differences among tender 

and less tender muscles with respect to acid and salt soluble collagen 

content. 

Alkali insoluble collagen. in raw meat has been investigated in 

attempts to define the role of collagen in. tenderness of heated meat. 

A significant negative correlation between alkali insoluble protein 

and tenderness at 14 days post mortem was noted by Husaini et al. 

( 1950) . A very··high coefficient of correlation of -0.87 was found 

indicating that the alkali insoluble protein fraction was associated 

with tenderness in meat. Short loins from twenty animals representing· 

a variety of market grades were included in the study. 
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Comparable findings were described by Loyd and Hiner (1959). 
Longissimus, semitendinosus and psoas major muscles were eva·luat-ed. 
Highly significant correlations between hydroxyproline content of alkali 
insoluble protein and mechanical shear as well as taste panel ratings 

were shown. 
McClain et al. (1965a) did not find a significant difference in 

alkali insoluble collagen content of raw longissimus and triceps brachii 
from tender and less tender carcasses. s·light differences were fo�nd 
in the collagen content of semimembranosus muscles from these same car-
�- .. casses. Significant differences were found between mus�les within 

tenderness groups. Alkali insoluble collagen content was not related 

to shear values in this investigation. 
Conflicting results are reported above and others were found in 

the literature. Therefore, it is impossible to make any definite 
statement regarding the role of alkali .insoluble collagen content of 
raw meat in the tenderness of heated meat. 

III. THE EFFECT OF HEAT ON (X)LL\GEN IN RELATION TO 

TENDERNESS OF BEEF 

The effect of heat on collagen has been studied extensively in 
attempts to explain the mechanism or mechanisms responsible for changes 
in tenderness of meat with heating. Two approaches have been taken. 
A few have involved changes in isolated connective tissue subjected to 
heating while others have involved changes in the connective tissue in 
intact muscle tissue. 
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Winegarden et al. (1952) heated strips of tissue composed mainly 

of connective tissue in distilled water for varying periods of time at 
a number of different temperatures. At 60 °C little or no softening 
occurred. Softening was evaluated with the Warner Bratzler shear. 

The critical temperature for softening was 65 °C since the change 
occurred in a short period of. time at this temperature. At 80 °C exten
sive changes occurred in one minute. If the connective tissue in in
tact muscle behaved in a like manner little change in tenderness would 

occur in steaks and roasts heated to rare (55 °C) and medium (65 °C) . 

However, it was noted that longer times of 16 and 64 minutes at 65 °C 
resulted in an increased degree of softening. 

Longissimus dorsi contained less alkali insoluble, autoclave 
soluble collagen nitrogen than biceps femoris in a study by Ritchey 
et al. (1963) . This relationship was shown in raw steaks and in steaks 
cooked to 61 and 80 °C. Collagen nitrogen decreased during heating and 
with increasing internal temperatures. The rate of decrease was simi� 
lar·for the two muscles. The decreased residual collagen was reflected 
by increased panel scores for tenderness. 

Similar resu 1 ts were reported in another study by Ritchey and 
Hostetler (1964) . As the end point temperature increased, panel scores 
indicated that connective. tissue became softer and decreased in amount. 
Measured quantities of collagen nitrogen did not agree closely with 
panel scores for connective tissue. Within each treatment, three 
muscles from the round, semimembranosus, semitendinosus and biceps 
femoris, contained similar amounts of collagen nitrogen. This was not 
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reflected in panel scores. The pattern of connective tissue within 
the muscle structure might have influenced the scoring. For example, 
the biceps femoris·had thick masses of connective tissue whereas the 
semitendinosus had finer strands. 

Shimokomaki et al. (1972) pointed out that total collagen con
tent is meaningless in explaining tenderness or lack of tenderness but 
that the relative proportion of thermally labile and thermally stable 
cross links is related to tenderness. Solubilization of collagen 
which reflects changes in cross links was studied. 

In a study relating labile collagen from epimysial and intra
muscular connective tissue·to Warner Bratzler shear values on steaks 
taken from the same carcass, Field et al. (1970) found that connective 
tissue from the more tender longissimus muscle yielded a significantly 
nigher amount of labile collagen than connective tissue from a less 
tender muscle, biceps femoris. Correlations between shear values of 
longissimus muscle and percent labile collagen approached significance. 
As shear values increased the percent of labile collagen decreased. 
The investigators concluded that within limits labile collagen is re
lated to tenderness. The recognized limitation was that labile col
lagen in.the range of 20-50 percent was characterized by low shear 
forces. Therefore, an increased yield of collagen within that range 
has little if any relationship to tenderness according to these inves
tigators. 

McClain et al. (1965a) elected to evaluate the relationship of 
the alkali insoluble collagen content of heated meat as well as that 
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of the raw meat to the tenderness of longissimus, semimembrano�us and 
triceps brachii. Carcasses were divided into tender and less tender 
groups on the basis of shear values of the longissimus. Significant 
differences in collagen content among the three muscles or between the 
two tenderness groups were not found. Muscles tended to reach a rela
tively constant alkali-insoluble collagen content when heated regardless 
of initial content. The small, nonsignificant differences·indicated 
a minor role for alkali-insoluble collagen in the tenderness of cooked 
meat. The absolute content of this collagen fraction was not related 
to shear values. The investigators suggested that the physical and 
the chemical state of the connective tissue and its role in the archi
tectural aspects of muscle may influence tenderness. 

Ringer insoluble and alkali insoluble collagen content of beef 
heated at two rates was studied by Bayne et al. (1971) . Semimembranosus 
roasts were heated at 93 °C and 149 °C to an internal temperature of 70 °C. 
Roasts cooked at 93 °C were significantly more tender than the pair mates 
heated at 149 °C. A significant decrease in alkali insoluble collagen 
content occurred in roasts cooked at both temperatures. However, 
neither the percent decrease nor the residual alkali insoluble content 
differed with respect to heating rate. Like results were reported for 
Ringer soluble and insoluble collagen. The collagen measurement pro
vided no explanation for the difference in tenderness produced by the 
two heating rates. 

The effect of time and temperature of heating on shear values 
and alkali insoluble collagen content of cores of beef biceps femoris 
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was investigated by Winstead (1970). Cores were heated at 55, 60 or 

65°C for 30, 60 or 120 minutes. Cores heated at 60 and 65°C were more 

tender than those heated at 55°C. Cores heated for 120 minutes were 

more tender than those heated for 30 minutes regardless of temperature 

of heating. The effects of time and temperature were independent of 

e�ch other. Residual collagen accounted for 53 percent of the increase 

in tenderness with heating. 

In a similar study Chapman (1972) did not find a significant 

relationship between tenderness and alkali insoluble collagen content 

of semitendinosus cores heated at 60, 65 or 70 °C for 60 or 180 minutes. 

Tenderness decreased as temperature increased and increased as time of 

heating increased. There is not universal agreement as to the ro!e of 

alkali insoluble collagen in heated meat with regard to tenderness. 

Paul et al. (1973) have shown a decrease in percent collagen 

solubilized in cores of beef heated at one rate to varying end point 

temperatures. Cores were heated in a water bath programmed to simulate 

oven roasting at 163°C (325°F). Correlations between shear values at 

each end point temperature and percent collagen solubilized were non

significant for semitendinosus muscle but significant for biceps 

femoris. Highly negative correlations between penetration data and 

percent collagen solubilized suggested that hardening of the muscle 

fibers was more important in tenderness changes than the breakdown of 

connective tissue with the heat treatment used in the study. Studies 

have not been reported that cotnpare solubilization of collagen as re

ported by Paul et al. (1973) in meat heated at rates comparable to 

roasting at other oven temperatures. 



I V. THE ROLE OF ENOOGEIDUS ENZYMES IN THE 

TENDE RI ZATION OF BEEF 
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Increased tenderness of meat cooked at very low temperatures for 

long periods of time may be attributable partially to the action of 

enzymes that occur naturally in the muscle (Laakkonen et al . ,  19 70b; 

Bayne et al . ,  1971). Little on the occurrence· and activity of proteo

lytic enzymes in muscle tissues used as food was found in the litera

ture . The role of enzymes in the tenderization of meat during post 

mortem aging is considered in reported studies . 

Landmann (1963) noted that the cathepsins, a group of intra

cellular mammalian enzymes , have not been well characterized due to 

problems encountered in studying them . However, the investigator was 

able to isolate a proteinase system from beef muscle with an optimal 

pH range of 5 to 6 and concluded that if cathepsins were involved in 

tenderization during aging, conditions would be favorable to their 

activity . 

Bodwell and Pearson (1964) prepared a partially purified bovine 

muscle cathepsin fraction and assayed its activity on a number of sub

strates .  They concluded that the sarcoplasmic proteins are the ma jor 

substrate for endogenous mus cle cathepsins .  Actin, myosin and acto

myosin werenot af fected by the enzyme fraction. Connective tissue or 

any of its components were not used as a substrate. 

Proteolysis was unrelated to tenderization during pos t mortem 

aging (Davey and Gilbert, 1966) . Changes in nonprotein nitrogen in 

longissimus dorsi aged at 2 °C for 30 days were followed . Nonprotein 
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nitrogen was measured as a breakdown product of proteolytic action . 
Differences in rates of proteolysis among carcasses did not parallel 
differences in rates of tenderization . 

The effect of pH, substrate concentration, incubation and temper

ature on the activity of cathepsins B , C and D isolated from bovine loin 
and flank , was evaluated by Lutalo-Bosa and MacRae ( 1969) . The rnyo
fibrillar fractions of the muscles were used as the substrates. Con
nective tissue components were not subjected to the enzyme fraction . 
Optimal pH was 3. 8 with significant activity shown at a pH of 4. 8 .  
Maximum activity was noted at 40 °C with a rapid decrease in activity 

at higher temperatures . It was suggested that activity above 60 °C was 
due to an enzyme known to be stable at 65 °C with properties similar to 
those of cathepsin C. The investigators concluded that cathepsins B 
and D exhibited greater activity in muscle tissue than previously re
ported. Implications of the findings were not discussed .  

The above studies have not considered the role of enzymes in 
tenderization during heating . Little work has been reported on pro
teolytic activity during the heating of meat . 

Laakkonen et al . ( 19 7Gb) reported detecting collagenolytic-like 
activity in the drip and a water soluble fraction of longissimus, bi
ceps femoris and semitendinosus slices heated in pla stic bags i.n a 
water bath . Slices were heated to 37, 45  and 60 °C and held for a total 
of 10 hours heating time . The drip lost during heating exhibited more 
collagenolytic-like activity than the water soluble fraction from the 
heated meat . rherefore , it was concluded that in slow heating less 
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loss of d rip would re sult in great er retent ion of enzymat ic ac t ivity . 
Tests fo r gene ral p roteolyt ic act ivity  conf irmed the p resence o f  ot he r  

p roteol yt ic en zymes. These enzymes we re mo st act ive in meat heated to 
37 ° C, s ign if icantly act ive in 45 °C samples an d clea rly les s act ive in 
samples heated to 58 .5 °C .  In coo king method s in vol ving a rap id rise 
in the tempe ratu re of meat t o  70-80 °C the enzymes would be inact ivate d .  
Howe ver, if the meat was slowly heated to 60 °C, enzyme act ivity · would 
be reta ined and could poss ibly be capable of p roduc ing tende r meat. 
Alt houg h. tende rn ess of t he meat used �n the enzyme stud ies was evalu
ated (Laa kkonen et al., 1970a), no in dicat ion of the relat ionsh ip be 
tween the enzyme act ivity an d tende rness was repo rted . 

The occu rrence of collagena se in muscle t issues commonly used 
as food has not been repo rted. Collagenase is def ined as an enzyme 
capab le of clea ving molecules of nat ive collagen . Cleavage must occu r 
w ith in the hel ical po rt ion of the collagen molecule . Enz ymes capable 
of attac king only those a reas outs ide of t he hel ix cannot be class i
fied as collagenase (Se ifte r and Ha rpe r, 19 71 ) . Howeve r, t he poss ible 
ro le of gene ra l prote olyt ic en zyme s  in t ende rizat ion should not be 
d is rega rded . Se ifte r an d Ha rpe r ( 1970 ) noted that when the collagen 
m olecule is dena tu red it bec omes suscept ible to gene ral p rote ol ytic 
attac k. 



CHAPTER III 

PRO CEDURE 

I. SOURCE OF MEAT 

One semitendinosus muscle . from each of four Hereford X Charolais

Hereford (H X CH) and three Hereford X Charolais (H X C) heifers was 

secured from the Animal Science Department . Age of the animals ranged 

from 428 to 493 days . Mean U. S .  D .  A. quality grade for each breed 

group was high good (Winfree, 1973). The muscles were excised after 

8 to 10 days aging in a cooler and placed in freezer storage until used 

in the study . 

II . PREPARATION OF SAMPLES FOR HEATING 

Each frozen semitendinosus muscle was cut into sections 2-1/4 

inches long across the fibers. Epimysial connective tissue and adhering 

fat were removed while the muscle sections were allowed to thaw s lightly 

to facilitate removal of 16 cores, 2-1/4 inches long and one inch in 

diameter. Cores were taken parallel to the muscle fibers and randomly 

assigned to heating rate-end point temperature treatments . Each heating 

rate-end point temperature combination will be referred to as a treat

ment for purposes of discussion . Two additional cores were taken and 

assigned to heating rates for thermocouples . 

Cores were placed in weighed 50 milli liter Pyrex centrifuge tubes 

containing two small glass marbles and reweighed to determine raw core 

22  
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weight . Marbles were used to keep the cores out of the drip as much 
as possible . A marble a lso was placed on top of each core to help 
keep the core in contact with the tube wall in order to maintain a 
uniform heat treatment. Cores were stored in the refrigerator for one 
or two days prior to heating . 

The remaining muscle tissue was ground once through a plate having 
10 mm holes and mixed well . S amples were taken for pH determinations 
and isolation of connective tissue . 

Crude connective tissue (CCT) was isolated by the method of Field 

( 1970) . One hundred grams of ground muscle tissue were placed in a 

Waring Blender with 400 ml of cold isotonic (0 . 9  percent) NaCl solu
tion . The sample was blended at high speed for 10 seconds , placed in 
the refrige:i;,,ator for 2 minutes and blended for an additional 5 seconds . 
The myofibrillar proteins and salt solution were allowed to pass through 
a single layer of cheesecloth .  The residue was returned to the blender 
and the procedure repeated four times. After the fifth blending, the 

remaining connective tissue was centrifuged at 4, 000 x G for 5 minutes 
at 2-3 °C .  The superna tant ·was d isca rded . The CCT wa s p la ced on f i lter 

paper to remove excess moisture , weighed to determine yield and appor
tioned for heating . 

III. HEATING 

Tubes containing the cores of meat �nd tubes containing 0 . 9 7-
1 . 80 g of CCT in 35 ml pf 0. 1 M potassium phosphate buff"er , pH equiva
lent to the pH of the raw muscle, were placed in a shaker water bath 
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containing chilled water ( 6-1 2 °C) . Temperature s were monitored us.ing 
two copper c onstantan the rmocouples, one in a core of meat and one in 

a CCT -buffer tube . The temperature of the water bath was 0programmed " 
to approx imate the heat penetration curves obtained . in a previous 
study (Smitherman, 196 7) . "Programming" was ac complished by adjusting 
the water bath temperature c ontrol every 8 minutes . The heating rates 
used were selected to simulate oven roa sting of top round roasts rang
ing in weight from 1. 9 to 2 .  3 kg at 93 °C (.200 °F)  for appr oximately 
9-1/2 hours and at 149 °C (300 °F )  for approximately 2-1/2 hours. The 
he �ting rates will be referred to as slow and fast, respectively . The 

order of heating, _slow or fast , was randomized to minimize the effect 

of refrigerator storage of the c ores. 
Two tubes containing cores and two con taining CCT-b uffer . samples 

were removed when corresponding tubes containing thermocouples r eached 
temperatures of 40, 50, 60 and 70 °C. Tubes were cooled in an ice bath 
for 15 minutes after removal from the water bath to te rminate heating . 

IV . METIIODS OF EVALUATION 

Following c ooling, tu bes containing cores were weighed to deter
mine evaporative l osses. Cores were removed from the tubes, adhering 
drip was removed and the c o res were weighed . Co res were refrigerated 
overnight prior to further anal ysis. 

Drip from the two cores from each heating rate-end point temper

ature treatment was combined . Weight of the drip was determined ·by 
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subtracting heated core weights and evaporat ive losses from the raw 
core weights. After homogenization at  low speed for 30 seconds in a 
Virtis homogenizer , the drip was sampled for further analysis . 

The buffers from each of the two CCT�buffer tubes f rom each 

trea tment were combined in a mixing cylinder and made to volume of 80 
ml with buffer prior to sampling for several analyses . The CCT 
samples were weighed , combined and sampled for hydroxyproline and 
guanidine hydrochloride soluble intramuscula r  collagen (GS IC) analysis. 

Hydroxyproline Analysis 
Changes in the connective tissue component of muscle tissue and . .  

in the isolated connective tissue were evaluated by Woessner 's  (19 61) 
method for hydroxyproline . Prior to this analysis samples of appropri
ate weight or volume as listed in Table 1 were placed in culture tubes 

· having screw caps. Each sample was made 6 N by the addition of hydro
chloric acid . Volumes of acid and norma lity a lso are listed in Table 
1 .  The samples were hydrolyzed in an  autoclave at - 121-122 °C f or 16-17 

hours . Following hydro lysis a small amount of activa ted cha rcoal was 
added to tubes containing humin _ to facilitate decoloriza tion . These 
tubes were placed on a sha ker for 20 minutes and then filtered through 
Whatman No . 42 filter paper into a volumetric container of appropriate 
size . The filtra te was neutralized with concent ra ted sodium hydroxide 

using methyl red as an indic ator and brought to volume with distilled 
wa ter . The appropriate dilution volumes were determined in preliminary 
work and were dependent on the hydroxyproline content of the sample. 
Suitable volumes are listed in Table 1 .  Buffer and GSIC hydrolysa tes 



Table 1 .  Hydroxyproline Analysis : Specifications for Sample Weights , Volumes and Dilutions 

Type of 
Sample 

Muscle 

Drip 

40 ° Water 
Soluble 
Fraction 

Buffer 

CCT 

GSIC 

Method 
Used8 

I I  

II  

I I  

I 

I 

I 

Weight or 
Volume of 

Sample 
Hydrolyzed 

0 . 08-1 . 40 g 

0. 50-1. 20 g 

5. 00 ml 

2. 50 ml 

0. 20-0 . 50 g 

2. 50 ml 

HCl 
Addedb 

(ml) 

10 . 0  

4. 0 

s . o  
2. 5 

10. 0  

2.5 

Normality 
of HC l 

6. 0 

7 . 5 

12. 0 

12 . 0  

6. 0 

12. 0 

Volume of 
Diluted 

Hydrolysate 
(m l) 

200 or 250 

100 or 200 

100 

50 or 100 

500 

so 

Sample 
Size for 
Analysis 

(m l) 

0. 2-0. 5 

2 . 0  

2 . 0 

2 . 0  

0 . 2-0. 5 

2. 0 

8Method I or II as outlined by Woes sner, J .  F . 1961. The determination of hydroxy
proline in tis sue and protein samples containing small proportions of this imino acid . Arch . 
Biochem . Biophy s .  93 : 440. 

�otal volume for hydrolys is was 5 or 10 ml . 

"'-' °' 
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did not require decolorization with charcoal . 

An aliquot of each diluted hydrolysate was pipetted into a test 

tube and the volume adjusted to 2 ml with water if necessary. Woessner 
(1961) outlined two methods for quantitative determination of hydroxy
proline. Method I was used for samples containing at least 2 percent 
hydroxyproline and method II was used for samples containing a small 
amount of hydroxyproline in relation to other amino acids (Table 1). 
Details of each procedure are given in t.he Appendix . 

Cores and Drip 

Shear values . Following overnight refrigeration each core was 
sheared three times with a Warner Bratzler shear . Values for two cores 
from each treatment were averaged prior to statistical analysis. Cores 
from each. treatment were ground once through a plate having 4 mm holes , 
mixed we 1 1  and apportioned for analysis . •  

Moisture-fat determinations. Duplicate 3 to 5 g samples of 
ground muscle were weighed into preweighed Whatman extraction thimbles . 
Samples were dried in a vacuum oven at 60 °C for 16 hours, weighed and 
extracted with petroleum ether (b . p. 37 . 4-50. 0 °C) for 6 hours on a Gold
fisch Fat Extraction Apparatus. Following extraction samples were re
dried, weighed and percent nonfat-dry weight (NFDW) calculated. 

Connective tissue solubilization in cores . A modification of 
the method described by Paul et al. (1973) was used to determine the 
amount of connective tissue solubilized during heating of the cores . 
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The term connective tissue solubilized rathe r than colla gen solubilized 
is used since correction of hydroxypr oline values and subsequent col
lagen values for elastin conten t was not made. 

Five grams of muscle tissue from each treatment were homogenized 
with 50 ml of 40 °C distilled water in a Waring B lendor for 2 minutes. 
The homogenate was transferred to a centrifuge tube and an additional 
20-30 ml of water were used to rinse the blendor. The homogenate was 
centrifuged at 4, 600 x G for 15 minutes. The supernatan t was decanted 
th rough a single layer of cheesecloth into a mixing cylinder. The 
volume was rec orded fo r use in calculating collagen content. Duplicate 
aliquots of the supernatant were analyzed fo r hydroxyproline content. 

Duplicate weighed portions of the drip from each treatment were 
analyzed fo r hydroxyp roline content. Hydroxyproline content of dupli
cate portions of each treatment sample of ground muscle also was de
termined. 

Hydr oxyproline values were converted to collagen values and pe r
cent connective tissue solubilized was calculated by the following 
e quat ion : 
Percent Connective 
Tissue Solubilized = Collagen in Drip + S oluble Collagen in Muscle 

Col la gen in Drip + Co l la gen in Mus e  le X 100. 

Isolation of water solub le fraction fo r prot eolytic enzyme 
activity tests . A modification of the met hods described by Laa kkonen 
et al. (1970a) and Kronrnan et al. (19 60) was used for the isolation of 
water soluble fractions for u se in testing for proteolytic enzyme 
activity. Sixteen grams of raw , ground tissue in 50 ml of cold 
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demineralized water were stirred for one hou r on a cold plate (2-3 °C) . 

Duplicate pH readings were taken on each sample immediately after 

stirring. The second pH measurement was preceded by restirring of the 

samples for 30 seconds and rotation of the flas k (Rogers et al . ,  1967) . 

Each mixture then was centrifuged at 25 , 500 x G for one hour at 

2-3 °C .  The supernatant was decanted through a single layer of cheese

cloth into a mixing cylinder and brought to a volume of 64 ml with 

cold demineralized water. Sixteen grams of ground , heated muscle and 

one-half of the drip from each treatment were extracted as above and 

brought to volumes of 64 and 75 ml respectively. The pH of each heated 

sample also was determined as described previously. 

Testing for proteolytic enzyme activity . Azocoll , an insoluble 

powdered cowhide-az o dye complex , was used as a substrate to test for 

the presence of proteolytic enzymes in the water soluble fraction of 

the raw and heated tissue as well as the drip. The azo dye is re

leased from the collagen preparation by the action of proteolytic 

enzymes , the rate of release being indicative of the degree of pro

teolytic activity of the test material (Laakkonen et al . ,  1970b) . 

Six 10-ml portions of each water soluble fraction were added 

to 35 mg portions of Azocol l .  Three tubes were incubated at 37 ° C for 

15 minutes while the remaining three were kept at 0 ° C in an ice bath . 

Two blanks containing 35 mg of Azocoll and 10 ml of 0 . 1  M buffer , pH 

equivalent to the raw sample , also were prepared and incubated at 37 ° C. 

/ 
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Following incubation, proteolytic activity was ter�inated by 

filtration of the samples and blanks through Whatman No. 2 filter 

paper. Absorbance of each sample was measu red in a Bausch and Lomb 

Spectronic 20. The diffe rence betwe en samples incubated at 37°C and 

an average of those incubated at 0 ° C and corrected with the blank 

value was calculated. To correct for differences in actual amount of 

nonfat dry matter in the muscle samples each absorbance value was 

divided by the percent nonfat-dry weight of the sample . Absorbance 

values of the drip samples were multiplied by two to give a value 

representative of the . total drip . .  The adjusted absorbance values 

were termed the enzyme activity values and used in statistical analysis . 

No attempt was made to convert the absorbance values to specific enzyme 

activity units to avoid misleading interpretation and statements regard

ing the presence of specific enzymes . This type of information was not 

obtained in the present study. 

Crude Connective T issue-Buffer System 

Connective tissue solubilization . An aliquot of the buffe r and 

a portion of the CCT from each treatment were ana lyzed for hydroxy
proline content (Woessner ,  1961) . Percent connective tissue solubilized 

during heating was calculated by the foll owing equation : 

Percent Connective 
Tissue Solubilized = ______ c_o_l_l_a .... ga..e_n_. 1._· 

n_B_u_f_f_e_r ____ _ 
Collagen in Buffer + Collagen in CCT X 100 

Peptide lengths . Peptide length of the solubilized collagen was 

estimated by measuring the te rminal amino acid content of the buffer 
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wit h the 2 ,4, 6-trinit roben zenesulfoni c a cid (TNBS) met hod of Habeeb 
(1966) and total Kjeldahl (AOAC, 1970) nitrogen content of the buffer. 
A 2 ml aliquot of the heated buffer or a 1 ml aliquot plus 1 ml of 
un heated buffer was analy zed for terminal amino a cid con tent. Two ml 
of a 4 g/100 ml solution of NaH a:>3 and 2 ml of an 0.1 g/100 ml solu

tion of TNBS were added to the samples. The mixture was pla ced in a 

covered shaker water bat h at 40 °C for 2 hours � After the 2 hours , 

2 ml of 1 N HCl were added and the absorban ce read in a Baus ch and Lomb 
Spe ctroni c 20 at 41 0 nm against a buffer blank treated as above. 

For ea ch repli cation a solution of 1 pmole of gly cine in 100 ml 
of buffer of the appro priate pH was prepared . .  Aliquots containing 
0 .1, 0. 2, 0.3 and 0 .4 pmoles of gl ycine were treated as above to obtain 
a standard curve. T he slope of t he curve was cal culated by averaging 
the values pmo les G ly e ine This value was used in t he following Absorban ce 
manner to cal culate t he terminal amino a cid content in terms of pmoles 
gly cine : 

)ltlloles Gly cine 
ml Buf fer 

Ab so rban ce of Sample = ml S ample x Sl ope 

The assumpti on that one pmole of gly cine represents one ymole of free 
amino nitrogen was made. 

Five ml aliq uot s of the heated bu ffers were analy zed for total 
nitrogen content by t he mi cro -Kjeldahl method as ou tlined by AOAC (1970). 
Mi cro -moles of nitrogen per ml of sample were cal culated a ccording to 
the foll owing equation : 
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µmo les N 
m l  S amp le 

= ,. (mL HC l for S amp le - m l  HC l f er Blank ) 
m l  S amp le x Norm a lity x 10- 3. 

The fo l lowing equ ati on as suggested by Kang and Rice (1 9 70) w as 
used for estim ating the length of the peptides re le ased from CCT during 

he ating : 
µmo les G lycine/m l S amp le 
pmo les Nitrogen /m l Samp le Aver age Peptide Length 

A ldehyde content of connective tissue . Gu anidine hydroch loride 
so lu b le intr amuscu lar co l lagen (G SIC) w as extr acted f rom 1 . 9-2 .4 g of 
CCT from e ach tre atment. The CCT was extr acted twice with 20 m l  por 
tions of 4 M gu anidine hydroch loride for 24 hou rs in the co ld. The 
second extr action was preceded , by centrifug ation at 2 ,000 x G at 2- 3 °C 

for 10 minutes. The com bined supe rn at ants we re di a lyzed ag ainst sever a l  
ch anges of co ld deminera lized w ater for 7 days  in the co ld to p recipi
t ate the GSIC. The GSIC suspension w as centrifuged at 8,200 x G for 
20 minutes at 2- 3 °C, dec anted and the prec ipit ate reso lu bi lized in 50 
m l  of O � S M acet ic acid. To f aci lit ate so lubi liz ation it w as neces s a ry 
to keep the G SIC-ace tic acid mixture in the co ld for sever a l  d ays. 
Inte rmittent sh aking a ided in th e so lu bi liz ation . 

Aldehyde (o:. , �-uns atur ated) content o f  the GSIC so lution w a s 
dete rmined according to the method of Levene (1 9 62) . Twe lve m l  of 
the so luti on we re added to 4 m l  of a satur ated so lution of 2,4-dinitro
pheny lhydr azine (2,4-DNPH) in 0 .5 M acetic acid . The mixture w as p l aced 
on a sh aker at room temper ature for 10 minutes and then .incubated in a 
w ater bath at 40 °C fo r 20  minutes . The so luti on then w as di a lyzed in 

the co ld ag ainst seve ra l ch anges of 0.5 M ace tic acid to remove excess 
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2 , 4-DNPH. A blank containing acetic acid in place of the 2 , 4-DNPH 
solution was prepared as above for each sample. Each sample was read 
in a Bausch and Lomb Spectronic 20 at 390 nm against its own blank. 

The equation for calculation of pmoles of aldehyde per pmole of col
lagen from the absorbance readings was : 

µmoles Aldehyde 
}1mole GS IC = 

0 .D. x Total Volume x Molecular 
Extinction Coefficient 
of �, ��unsaturated Aldehyde X 

6 10 µmoles Wt. of Collagen x mole 
Length of mg GSIC x Sample 
Light Path x ml Sample Volume 

The molar extinction coefficient of 20, 000  (R6j kind et al . , 19 64) for 
an � , �-unsaturated aldehyde was adjusted for the light path of the 
Bausch and Lomb Spectronic 20 by including the light path length ( 1 . 17 
cm) in the equation. The molecular weight of collagen was given by 
Piez ( 1966) as somewhat less than 300 , 00 0. For purpose of this study 

a value of 300 mg of col lagen per rmole was used . 

Statistical Analysis 
The experiment was set up in a completely randomized , split-plot 

design with seven blocks. Each muscle constituted one block or plot. 
Analysis of variance and orthogonal comparisons were used to study the 
functional relationship between heating rate and end point tempera
tures. When significance was found the Student-Newman-Keuls Test 
(Sokal and Rohlf, 1969) was applied . Shear data , connective tissue 
solubilization values , .  aldehyde content, peptide lengths and enzymatic 
activity values were evaluated in this manner . A correlation coefficient 
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wa s c a l cu l a ted to determine the re lations hip between s hea r va lues and 

percent s olub i l iz a t ion of connecttve tis sue . 



CHAPTER IV 

RESUL TS AND DISCUSSIO N  

I . REA TI NG RATES 

The mean time-temperature curves fo r heating co res a t  two rates 
are shown in Figur � 1. Mean tota 1 heating time for the slow method was 
575 minutes, approximately 3-1/2 times the 169 minutes required to 
reach an internal temperature of 70 °C with the fast rate of heating . 
Mean times to reach each of the end points in the cores and in the 
crude connective tissue-buffer system are both presented in Table 2 .  
Heating time to each end point was longer for the slow rate than for 
the fast rate in both systems . Differences between the two systems in 

times required to reach the desired end points were ap parently due to 
I • differences in the rate of heat transfer through the two med ia . 

I I . CHANGES IN CORES 

Shear Values 
Shea r values for the seven · replications of each treatment are 

shown in Table 3. Results .of the anal ysi s of var iance of these values 
are presented in Table 4. 

Shear values differed with respect to breed group . Cores .from 

the H X C muscles were less tende r (P < 0 .05 ) than the cores f rom the 
H X CH muscles . + Mean values for the two breed groups were 13. 4 - 1. 3 

and 11 .9 ! 1.0 kg respectively. 
35  



70 f 60 t 50 r /""\ 
I 

u ' 
0 ._,, 
a, 40 
1-1 
::, 

.µ 
cu 
� 30 
0.. 

f-1 
20 

/ s t  
� l S low 

i 

I ..I I I I ! I I I I I I -4 1  
40 80 120 - - - - - - - ·  - 2 80 320 3 60 400 440 480 520 5 60 600 1 60 200 240 

Time in Minutes 

Figure 1 .  . Time-Temperature Curves  for He a t ing S emitend inosus Cores  a t  Two Ra tes . 

w 
O'I 



Table 2 .  Mean Minutes Required to Hea t Semitendinosus Cores and Connective Tis sue in 
Buf fer at Two Rates to Four End Points 

Minutes a 
S low Fast 

40 ° C 50 °C 6Q OC 10 °c 40 °c 50 ° C 60 ° C 

Cores 

Mean 134 176 247 575 82 105 127 

! Standard 
Error 3 1 5 7 2 2 2 

Connective 
Tis sue in Buffer 

Mean  123 165 212 546 75 93 ll5 

:!: Standard 
Error 4 1 6 8 2 3 2 
------

'\iean and s tandard error of seven replica tions . 

10 °c 

169 

2 

150 

3 

/ 

w 
......, 



Table 3 .  Shear Values of Semitendinosus Cores Heated at Two Rates to Four End Points 

Siew 
Shear Va luesa ( k&) 

Muscle Fas t  
Breed Number 40 °c 50 °C 60 °C 10 °c 40 °c 50 °C 6Q O C 

H X C I 20 . 0  19 . 9  7 . 0  5 . 2  18. 7 17 . 9  8 . 1  

III  18 . 9  19. 0 7. 7 5 . 6 21. 4 19. 8 7 . 6  

VII 22 . 4 19 . 5 - 7 . 0  6 . 1  21 . 5 18.0 6. 8 

H X CH II  17 . 4  14 . 3  5 . 6  5 . 1  20 . 5  16 . 7  8 . 0  

IV  18 .3  16. 8 6 . 2  4. 4 20. 4  20 . l  7 . 5  

V 18. 0 18 . 6  6 . 8  4 . 5  17 . 6  17 . 2  7 . 5  

VI 17 .7 16 . 0  5 . 3  5. 4 15 . 1  15 . 1  6 . 5  

Mean 19 . 0  17 . 7  6 . 5  . 5 .  2 19 . 3  17 . 8  7 . 4  
:t Standard 

Error 0 . 7  0 . 8  0 . 3 0 . 2 0 . 9 0 . 7 0 . 2 

'\ieans of six shears . 

10 °c 

8. 7 

7 .. 6 

7 . 3  

7 . 2  

6 . 7 

8 . 1  

6 . 4  

7 . 4  

0 . 3  

w 
CX> 
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Ta ble 4. Mean Squares and F Values f rom Analysis of Variance of 
Shear Values of Hea ted Semi tendino su s  Cores 

Degrees of 
S our ce Freedom Mean · Squares 

Ra te 1 11. 5 
End Poin t 3 6 5 7.1 

Linear 1 1700.8 
Quadra tic 1 1. 6 
Cubic 1 2 68. 9 

Ra te x End Poin t 3 3. 2 

Breed 1 30. 8 

Rate x Breed 1 2.3 

End Point x Bree d 3 2.7 

Ra te x End Poin t x 
Breed 3 0. 5 

An ima 1 /B reed a 5 2. 5 ,  

Treatmen t x 
Anima 1/Breed b 35 1. 5 

a . Err or term for breed . 
bError term f or all sources except breed. 
*P <. 0.0 5 ; **P < 0.01 ; ***P < 0.001. 

F V alues 
7. 7** 

438.l*** 
1133 . 9*** 

1 .1 
17 9. 3*** 

2 .1 

1 2.3* 

1 .  5 
1. 8 

4(.1 
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Winfree (1973) reported a nonsignificant influence on Warner 

Bratzler shears of longissimus muscles from roasts and steaks from 

animals in these two breed groups. The muscles in the present in

vestigation were taken from the animals used in the study by Winfree. 

Comparisons of the results of the two studies may be questioned , how

ever, because different muscles and different rates of heating were 

used. 

As expected, shear values of cores heated at the fast rate 

were higher ( P  <. 0 . O S) than those heated at the slow rate . Respective 

mean shear values for the two rates were 13. 0 ! 1. 1 and 12. 1 ± 1 . 2. kg . 

The findings for heating rate are in agreement with . those of earlier 

workers (Bramblett et al. , 1959 ; Bramblett and Vail, 1964 ; Barne et 

al. , 1969). The latter group of investigators reported that roasts 

heated to 67'° C in a 93 °C oven were more ·tender ( P  < 0. 001) than th ose 

heated to 70 ° C in a 149°C oven . 

Mean shear values of cores heated to four, end point temperatures 

(T) without respect to heating rate are given in Table 5 .  The poly-

nomial (curve A) presented in Figure 2 is representative of the end 
point shear values and was plotted from the following equation : 

2 3 Shear = -463. 7 + 28. 318T - 0. 538T + 0. 003T 

As indicated in Table 4, shear values differed ( P-<'.:. 0 . 001) with 

respect to end point temperature. Results of the Student-Newman-Keuls 

Test appear in Table 5.  A small but significant decrease in shear 

value occurred as cores were heated frcxn 40 to 50 ° C .  A greater de

crease occurred in the 50 to 60 °C interval. Heating above 60 °C did 

not significantly affect tenderness. 
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T a ble 5 .  Mean She ar V alues an d Per cent Solu bil ize d Conne ct ive T issue 
V alues of Semiten d inosus Cores He ate d to Four En d Po ints 

E nd Po int 
( °C) 
40 
so 
60 

70 

Me an She ar -V alue a 

( kg) 

19 .l b :!: 0.5 
17 . Bc + 0.5 

7 . od + 0. 2 
6.3d ± o. 4 

S olu b il ize d 
Conne ct ive T issue a 

(%) 

1. 62b :t O. 41 
2.69 b :!: 0.28 
5.63 c + 0.61 

11 . 2 3d + 1. 04 

\iean an d st and ar d error of seven repl icat ions. 
b, c , �eans in the s ame column w ith l ike su pers cr i�ts do not 

d iffer (P < 0 .01 ). 



1 1  

10 
20  

9 

_ 1 s  
'bD � 7 ""-/ 

Cl] 
(lJ 
::, 6 

..-4 

Cl] > 
� 10  
(1J .c: 

Cl) 

3 

5 
2 

1 

40 50  60 70 
End Point Temperature (°C) 

Figure 2 o Shear Values (A) and Percent Connective Tissue 
Solubilized (B) as a Function of End Point Temperature . 

42 

-
(lJ 

·� 
..-4 ·� 

' .a 
::, 

..-4 

0 
en 
(1J 
::, rn 
U) .� � 
Q) > ·� 
(1J � � 
0 
C) 



Tenderness of semitendinosus muscle was associated with end 

point in several earlier studies. Sartorius and Child (1938) noted 

43 

an increase in tenderness with heating to 58 and 67 °C and a decrease 

in tenderness at 75 ° C. Laakkonen et al. (1970a) found that the major 

decrease in shear values of semitendinosus muscle heated at a slow 

rate occurred as the meat warmed from 50 to 60 ° C. On the other hand, 

Paul et al. (1973) reported that end point did not influence tender

ness of semitendinosus cores. A decrease in tenderness with heating 

in the range 56 to 59°C as a result of collagen shrinkage was reported 

(Machlik and Draudt , 1963). 

The effect of heating rate was . independent of the effect of end 

point temperature (Table 4, page 39). However, the treatment means 

(Table 3, page 38) suggest a trend toward increased tenderness between 

60 and 70 °C at the slower rate of heating. The difference between the 

70 °C cores heated at the two rates is similar to the difference re

ported by Bayne et al. (1969) in which shear values for large, top 

round roasts heated at 149 ' and 93 ° C were 8. 5 and 7. 9 kg respectively . 

Percent Connective Tissue Solubilized 

Values fo r connective tissue solubilization are shown in Table 

6. As with the shear values , heating rate . had a significant (P <: 0. 01) 

influence on percent solubilized connective tissue (Table 7). At the 

slower rate without respect to end point, 5. 92 ± 0. 96 percent of the 

connective tissue was solubilized. This was significantly greater than 

the 4 . 67 ± 0. 70 percent solubilized at the fast rate . 



Ta ble 6 .  P ercent Connective Tissue Solubilized in Semitendinosus Cores Hea ted a t Two Ra tes 
to Four End Points 

Copnective Tissue Solubilized (%) 
Muscle S low Fas t  

Breed Number 40 °c 50 °C 6Q OC 70 °C 40 °c 50 °C 60 °C 10 °c 
H X C I 4. 87 4 . 6 1  9 . 28 19. 59 0. 3 1  3. 61 9. 58 15 . .?.9 

I I I  4 . 16 3 . 17 5. 07 14 . 35 0. 90 3. 30 4 . 00 7 . 02 

VI I  1 .  64 3 . 74 5 . 84 1 1. 24 0. 68 2 . 87 5 . 60 8 . 16 

H X CH I I  2. 04 1 .  80 7 . 02 13. 84 2. 99 3 . 15 9. 1 1  12. 48 

IV 0 . 44 1. 07 4. 33 1 1. 09 2. 8 1  2. 87 3 . 46 7. 15 

V 0. 35 2. 62 5. 14 13. 22 0 . 22 1 . 98 2 .  60 6. 48 

VI 0 . 15 0 . 80 3. 46 10 . 69 1 . 05 2. 09 4. 29 6 .  62 

Mean r. 95a 2. 54a 5 . 73b 13. 43c 1. 28a 2. 84a 5 . 52b 9·. 03d 

± Standard 
Error o .  72 0 . 53 0. 73 1. 16 0. 43 0. 23 1. 05 1 . 31  

a, b , c , �e ans with like superscripts do  not differ (P <:, 0. 0 1) .  

.a:-.a:-
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Table 7 .  Mean Squares and F Values from Analysis of Variance of 
Percent Connective Tissue Solubilized 

in Heated S emitendinosus Cores 

Degrees of 
Source F reedom Mean Squares 
Rate 1 21 . 81 
End Point 3 259 . 73 

Linear 1 707 . 0 1 
Quadratic 1 71 . 71 
Cubic 1 0 . 46 

R�te X End Point 3 16 . 02 
Breed 1 34 . 97 
Rate x B reed 1 9. 25 
End Point x Breed 3 1 . 43 
Rate x End Point x 

Breed 3 2 . 27 
Anima l/Breed8 5 19 . 89 

Treatment x 
Animal/Breedb 35 2 . 44 

aError term for breed . 
b Error term for all sources except breed . 
**P < 0 . 0 1 ;  ***P < 0 . 001 .  

F Values 
8 . 94** 

106. 45*** 
289 . 76*** 
. 29 . 31** 
<1  

6 .  56** 
1. 76 

3 . 79 
<.,1 

" 1  
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Bayne et al. (1 971) found t hat percent alkali insoluble collagen 

solubilized wit h heating did not differ wit h respect to heating rate . 
Data were obtained by difference (i.e ., raw insoluble collagen minus 
heated insoluble collagen) . T herefore , total collagen was not con
sidered as in the present study. 

As end point temperature increased, a significantly (P <( 0 .001) 
greater portion of the co nnective tissue was solubilized . End poin t 
means for solubilized connective tissue are p resented in Table 5, page 
41 . T he polynomia l represent in g t h e best f it .  curve f or these 
data a re shown in Fi gure 2, curve B, page 42 . The equation for the 
curv e is : 

Percent Connective 
Tissue Solubilized = 2 20.662 - 0. 928T + 0 .011T 

A small nonsignificant increase occur red from 40 · to 50 °C. Si gnifi cant 
increases in solubi lized connective tissue occurred from so · to 60 °C 
and from 60 · to 70 °C .(Table 5 and Figure 2). 

An increased (P <. 0 .01) solubilization of collagen in semi 

tendinosus wit h increasing internal temperature was reported by Paul 
et al. (1 973). Direct comparison of t he results would be impossible 
for several reasons. T he two investigations differed wit h respect to 
heat ing rates and end points . Paul and co -workers corrected hydroxy
proline data for elastin content . This was not done . in t he present 
study . Elastin contain s 1-2 percent as muc h  hydroxypro lin e as collagen 
(Paul , 1 972 ). It is not affected by heat and it is a major component 

of connective tissue of t he semitendinosus muscle , re presenting approx 
imately 37 percent of the to tal connective ti ssue (Bendall, 1 967). 
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Bendall suggested that elasti n affects tende rness of heated meat in a 
manner similar to that of denatured collagen. Therefore , the correc 
tion for elastin co ntent was not made. 

The effect of end poi nt temperature was related to the rate of 
heati ng as shown in the analysis of va riance (Tabl � 7 ,  page 45). Re
sults · Of the Student-Newman-Keuls Test for treatment mea ns appear in 

· Table 6 ,  page 44 . A greater (P C::: 0.0 1) percentage of co nnective tissue 
was solubilized in co res heated at the slow rate to 70 °C than in those 
heated to 70 °C at the fast rate. Diff �rences amo ng .40, 50 and 60 °C 
samples with respect to heati ng rate we re no nsignificant. Differe nces 
withi n heati ng rates with respect to end point temperatures were 
identical to the differences in end point means described p reviously 
(Table 5 ,  page 4 1). 

Relationship Between Connective Tissue Solubilizatio n and Shear Values 
A significant relatio nship between shear values and percent 

co nnective tissue solubilized duri ng heat ing was found. As percent 
co nnect ive tissue solub ilized increased shear values decreased (r = 
-0.704 ; P <::  0.0 1). The relationship is illustrated in F igure 2, page 
42. There appeared to be a l im it to this relatio nship, however. The 
small but significant (P <:., 0.0 1)  decre ase in s hear value from 40 to 
50 °C was not paralleled by a s ignificant increase in co nnective tissue 
solubil i zatio n at the slow or the fast rate (Table 5 and Table 6 ). As 

a sign ificant increase in percent solubilizat ion .of connective tissue 
occurred from 50 to 60 °C a signi ficant decreas e in shear values was 
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found . The si gnificant difference in percent so lubi lized connective 
tissue in the s low 70 °C and the fast 70 °C samp les was not ref lected in 
a statistica l ly si gnificant difference in shear va lues between the two 

samples. 
The increased so lubi lization of connective tissue in the s low 

70 °C cores mi ght have been overshadowed by ot her factors im portant in 
the determination of tenderness such as hardenin g of the myofibri l lar 
proteins durin g the lon g  period of heatin g from 60 to 70 °C .  After 
comparin g shear va lues and pene �ration data of semitendinos us stri ps, 

Pau l et a l .  (197 3) conc luded that connective tissue breakdown was less 
�portant than musc le fiber coa gu lation in contro l of tend erness changes 
in the strips heated to 82 °C. Lack of corre lati on between percent 
so lubi lized connective tissue and shear va lues was re ported. Dif fer
ences in the end point tem peratures studied mi ght be partia l ly re
sponsib le for the differences in the resu lts of the re ported study and 
the present investi gation. Draudt (1972 ) im p lied that hardenin g of the 
myofibri l lar proteins occurred between 6 0  and 74 °C. Heatin g above 70 °C 
as in the study o f  Paul et al. ( 197 3) mi ght have resu lted in gre ater 
hardenin g than was seen in the present study. 

Limitations in the re lationship between tendernes s and labi le 
co l lagen were reco gn ized by Fie ld et a l .  (197 0) . At low shear va lues, 
increased labi le co l lagen has litt le effect on tendernes s .  

The effects of hea tin g rate and end point tem peratures on shear 

va lues cannot be c om p lete ly ex p lained in terms of percent connective 
tissue so lubi lized . 
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Moisture-Fat and pH Values 

Percent nonfat dry weight increased with heating . Data for the 
seven replications are reported in Table 20 (Appendix) . These values 
were not analyzed statistically. 

An increase in pH values occurred with heating but was not 
evaluated statistically. Values for pH of raw muscle samples :ranged 
from 5 . 5 7  to 5 . 74 with a mean of 5. 64 ! 0. 3. Samples heated at the 
slow rate increased to pH 5 . 84 ± 0 . 1  whereas the fast samples increased 
to pH 5 . 81 ! 0 . 1 .  Complete pH data are presented in Table 21  (Appendix) . 

Proteolytic Enzyme Activity 
Values for proteolytic activity of muscle samples and for the 

drip lost during heating are presented in Tables 8 and 9 .  
Water soluble extracts of the raw muscle samples were tested 

for proteolytic activity. Values are included in Table 8. The raw 
meat values were not included in the statistical analysis . However, 
inspection of the data s hows. that the mean raw meat value is greater 
than the means for any of the treatment samples . There are a few 
heated values that are greater than the lower raw values. 

Analysis of varianc e (Table 10) of the enzyme activity values 

(EA v) indicated that . end point temperature had ,a_ 's ignificant (P <. 0 .  05) 
influence on the level of enzyme activity of the water soluble frac
tion of the heated cores . End point means are presented in Table 1 1 . 
A . significant curvilinear trend was found in these data . The poly
nomial in Figure 3 ( curve A) illustrates this trend and was p lotted 
from the ·equation : 



Table 8.  Proteolytic Enzyme Activity of Raw Semitendinosus Muscle and Semitendinosus 
Cores Heated at Two Rates to Four End Points 

Enzyme Activity Va lue a -----.. 

Muscle S lew Fas t  
Breed Number Raw 40 °c 50 °C 60°C 10 °c 40 °c 50 °C 00°c 10 ° c 

H X C I 0 . 159 0. 052 0 . 000 0. 13 1 0 . 029 0 . 035 0 . 055 0 . 089 0. 030 

III 0 . 123 0. 083 0. 07 1 0 . 1 1 1  0 . 058 0 . 128 0 . 072 0. 084 0. 0 19 

VII 0 . 372 0 . 082 0 . 070 0 . 05 6  0 . 029 0 . 1 10 0. 097 0. 000 0. 0 12 

H X CH I I  0. 143 0 . 1 17 0 . 140 0 . 080 0 . 028 0. 086 0 . 081 0. 19 1 0 . 073 

IV 0. 338 0. 07 1 0 . 081 0. 078 0 . 081 0. 2 12 0 . 140 0 . 172 0 . 077 

V 0 . 249 0. 090 0. 085 0. 125 0. 139 0. 090 0 . 078 0 . 0 62 0. 003 

VI 0 . 192 0 . 0 19 0 . 049 0. 097 0. 055 0 . 078 0. 086 0 . 089 0. 053 

Mean 0 . 225 0. 073 0 . 07 1  0. 097 0 . 0 60 0 . 10 6  0 . 087 0. 098 0 . 038 

± Standard 
Error 0 . 031  0 . 0 10 0. 0 14 0 . 0 10 0 . 0 14 0. 020 0 . 0 10 0. 022 0 . 0 10 

a Absorbance 
% NFDW 



Table 9 .  Proteolytic Enzyme Activity of Drip Lost from S emitendinosus Cores Heated at Two Rates to Four End Points 

Enzl!!e Activity Va lue a 
Muscle S low Fast Breed Number 40 °c 50 °C 6Q O C 10 °c 40 ° c 50 °C 60°c - - �-- 7b °C 

H X C I 0 . 000 0 . 000 0 . 000 0 . 000 0 . 000 0 . 008  0 . 006 0 . 000 
III 0 . 040 0 . 020 0 . 030 0 . 008  0 . 0 18 0 . 008  0 . 000 0 . 0 10 
VII 0 . 036 0 . 020 0 . 0 10 0 . 002 0 . 032 0 . 022 0 . 000 0 . 002 

H X CH II 0 . 022 0 . 022 0 . 0 10 0 . 008  0 . 000 0 . 000 0. 000 0 . 000 
IV 0 . 026 0 . 032 0 . 024 0 . 022 0 . o  66 0 . 0 14 0 . 002 0. 0 14 
V 0 . 034 0 . 006 0 . 0 16 0 . 000 0 . 008 0 . 008  0 . 004 0 . 000 
VI 0 . 016 0 . 0 1 8  0 . 000 0 . 008 0 . 0 16 0 . 000 0 . 002 0 . 000 

Mean 0 . 025 0 . 0 17 0 . 0 13 0 . 007 0 . 020 0 . 008 0 . 002 0 . 005 
:!: Standard Error 0 . 005 . 0 . 004 0 . 004 0 . 003 0. 009 0 . 003 0 . 00 1 0. 002 

\iean value (absorbance x 2) of tr ip licate determinations from one wate·r solub le extract . 



Table 10. Mean Squares and F Values from Analysis of Variance of Proteolytic Enzyme Activity 
of Heated Semitendinosus Cores ana �of�ntip Lost During Heating 

Degrees Enzyme Activity of Muscle Enzyme Activity of Drip 
of Mean F Mea n F 

Source Freedom Squares Values Squa res Values 
Rate 1 0 . 0007 < 1  0 . 00058 5 . 2 7* 
End Point 3 0 . 00 6 3  4 . 20* 0 .  000 77 7.00*** 

Linear 1 0 . 00 74 4 . 93**  0 . 00208 18 . 9 1*** 
Quadratic 1 0 8 0050 3 . 3 3 0 . 00024 2 . 18 
Cubic 1 0 . 00 65 4. 3 3** 0 . 00000 0 

Rate x End Point 3 0. 00 18 1. 20 0 . 0000 6 <l 
Breed 1 0 . 0 109 4. 04 0 8 00002 .( 1  
Ra te x Breed 1 0. 00 1 1  < l  0. 00002 .C:::l 
End Point x Breed 3 0. 0010 <l 0. 00002 C:::::l 
Rate x End Point x 

Breed 3 0 . 00 15 1 0 8 0000 6 <:,l 

Anima 1/Breeda 5 0. 002 7 0 . 00055 

Treatment x b Anima 1/Breed 35 0 . 00 15 0 . 000 1 1  

aError term for breed . 
bError term for all sources except breed . 

*P <.,. 0 . 05 ;  **P< 0 . 0 1 ; ***P,<. 0 . 00 1. 
u, 
N 
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Table 1 1 . Mean Proteolytic Enzyme Activity of Heated Semitendinosus Cores and of Drip Los t  During Heating to Four End Points 

End Point Cores5 
Enzyme Activitia 

( oc) 

40 
50 
60 
70 

Dri!( 

0 . 09cf + 0 . 0 10 o . 022f :t 
0 . 079d ± 0 . 009 0 . 0 13£, g  
0 . 098d ± 0 . 0 10 0 . 007g + -
0 . 049e + 0 . 0 10 0 . 006g + -

'\teans and standard errors of seven replications . 
b Absorbance 

% NFDW 
C Absorbance . 

0. 005 
± 0 . 003 
0. 003 
0. 002 

d ' �eans with like superscripts do not differ (P <( 0 .  05) . 
f ' �eans with like super scripts do not differ (P <. 0. 0 1) . 
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EAVcore = 2 3 2. 394 - 0. 1 .36T - 0 .  002 6T - 0.0000 1 6T 

A significant change in activity was not seen as the cores were 

heated from 40 to 60 °C .  A s ignificant (P < 0 . 05 ) decrease occurred be

tween 60 and 7o �c . A limited number of beef muscles was tested by 

Laakkonen et al. ( 1970b) and an increase in proteolytic activity with 

heating to S0 . 5 °C was reported. 

Rate of heating did not affect the level of enzyme activity . 

The effect of the end point temperature on activity was independent of 

the other factors in this study including heating rate. 

A different pattern of proteolytic activity was exhibited by the 

drip samples . A significant (P <(, 0.00 1) linear decrease ( Table 10, page 

52) in activity in the · drip was shown. Curve B in Figure 3 represents 

the equation : 

EAVd . = 0 . 04 1 7  - 0.00054T . 
n.p 

As end point temperature increased from 40 to 60 °C a significant de-

crease in activity occurred. Laakkonen et al. ( 1970b) noted that drip 

values changed in the same manner as muscle sample values with heating. 

Drip lost from slowly heated cores exhibited greater (P <. 0 .  05 ) 
proteolytic activity than the drip from cores heated at the fas ter rate . 

Respective mean activity values were 0 . 0 15 ± 0 . 002 and 0 . 009 t 0 . 003 . 

The effects of heating rate and end point temperatures on the proteo

lytic activity exhibited by the drip were independent of each other . 

From these data it is evident that general proteoly tic enzymes 

could be active du ring heating of meat . Landmann ( 19 63) noted that the 

optimal pH for a proteinase system iso lated from beef mus cle was in the 
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range pH 5-6. All muscle samples in this study were within this range. 

Although it has been reported (Bodwell and Pearson, 1964) that the 
sarcoplasmic proteins are the major substrate for endogenous muscle 
cathepsins , it also was reported that denatured collagen is suscep

tible to general proteolytic action (Seifter and Harper, 19 70) . If 
the �ollagen of muscle tissue is denatured prior to inactivation of 
proteolytic enzymes during heating, degradation of the collagen mole
cule could result. This might affect the tenderness of the meat. The 
degree of breakage of peptide bonds necessary to affect tenderness of 
meat has not been established. 

Differences in tenderness attributable to heating rate may 
partially result from differing degrees of enzymatic breakdown of 
collagen . The greatest decrease in shear values occurred between 50 
and 60 °C (Table 5, page 4 1) . This decrease in shear values was 
paralleled by an increase in enzymatic activity (Table 1 1, page 53) . 
The time in this temperature range was greater for slowly - heated cores 
(Table 2, page 37) . Therefore, an opportunity for prolonged enzymatic 
activity in the slowly heated samples cou ld result in d ifferences in 
the breakdown of collagen. The trend shown in Figure 3 suggested 
that more than one proteolytic enzyme system might have been operative 
in the muscle samples. One system was inactivated during heating to 
appro�imately 44 ° C. A second system increased in activity to a maxi
mum value at 66 ° C followed by a gradual decrease in activity. Lutalo
Bosa and MacRae ( 1969)  observed proteolytic activity in beef muscle 
extracts incubated above 60 °C and suggested that an enzyme similar to 
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cathepsin C which is heat stable at 65 °C was responsible . Other 
cathepsins are inactivated above 60 °C. The possibility that enzymatic 
activity during the long period of heating from 60 to 70 °C resulted in 
increased connective tissue solubilization in slow 70 °C samples (Table 
6, page 44) was not disproved in the present investigation . 

III. CHANGES IN CONNECTIVE TISSUE HEATED IN BUFFER 

Isolation of Connective Tissue 
Yield of crude connective tissue isolated from ground, raw muscle 

ranged from 4 . 49 to 7 . 74 percent on a wet basis. The mean yield was 
5 . 54 + 0. 41 percent . Field (19 70) reported a yield of 3 . 88 percent 
from longissimus dorsi . The greater yield obtained in the present 
study was expected because of the difference in collagen and elastin 

content of the two muscles. 

Solubilization of Connective Tissue 
The percentage of connective tissue solubilized during heating 

in buffer is shown in Table 12 . Little or no solubilization was evi
dent in the 40 and 50 °C samples . Evidently soluble hydroxyproline 
containing materials that were found in the intact cores heated to 
these two temperatures were removed in the process of isolating the 
connective tissue from other components of the muscle tissue. O r, a 
nonheat related reaction was affecting solubilization of collagen from 
the beginning of the heating period to 50 °C in the intact meat system . 
Enzyme action might be a possibility . 



Table 12. Percent Connective Tis sue Solubilized During Heating in Buf fer at Two Rates 
to Four End Points 

Connective Tissue Solubilized (%) 
Muscle S low Fast  

Breed Number 40 °c 50 °C 60 °C 10 °c 40 °c 50 °C 6Q OC 

H X C I 0. 00 0 . 10 2.2 5 12. 96 0. 00 0. 00 2. 52 

I l l  0. 00 0 . 00 1. 80 1 1. 0 5 0.0 0 0.00 0. 76 

VII 0.00 0 . 00 4. 77 13. 64 0.00 0.00 2. 58 

H X CH II  . 0 . 00 0.00 2. 58 17.2 5 0. 00 0.00  1 .  39 

IV 0.00 0 . 00 3.15 9. 61  0. 00 0.00 1.44 

V 0.00 0. 2 4  2.38 10 . so 0.00 0. 00 1 .  33 

VI 0. 00 0 . 00 2. 67 10. 08  0. 00 0.00 1.81 

Mean 0. 00 0. 05 2 .  80 12 . 16 0.00 0.00 1. 69 

:t Standard 
Error 0. 00 0. 03 0 . 36 1. 02  0. 00 0. 00 0. 25 

10 °c 

4. 81 

3.81 

6. 66 

4. 30 

5.75 

6.16 

4.66 

5.16 

0 . 39 

V, 
(X) 
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The 40 and 50 °C samples were not considered in the analysis of 
variance. The results of the analysis for the 60 and 70 °C sample values 
are reported in Table 13 . Significant differences (P � 0 . 00 1) with 
respect to heating rate and end point temperatures were found . . Solu
bilization of 7. 48 ! 1 . 40 percent connective tissue at the slow rate 
without respect to end point was significantly greater than the 3. 43 ± 
0 . 53  percent solubilized in samples heated at the fast rate . Heating 
to 70 °C at both rates solubilized 8 . 66 ! 1. 10 percent of the connective 

tissue as compared to 2 . 24 ! 0 . 26 percent in the 60 °C samples. 

The effects of heating rate and end point temperature on connec
tive tissue solubilization were interrelated. Treatment means reflect
ing this interaction (P <:::: 0 . 0 1) are given in Table 14. The slow and 

fast 60 °C samples did not differ but were significantly lower than ·the 
slow and fast 70 °C samples . Significantly more connective tissue was 
solubilized at 70 °C in the slow samples than in the fast samples. 

A comparison of these results with the results of the Student
Newman-Keuls test of treatment means in Table 6 ,  page 44 , indicated 
that the pattern of solubilization of connective tissue in the intact 
cores was similar to that in the buffer connective tissue system at 
the higher two end points. Therefore , resu lts of peptide and alde
hyde studies might give some insight into the changes occurring in 
connective tissue at the upper end of the heating curve . 

Peptide Length Estimations 
Estimated lengths of the peptides released with heating of the 

CCT-buffer systems are listed in Table 15. End point temperature was 



Tab le 13 . Mean Squares and F Values from Analysis of Variance of Values Characterizing Connective T issue Changes During Heating in Buffer : Percent Connective Tissue Solubilized , Peptide Lengths and Aldehyde Content 

% Solubilized Peptide Len�th Aldehyde Content Degrees of Mean F Mean F Mean F Source Freedom Sg_lla_res Values Squares Values Squares Values 
Rate 1 1 14. 86 45. 76*** 3. 48 < l  93. 06 4. 08+ 
End Point 3a 288 . 07 114. 77*** 108. 92 3 . 99* 62 . 68 2 . 75 + 

Linear 1 -- -- 166. 94 6 . 12** Quadratic 1 -- -- 152. 79 5. 60** Cubic 1 -- -- 7 . 04 ,< 1 Rate x End Point 3a 60. 53 24 . 1 1*** 20. 4 6  < l  26 . 54 1. 16 
Breed 1 0. 70 4'1 73. 46 � l  164.06 < l  Rate x Breed 1 0. 15 � l  1. 42 <l 17 . 55 4',l End Point x Breed 3a 0.00 <.l 15. 60 4'.l 22 . 04 <1 Rate x End Point x Breed 38 0. 46 <l 0 . 12 <l 6. 05 <l 
Anima 1/Breed c 5 3 . 86 89. 67 219. 65 

. Treatment x Anima l Breedd 35b 3 . 5 1 27 . 29 22. 82 
80ne for percent solubilized connective tissue since on ly 60 and 70 °C values were in

c luded . 
bFifteen for percent so lubilized connective tissue since on ly 60 and 70 ° C va lues were inc luded. 
C Error term for breed . 
dError. term for al l sources except breed . 
+0 . 10 >  P > 0. 05 ;  *P < 0. 05 ;  **P < 0 . 0 1 ;  ***P< 0 . 00 1 .  

°' 
0 
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Table 14. Mean Percent Connective Tissue Solubilized During Heating 
in Buffer at Two Rates to Two End Points 

Treatment Solubilized 
End Point Connective Tissuea 

Rate < •c) (%) 

Slow 60 2. 80b + 0 . 36 
Slow 70 12 . 16d + 1. 02 -
Fast 60 1. 69b + 0 . 25 
Fast 70 5 . 16c + 0 . 39 

a Means and standard errors of seven - replications. 
b ., c ' �eans with like superscripts do not differ (P < 0. 0 1) . 



Table 15 . Length of Peptides Released from Connective Tissue Heated in Buffer at Two Rates 
to Four End Points 

Estimated Average Peptide Chain Lensth (Number of Amino Acid s )  
Musc le Slow Fa st 

Breed Number 40 °c 50 °C 60 °C 10 °c 40 G C 50 ° C 60 °C 10 °c 

H X C I 7 o 38 10. 90 14. 99 34 . 06 24 . 49 20 . 36 16 . 89 2 3. 77 

I I I  14 . 33 12. 57 16.39 1 8 . 25 9 . 03 10 . 56 10 . 50 15. 88 

VI I  30 . 95 18.05 17. 54 16 . 60 25. 82 18 . 04 16 . 40 2 1. 84 

H X CH I I  8 . 35 8. 04 12 . 4 1 18 . 35 5 . 07 9. 96 9 . 78 15. 80 

IV 18 . 2 9 12 . 83 15 . 69 2 1 . 57 14. 18  19 . 37 19 . 66 17. 64 

V 12 . 79 10 . 0 1  12. 15 24. 42 17. 30 15 . 36 16 . 46 2 8 . 37 

VI 8. 59 19. 1 8  2 1 . 05 16 . 78 2 1. 65 17 .2 4 10. 86 14 . 19 

Mean 14 . 38 13 . 0 8 15.75 2 1.43 16 . 79 15.84 1 4 . 36 19.64 

± Standard 
Error 3 . 13 1.56 1 . 1 6 2. 36 2. 96 1 . 56 1.47 1 .  96 

°' 
N 
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the only factor studied that had an effect on the length of peptide 
released. Those released during heating to 70 ° C were significantly 
longer than the peptides released in samples heated to 60 °C and below 
(Table 16) . A significant curvilinear trend in these data was noted 
and is illustrated in Figure 4. The polynomial was plotted from the 
following equation : 

Peptide Length = 55. 838 - 1 . 663T + 0 . 0 16T2 . 
The 40 , 50 and 60 °C samples contained peptides of similar lengths . 
This suggested that the same bonds were affected by the heating process. 
Goll et al. ( 1964b) made a like observation in samples of lyophilized · 
collagen heated to 70 and 100 °C. It then follows that heat may affect 
different bonds above 60 °C .  This difference may be related to the 
collagen shrinkage reaction. The collagen shrinkage temperature of 
beef has been listed by several (Machlik and Draudt, 1963 ; Hamm, 1966) 
as 63 °C. Goll et al. ( 1964b) noted that the thermal shrinkage temper
ature was that temperature at which a sudden release of hydroxyproline 
occurred. This release could be responsible for the increased solu
bilization of connective tissue from 60 to 70 °C as we l l  as the change 
in average peptide length . 

A discrepancy in these data and percent connective tiss ue s olu
bilized must be noted. Nitrogen containing materials released from 
the connective t issue during the early stages of heating (i . e. ,  to 40 
and 50 °C) were not collagenous in nature since hydroxyproline was not 
detected in these samples (Table 12 , page 58) .  S ince samples at 60 and 
70 °C were not corrected for these non-collagenous peptides they must be 
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Ta ble 16. Mean Estimated Lengths of Peptides Released from Connective 
Tissue Heated in Buffer to Four End Points 

Mean Estimated Peptide Lengtha 

End Point ( OC) (No . of Amino Acids) 
40 15. 59b + 2 . 10 

so 14. 46b :t 1 . 2 3 

60 15 . 0 6b + 0 .  92 
70 20. 54c ± 1. 49 

c\iean · and standard error of seven replications. 
b , 'Means with like superscripts do not differ (P <:_ 0. 05) . 
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Connective Tis sue During Heating in Buffer as a Function of End Point 
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treated as estimates as indicated . They do not give a true estimate 
of the length of hydroxyproline containing peptides . They do give a 

general indication of the changes occurring , however . 

Aldehyde Content 

Data for aldehyde content were evaluated with the an�lysis of 

variance as planned. Results are shown in Table 13 t page 60 . Large 
sums of squares for Animal/Breed and Treatment x Animql/Breed were in
dicative of considerable variation in the data in both animal variation 
and experimental error. This also was reflected in the standard errors 

of the means (Table 22 , Appendix) . Because of the large variation no 

attempt to relate these changes to the possible heat effects on cross 
linking of collagen was made . 

Differences in the amount of guanidine hydrochloride soluble in
tramuscular collagen (GS IC) extracted as a preliminary step to the alde

hyde measurements were noted. Yields of GSIC are reported in Table 1 7 .  
Analysis of variance of the data (Table 18) indicated that the differ
ence in yield with respect to heating rate was significant (P < 0 . 05) . 
Samples heated at the slow rate without respect to end point yielded 
1 . 94 ± 0. 36 percent GSIC whereas the fast rate samples yielded 2 . 3  ± 
0 . 37 percent . A greater decrease in solubility with prolonged heating 
at the slow rate is indicative of greater denaturation . 

End point also had a significant effect on solubility of the 
heated connective tissue in guanidine hydrochloride . Connective tissue 
heated to 70 ° C was .significantly (P < 0. 00 1) less soluble than that 



Table 17 . Yield of Guanidine Hydrochloride Soluble Intramuscular Collagen from Connective 
Tissue Heated in Buffer at Two Rates to Four End Points 

Yie ld of GSIC (%) 
Muscle Slow Fast 

Breed Number 40 °c 50 ° C 6Q OC 70 ° c 40 °c 50 °C 60 °C 70 °c 
· -

H X C I 8 . 27 6 . 41 5 .  74 3 . 30 . 7 . 0 8 7 . 41 6 . 83 5 .  62 

III 1 . 80 1 . 36 1 .  88 0 . 82 2 . 00 2 . 34 2 . 17 1 . 20 

VII 1 .  81 0 . 54 1 .  78 0 . 12 1 .  52 1 .  35 1 . 06 0 . 44 

H X CH II 1 . 48 1 . 01 1 . 81 0. 41  1 . 49 1 .  37 2 . 18 l .  l l  

I V  1 . 41 1 . 09 1 . 58 0 .  65 2 . 56 1 .  86 1 .  81 0 . 46 

V 3 . 00 2 . 57 1 .  91 0 . 42 2 .  50 2 .  80 2 . 36 0 . 83 

VI 1 .  12 0 . 66 0.73 0 . 51 1 . 04 1 . 20 0 . 94 0 .  74 

Mean 2 .  70 1 .  95 2 . 20 0. 89 2. 60 2. 62 2 . 47 1 . 48 

+ Standard 
Error 0 . 96  0 . 78 0 . 61 0 . 41 0 . 78 0 . 83 0 . 47 0. 70 

°' 
....... 
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Table 18. Mea n Squ ares and F Values from Ana lysis of Variance of 
Percent Yield Gu anidine Hydrochloride Soluble 

Intramu scular Colla gen 

Degrees of 
Source Freedom Mean Squa res  F Values 

Rate 1 1. 82 6. 07* 

End Point 3 5. 71 19. 03*** 

Line ar 1 13. 09 43. 63*** 
Qu adratic 1 2 . 18 7 .27* 
Cubic 1 1 . 87 6. 23* 

Rate x End Point 3 0. 43 1 . 43 

Breed 1 35 . 56 1 . 29 

Rate x Breed 1 0. 05 1 

End Point x Breed 3 0 . 24 1 

Rate x End Point x 
Breed 3 0 . 29 1 

Anima 1/Breeda 5 27 . 52 

Treatment x 
Anima 1/B reedb 35 0.30 

aError term for breed . 
bError term for a ll sources except breed. 

*P < 0. 05; *** P <,. 0 . 0 0 1 .  



heated to the lower en d point s (Table 19) . The decrea sed yie l d  of 
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GSIC from 70 °C sample s m ight have re sulted fr om solubilization of por 

tion s of it during heating or b y  conver sio n to a le s s  soluble form 

via the formation of s tronger cro s s  bonding. The formerl y po stu lated 
change wou ld requ ire brea kage of cro s s  lin kage s, both int ra- an d inter
m olecular to fo rm the m ore solu ble � and � component s or brea kage of 
pepti de lin kage s t o  f orm sho rter section s of cro ss lin ked  pepti de s . 

Since there appear to be facto rs ot her than the solubilization 

of collagen in volved in the dif ference s in ten derne s s  of meat heated at 

two rate s, other factor s need to be stu die d. The se inclu de the char
acteristics of the in soluble connective ti s sue re s idue s as  sugge ste d 
by · Pfeiffer et a l. ( 19 72) and the effects of heat on the m yofibrilla r 
protein s. 
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Ta ble 19. Mean Percent Guanidine Hydrochloride Soluble Intramuscular 
Colla gen Extra cted from Connective Tissue Hea ted in Buffer 

to Four End Points 

End Point ( °C) 
Mean GSIC Extra cteda 

(%) 
40 
so 
60 

70 

aMean and standard error of seven replications . 

2 . 6sb ± o . s 9 
2 . 2 sb :!.: o . s 6 
2. 34b + 0. 4 7  
1 . 19c + 0 . 40 

b , cMeans with like superscripts do not differ (P <:'.. 0. 0 1) . 



CHAPTER V 

SUMMARY 

Changes in beef semitendinosus cores and isolated semitendinosus 
intramuscular connective tissue during heating at rates comparable to 
oven roasting at 93 and 149 °C to four end points , 40, 50 , 60 and 70 °C 
were investigated . Parameters studied included tenderness of the 
cores as measu�ed by Warner Bratzler shear , percent connective tissue 
solubilized in intact muscle tissue and from isolated connective tissue , 
proteolytic enzyme activity in the cores and drip lost during heating 
and a number of characteristics of the components of the isolated 
connective tissue-buffer system . 

Tenderness increased (P<::_ 0 . 00 1) as the internal temperature of 
the cores increased. Cores heated at the slow rate were more tender 
(P <: 0. 05) than those heated at the fast rate . The effects of heating 
rate and end point temperature on tenderness were independent of each 
other . Cores from Hereford X Charolais-Hereford muscles were more 
tender (P <.. 0 . 05)  than cores from Hereford X' Charolais muscles . 

Both heating rate and end point temperature affected the solu
bilization of connective tissue during heating of the cores . More 
(P < 0. 0 1) connective tissue was s olubilized in the s lowly heated 
cores . As the internal temperature increased the percent of connec
tive tissue solubilized increased (P <::.. 0 . 00 1) .  The effects of heating 
rate and end point were dependent on each other . A significant coef- 
ficient of correlation (r == -0 . 704 ; P <. 0 . 0 1) was found between shear 
values and percent solubilized connective t issue . 

7 1  
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General proteolytic activity was exhibited in both wate r soluble 
extracts of the cores · heated at two rates to four end points and the 
drip lost during heating . Rate of heating did not significantly af fect 
the loss of activity in the cores , whereas drip from the slowly heated 
cores exhibited greater (P < 0 . OS )  proteolytic activity than the drip 
from the cores heated at the faster rate . A significant decrease 
(P <: 0 . 0 1) in activity of cores occurred in the period between 60 and 
70 ° C .  In the drip a significant linear decrease (P <. 0 . O S) in activ
ity occurred with heating from 40 to 70 °C. 

End point and rate of heating significantly affected solubili
zation of connective tissue heated in a buffer system . Solubilization 
was greater ( P  < 0 . 00 1) in the slowly heated samples than in the fast 
samples. Solubilization . increased (P <: 0. 00 1) as end point tempera
ture increased . Slow 70 °C samp les contained more labi le co llagen 
than fast 70 °C samples . 

Rate of heating did not significantly affect the length of 
peptides released during heating . The influence of end point tempera
ture was significant . Peptides in samples heated to 70 °C were longer 
(P < 0 . 05) than those heated to 60 °C and be low . 

As connective tissue wa s heated in buf fer it became less so luble 
in guanidine hydroch loride. S lowly heated samples were less (P < 0 . 05) 
soluble than those heated at the fast rate . Samp les heated to 7o �c 
were less (P < 0 . 00 1) soluble in guanidine hydrochloride than samples 
heated to the lower end points . These res ults suggest that increased 
denaturation at the slow rate and higher end point temperatures 
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resulted in decreased solubility in guanidine hydrochloride . 

From the results of this study it appears that connective tissue 

solubilization is not the only factor that is related to the increased 
tenderization of meat promoted by heating at slow rates . General 
proteolytic enzymes may play a role in tenderization during heating. 
Further characterization of the insoluble connective tissue residues 
remaining after heating might help to explain the r ole of connective 

tissue and changes in it in tenderization of meat. A comparison of 

the effects of different rates of heating on the myofibrillar com
ponent of meat might also help to explain the changes in tenderness 
that occur with heating . 
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APPENDLX 

HYDROXYPRO U NE DE TERM I NA TIO Na 

Method 1--For samples containing at least 2 percent hydroxyproline . 

1 .  To the samples prepared as described previously add 1 ml of 

Ghloram ine T, shake and allow to sit for 10 minutes at room temperature . 

2. Add 1 ml of 3 . 15 M perchloric acid, shake and allow to sit 

for 5 minutes . 

3 .  Add 1 ml of a 20 g/100 ml solution of p-dimethylaminobenz-

aldehyde in ethylene glycol monomethyl ether and shake until well mixed. 

4. Cover tubes and place in a 60 °C water bath for 20 minutes . 

5. Cool for 5 minutes in tap water . 

6. Determine absorbance spectrophotometrically at 557 nm . 

Method 11--For samples containing less than 2 percent hydroxyproline. 

1-5. As in Method I. 

6. Add 10 ml of benzene, stopper tube and shake vigorously. 

7. After the layers separate, remove the benzene layer with an 

aspirator .  
8. Repeat the extraction with an additional 10 ml benzene . 
9. Centrifuge to separate the layers . 

10 . Careful ly introduce a pipet into the water layer and with

draw 3. 5 ml and place in a cuvette . 

a ·Woessner , J .  F . ,  Jr . 1961 . The determination of hydroxyproline 
in tissue and protein samples containing small proportions of this imino 
ac id. Arch . Biochem . Biophys. 93 : _ 440 . 

8 1  
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1 1 .  Read absotbance at 5 57 nm . (Steps 6-11 . should be completed 

within 10 minutes. ) 
12 . After the reading, add 0 . 2  ml of 30 percent H202 to the 

cuvette and mix well . 
13 . Read the absorbance exactly 5 minutes after the peroxide 

is added . 

Standard Curve and Calculations 
Prepare a set of standards containing 0, 2 . 5 and 5 pg hydroxy

proline . Treat using the same method as required for the samples . 
Values for Method I can be determined directly from the standard 

curve, a plot of absorbance vs. pg hydroxyproline . 
For Method I I  adjust a bsorbance values of the standards prior to 

establishing the standard curve by subtracting the.second reading from 
the first . 

Adjust the absorbance values of the samples according to the 
following equation: 

(A - B ) - 0 • 12 ( B - C) 
A =  absorbancy after benzene extraction ; 
B = absorbancy after perox ide treatment ; 
C = absorbance of water blank after peroxide treatment ; 

0. 12 = empirical factor to correct for fading. 
Calculate collagent content from hydroxyproline values as follows : 

mg collagen = ml or g sample 
pg hydroxyproline x hydro lysate vo lume (ml) x 10-3 
aliquot volume x sample weight or volume x , 13b (ml) (g or ml) 

bConversion factor . Collagen is 13 percent hydroxyproline. 



Table 20. Percent Nonfat-Dry Weight of Raw S emitendinosus Muscle and Semitendinosus Cores 
Heated at Two Rates to Four End Points 

Percent Nonfat-D ry WeiSht 
Muscle S'low Fast 

Breed Number Raw 40 °c 50 °C 60 °C 10 °c 40 ° c 50 ° C 60 ° C 10 °c 

H X c ·  I 23. 24 27 . 07 27. 60 29. 08  35 . 02 25. 52 27 . 12 29. 10 33 . 68 

I I I  23. 65 24. 04 28. 00 28. 94 34. 18 25 . 0 8 27. 78 26 . 30 31. 83 

VII 21. 97 25. 34 2 6. 86 27. 98 32. 36 24. 55 25 . 76 30 . 60 34. 16 

H X CH II  22 . 44 24 . 75 26. 33 29 . 14 35 . 10 24. 41 25 . 84 26. 16 30 . 18 

IV 23. 68 25 . 38 28. 55 28. 10 34. 63 25. 01 27. 16 27 . 40 31. 00 

V 23 . 26 25 . 68 26. 96 28. 77 35. 20 25. 46 26. 85 28. 84 32 . 04 

VI 23 . 82 26. 91 26. 38 28 . 78 32. 78 25 . 69 25 . 90 25. 99 32 . 25 

Mean 23. 15 25. 60 27 . 24 28. 68 34 . 18 25 . 10 26. 63 27. 77 32 . 16 

± Standard 
Error 0 . 26 0. 41 0. 32 0. 17 0. 44 0. 18 0 . 30 0 . 67 0. 53 

00 
w 



Table 2 1. pH of Raw Semitendinosus Muscle and Semitendinosus Cores Heated at Two Rates to Four End Points 

pH Muscle siow Fast Breed Number Raw 40 °c 50 °C 60 °C 70 ° c 40 °c 50 °C 60 °C 10 °c 

H X C I 5 . 63 5 . 55 5. 68 5.84 5. 84 5 .  62 5. 77 5 . 85 5.85 
III 5 .  74 5 . 84 5 . 73 5 . 80 5 . 86 5. 66 5.68 5. 68 5. 80 
VI I  5 . 66 5 . 61 5 .  70 5 .  71 5 . 84 5 .  62 5. 71  5. 74 5 . 82 

H X CH II 5.57 5 . 49 5 .  76 5. 68 5 . 87 5.62 5 .  77 5 . 84 5 . 84 
IV  5.  62 5 . 53 5. 64 5 . 74 5.85 5.68 5. 65 5 .  72 5 . 80 
V 5 . 54 5 . 59 5 . 63 5 . 78 5 . 8 1 5 . 56 5 . 67 5. 76 5 .  75 
VI 5. 70 5 . 52 5 . 66 5. 87 5 . 84 5 . 55 5 . 65 5 -. 72 5. 78 

Mean 5.64 5 . 59 5 . 69 5 .  77 5 . 84 5 .  62 5. 70 5 . 76 5 . 8 1 
:!: Standard Error 0 . 03 0 . 04 0 . 02 0. 02 0. 0 1  0 . 02 0 . 02 0 . 02 0 . 0 1 

(X) 
+:" 



Table 22 . Aldehyde Content of Guanidine Hydrochloride S oluble Intramuscular Collagen Extracted from Connective Tissue Heated in Buffer at Two Rates to Four End Points 

Aldehlde Content a 

Muscle S low Fast Breed Number 40 °c 50 °C 60 °C 70 °c 40 °c 50 °C 60 °C 70 °c 
H X C I 8 .  79 5 . 95 10 . 42 9 . 99 8. 78 7 . 83 7 . 50 5. 73 

I II 0 .58  8. 88 1 . 32 3 . 94 0 . 00 3. 57 1 . 34 3. 44 
VII 1 6 . 27 1 1. 00 4. 1 6  2 1 . 26 1. 04 4 . 20 4 . 1 6  8 . 52 

H X CH I I  11 . 14 18 . 35 9. 1 6  12 . 73 14 . 5 6 10 . 3 6  1 1 .  8 1  5 . 88 
IV 12 . 25 1 .  76  0 . 24 9 . 1 1 1 .  39 10 . 45 3 .  5 6  7. 63 
V 20 . 34 27 . 4 1  3. 27 27  . 03 25. 98  18 . 17 1 1. 14 1 1. 78 
VI 1 .  31  6 . 93 7. 5 7 5. 39 7. 78 2. 68 0.4 3  4 .  65 

Mean 10 . 10 1 1 . 47 5 . 16 12 . 78 8 . 50 8 . 18 5. 70 6 . 80 
! Standard Error 2 .  75 3. 29 1 . 49 3 . 20 3 . 52 2. 05 1. 72 1. 05 

a fmoles aldehyde 
)1mole GSIC 
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