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ABSTRACT

Changes due to CO2 doubling in the extremes of the surface climate as simulated by the second-generation
circulation model of the Canadian Centre for Climate Modelling and Analysis are studied in two 20-yr equilibrium
simulations. Extreme values of screen temperature, precipitation, and near-surface wind in the control climate
are compared to those estimated from 17 yr of the NCEP–NCAR reanalysis data and from some Canadian station
data.

The extremes of screen temperature are reasonably well reproduced in the control climate. Their changes
under CO2 doubling can be connected with other physical changes such as surface albedo changes due to the
reduction of snow and sea ice cover as well as a decrease of soil moisture in the warmer world.

The signal in the extremes of daily precipitation and near-surface wind speed due to CO 2 doubling is less
obvious. The precipitation extremes increase almost everywhere over the globe. The strongest change, over
northwest India, is related to the intensification of the summer monsoon in this region in the warmer world.
The modest reduction of wind extremes in the Tropics and middle latitudes is consistent with the reduction of
the meridional temperature gradient in the 23CO2 climate. The larger wind extremes occur in the areas where
sea ice has retreated.

1. Introduction

While change in the long-term climatic mean state
will have many important consequences, the most acute
effects of climate change may come about from changes
in the intensity and frequency of climatic extremes. For
example, the viability of many crops is constrained by
the number of frost-free days per year, the frequency
and duration of high temperature events that expose
crops to damage from heat stress, and the availability
of moisture. Insurance schemes spread risk across large
pools of users and a number of years by assessing pre-
miums actuarially from historical claims data, historical
extreme weather event data, and other related data.
Changes in the frequency and/or intensity of extreme
events will affect these economic risk sharing arrange-
ments. Human health is affected by weather extremes
directly through the physiological effects of heat and
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cold and indirectly by floods, pollution episodes, and
the like.

It is therefore of great interest to document the ex-
tremes of surface temperature, the wind, and precip-
itation that are simulated by a general circulation
model (GCM) and to estimate the changes that take
place in the simulated climate with a doubling of CO 2 .

Relatively little work of this sort has been reported
with regard to either extreme winds or temperature.
Windelband and Sausen (1993) document some as-
pects of the extreme wind climatology of the Max
Planck Institute for Meterology coupled ocean-at-
mosphere model (ECHAM1/LSG) and the changes
that occur under the International Panel on Climate
Change (IPCC) scenario A (Houghton et al. 1990). In
addition, there have been a variety of studies on the
ability of models to simulate the extratropical storm
tracks (Lambert 1995; Lambert et al. 1995; König et
al. 1993; Hall et al. 1994; Murphy 1995; Carnell et
al. 1996; Senior 1995; Bromwich and Tzeng 1994;
Beersma et al. 1997) and tropical cyclones (e.g.,
Bengtsson et al. 1995, 1996). Many authors have ex-
amined simulated daily minimum and maximum sur-
face temperature and the changes in diurnal range that
occur with increasing CO 2 (see, e.g., Mearns et al.
1990; Cao et al. 1992; Rind et al. 1989). Windelband
and Sausen (1993) examined some aspects of mini-
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mum and maximum temperature extremes simulated
with the ECHAM1/LSG model (Cubasch et al. 1992)
in a control simulation and the changes that occur in
a transient simulation in which CO 2 concentrations
increase as in IPCC scenario A. Several authors [see,
e.g., Hennessy and Pittock (1995) and references cited
therein] have concerned themselves with imputing
changes in surface temperature extremes under cli-
mate change from changes in means and variances.

Substantially more work has been reported on the
ability of models to simulate drought and precipitation
extremes. Mearns (1993) reviews part of this litera-
ture. McGuffie et al. (1998, manuscript submitted to
Int. J. Climatol.) intercompare equilibrium simula-
tions from five models and report that return periods
for intense precipitation events tend to be shorter in
all models. Several others obtain similar results in
equilibrium experiments (see Houghton et al. 1996,
chapter 6). Some authors (e.g., Noda and Tokioka
1989; Gordon et al. 1992; Cubasch et al. 1995) have
examined the change in the frequency distributions
of rainfall events in a warmer climate and show that
in the regions considered, intense rainfall events will
occur more frequently whereas events of moderate
intensity will occur less frequently. In contrast, Parey
(1994) does not find evidence for significant change
in the return period of heavy rainfall events in the
Laboratoire de Meteorologie Dynamique (LMD)
model under CO 2 doubling and tripling. Cubasch et
al. (1995) also examined the duration of simulated
dry spells and showed that dry spells are generally
longer in extratropical regions in ECHAM3 under
CO 2 doubling and tripling.

In this paper we describe changes in the extremes of
the surface climate simulated in an equilibrium doubled
CO2 experiment (Boer et al. 1992) conducted with the
second-generation general circulation model (CCC
GCM2; McFarlane et al. 1992) of the Canadian Centre
for Climate Modelling and Analysis (CCCma). CCC
GCM2 is a spectral model with T32 horizontal reso-
lution and 10 levels in the vertical. The model uses a
hybrid vertical coordinate system that is terrain follow-
ing near the surface and coincides with pressure near
the top of the atmosphere. The model’s ‘‘physics’’
(clouds, convection, radiation, etc.) are computed in
physical space on a 96 3 48 point Gaussian grid (ap-
proximately 3.758 lat 3 3.758 long). The model has an
interactive lower boundary that consists of a mixed layer
ocean model, thermodynamic ice model, and bucket-
type soil moisture model in which bucket depth depends
upon vegetation type.

The data used in this study come from 20-yr 13CO 2

and 23CO 2 equilibrium simulations. McFarlane et al.
(1992) and Boer et al. (1992) describe the first 10 yr
of these simulations. Specifically, we analyze simu-
lated daily minimum and maximum screen level (2
m) temperature (denoted Tmin and Tmax ), 24-h accu-
mulated precipitation P, and instantaneous 1000-mb

wind speed S as calculated from velocity vector com-
ponents at the 1000-mb level sampled twice daily. We
use 1000-mb wind speed because instantaneous an-
emometer height (10 m) wind speed was not available
from CCC GCM2.

Comparison of the extreme values of the control
climate with those of the observed climate is difficult
at best. Although observed variables are point mea-
sures, simulated variables represent areas at least the
size of a grid box (approximately 3 3 10 4 km 2 at
midlatitudes) and are subject to the effects of a
smoothly varying surface topography. They certainly
do not include the microclimatological effects that
influence station data. Nonetheless, we will attempt
some comparisons between simulated and ‘‘ob-
served’’ extremes.

To produce comparable global maps of extreme val-
ue statistics we use the National Centers for Envi-
ronmental Prediction–National Center for Atmo-
spheric Research (NCEP–NCAR) reanalysis data
(Kalnay et al. 1996) for 1979–95 inclusive. These data
are produced by a state-of-the art analysis/forecast
system. The data are available on a 192 3 94 Gaussian
grid that has approximately double the resolution of
CCC GCM2. We also make some comparisons with
extremes estimated from station data collected in Can-
ada. We use daily records of Tmax and Tmin from about
160 stations, and 24-h rainfall extremes derived from
about 500 stations (Hogg and Carr 1985). The station
temperature records vary in length from 9 to 120 yr
with the average length about 50 yr. The precipitation
record lengths vary from 10 to 79 yr with the average
length 25 yr.

The outline for the remainder of this paper is as
follows. The methodology we use is very briefly de-
scribed in section 2. Changes in the mean state and
high-frequency variability that take place under CO 2

doubling are briefly described in section 3. Some
characteristics of the extremes of the simulated cli-
mate are described in section 4, and changes under
CO 2 doubling are described in section 5. A summary
and conclusions are presented in section 6.

2. Methodology

Two approaches are used to characterize the extremes
of the simulated climate. We estimate 10-, 20-, and 50-
yr return values of the simulated climate at every grid
point by applying a more or less standard extreme value
analysis technique to the annual extremes (the maxima
of Tmax, 2Tmin, P, and S), and we compute a number of
descriptive statistics such as threshold crossing fre-
quency. The latter will be described as the need arises.
The extreme value analysis technique is described here
briefly because it departs somewhat from methods that
have been used traditionally in atmospheric science and
hydrology (see, e.g., Tabony 1983; Revfeim and Hessel
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1984; Tiago de Oliveira 1986; Smith 1989; Buishand
1989; Farago and Katz 1990).

Extreme value analysis is performed in this study by
fitting the generalized extreme value (GEV) distribution,

1/k exp{2[1 2 k(x 2 j )/a] }, k , 0, x , j 1 a /k ,

F(x) 5 exp{2exp[2 (x 2 j )/a]}, k 5 0,


1/kexp{2[1 2 k(x 2 j )/a] }, k . 0, x . j 1 a /k ,

FIG. 1. Probability density function r(x) [ dF(x)/dx of the GEV distribution plotted against random variable x (left panel) and random
variable x plotted against the reduced Gumbel variate y [ 2ln(2lnF) (right panel) for the location parameter j 5 0; scale parameter a 5
0; and shape parameters k 5 0 (solid lines), k 5 0.2 (long-dashed lines), and k 5 20.2 (short-dashed lines).

to the sample of annual extremes at each grid point using
the method of L moments (Hosking 1990, 1992). Here
F(x) is the (cumulative) distribution function of the ran-
dom variable X (annual extreme in our case), which is
the probability of observing a realization of X that is
smaller than the value x. The distribution has three ad-
justable parameters j, a, and k, which determine its
location, scale, and shape, respectively. Depending on
the shape parameter k, the GEV distribution can rep-
resent any of the three possible asymptotic extreme val-
ue (EV) distributions (i.e., EV-I, EV-II, or EV-III; see,
e.g., Gumbel 1958; Leadbetter et al. 1983).

The use of the GEV distribution is justified by the
fact that, under fairly general conditions, the distribution
of the maximum of a sample of independent and iden-
tically distributed variables converges to the GEV dis-
tribution, as the length of the sample goes to infinity
(Gnedenko 1943). The rate of convergence to the as-
ymptotic distribution is affected by the shape of the
upper tail of the distribution of the sampled random

variable. Fast convergence has been reported for the
exponentially distributed variables (Leadbetter et al.
1983). For other than exponential distributions, the
speed of convergence can be much slower (e.g., Davis
1982). Also, Fisher and Tippett (1928) showed that the
convergence is slow for a normal parent distribution.

For k 5 0 the GEV distribution reduces to the Gum-
bel, or EV-I distribution, which is of particular interest
since it is a limiting distribution of extreme maximal
values drawn from a parent distribution, which may be
one of several common types, including exponential,
normal, and lognormal (e.g., Leadbetter et al. 1983).
When k , 0 (.0) the GEV distribution has a wider
(narrower) tail than the EV-I distribution.

The effect of the parameter k on the shape of the
extreme value distribution is demonstrated in Fig. 1.
The left panel displays the probability density function
r(x) [ dF(x)/dx. The solid curve depicts the EV-I dis-
tribution for j 5 0 and a 5 1. Long- and short-dashed
curves represent the EV-II (k 5 20.2) and EV-III (k 5
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0.2) distributions, respectively. In extreme value studies,
the (cumulative) distribution function F(x) is often
transformed to a new variable y 5 2ln(2lnF), known
as the reduced Gumbel variate, so that the EV-I distri-
bution is represented by a straight line (right panel of
Fig. 1). The return period, which is the average waiting
time between extremes of size x or larger, is also in-
dicated on the horizontal axis of the graph. The return
period for a given value of x is given by T 5 1/[1 2
F(x)]. Equivalently, the return value for a given waiting
time T is the value of X that is exceeded once every T
time units (typically years). The T time unit return value
of X is the value of x that satisfies F(x) 5 1 2 1/T. For
negative (positive) k, the return values grow more rap-
idly (more slowly) than those for the Gumbel distri-
bution as the return period becomes larger.

The extremes of all variables considered here likely
lie in the ‘‘domain of attraction’’ of the Gumbel distri-
bution since they likely have distributions with expo-
nential-like upper (lower in the case of Tmin) tails. How-
ever, the asymptotic EV distributions may not fit the
observed extremes well for a number of reasons. The
annual maxima used in this study are formally drawn
from samples of the size 365. However, the members
of the sample usually come from a cyclostationary pro-
cess at best [the mean, variance, and covariance of a
cyclostationary process are cyclic with period one year;
see, e.g., Huang and North (1996)]. For example, annual
maximum temperatures in the extratropical latitudes
normally occur in summer. Thus the effective size of
the sample can be much smaller than 365. Serial cor-
relation in the data also reduces the effective sample
size over which the annual maximum is computed.
Therefore, the annual maximum may not have the as-
ymptotic EV-I distribution. The introduction of the third
parameter k in the GEV distribution improves the fit to
the upper tail when the annual maxima are not EV-I
distributed. However, note that its use can increase the
uncertainty of parameter and return value estimates
when the annual maxima are EV-I distributed.

The method of maximum likelihood parameter esti-
mates is asymptotically optimal but they are not nec-
essarily the best for finite sample sizes. We use the
method of L moments because it is computationally
simpler than the method of maximum likelihood and
because L-moment estimators have better sampling
properties than the method of maximum likelihood or
the method of conventional moments with finite sam-
ples. For example, Hosking et al. (1985) showed that
for all values of the shape parameter in the range 20.5
, k , 0.5, and for all sample sizes up to 100, estimates
obtained by the method of L moments have root-mean-
square error that is lower than or comparable to max-
imum likelihood estimates.

Here L moments are defined in terms of the expected
values of order statistics. If {X1, X2, . . . , Xn} represents
a sample of n independent realizations of a random vari-
able X, then the order statistics {X1:n, X2:n, . . . , Xn:n}

are obtained simply by sorting the sample in ascending
order. The subscript k:n indicates the kth smallest num-
ber in the sample of length n. The first three L moments
(Hosking 1990) are defined as

l 5 EX,1

1
l 5 E(X 2 X ), and2 2:2 1:22

1
l 5 E(X 2 2X 1 X ),3 3:3 2:3 1:33

where E denotes expectation. When X has the GEV
distribution, they are given by

l 5 j 1 a[1 2 G(1 1 k)]/k ,1

2kl 5 a(1 2 2 )G(1 1 k)/k , and2

2k 2kl 5 l [2(1 2 3 )/(1 2 2 )].3 2

If we now let {X1, X2, . . . , Xn} represent a sample of
n annual maxima, then the corresponding unbiased es-
timators of l1, . . . , l3 are

l 5 X /n,O1 i
i

1
nl 5 (X 2 X )/C , andO2 i:n j:n 22 i.j

1
nl 5 (X 2 2X 1 X )/C ,O3 i:n j:n k:n 33 i.j.k

where 5 n!/[k!(n 2 k)!]. Since the sample L momentsnC k

are simple linear combinations of the sample of annual
maxima, they have much better sampling properties than
the conventional sample moments and can more accu-
rately discriminate between competing distributional
models for a sample of extremes (Hosking 1992).

The method of L moments fits the GEV distribution
by choosing parameters j, a, and k so that the first three
population L moments, l1, l2, and l3, match the cor-
responding estimates. The resulting method of L mo-
ment estimators are given by

2k̂ 5 7.8590z 1 2.9554z ,
2k̂â 5 l k̂/[1 2 2 G(1 1 k̂)], and2

ĵ 5 l 1 â[G(1 1 k̂) 2 1]/k̂ ,1

where z 5 2/(3 1 l3/l2) 2 ln2/ln3.
Having fitted the GEV distribution to a sample of

annual maxima, the T-year return value is estimated by
inverting the fitted distribution function F̂(x) 5 1 2 1/T
to obtain

2k̂ˆ ˆX 5 j 1 â{1 2 [2ln(1 2 1/T)] }/k̂.RVT
(1)

The uncertainty of this estimate is difficult to obtain
analytically. A practical approach is to estimate the sam-
pling uncertainty using a variant of the bootstrap (Efron
1982). The parametric bootstrap is used in this paper.
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TABLE 1. Globally averaged annual mean, daily standard deviation, and 10-, 20-, 50-yr return values (RV) of Tmax (8C), Tmin (8C), P (mm
day21), and S (m s21) in the control (1 3 CO2) climate and their change simulated under CO2 doubling (D).

Tmax (8C)

1 3 CO2 D

Tmin (8C)

1 3 CO2 D

P (mm day21)

1 3 CO2 D

S (m s21)

1 3 CO2 D

Mean
Std dev
10-yr RV
20-yr RV
50-yr RV

15.48
1.54

24.21
24.51
24.86

3.37
20.18

3.14
3.14
3.12

11.69
1.84

20.85
21.49
22.30

3.67
20.27

5.00
5.06
5.16

2.75
6.72

72.97
81.25
92.03

0.11
0.49
7.78
9.03

10.77

8.70
3.59

23.66
24.59
25.78

20.23
20.08

0.59
0.58
0.64

In this procedure the samples of size n are generated
from the fitted GEV distribution repeatedly. A return
value is estimated from each generated sample by fitting
and inverting a GEV distribution as derived above. The
5th and 95th percentiles of the resulting collection of
return value estimates are then used as lower and upper
90% confidence bounds for the true T-year return value.

3. CO2-induced changes in the mean state and
variability of the simulated climate

McFarlane et al. (1992) describes CCC GCM2 and
the 13CO2 climate that it simulates. Boer et al. (1992)
describes the changes that occur under CO2 doubling.
We briefly review and augment some of these results
here for the variables considered in this paper. Global
averages and some other summary statistics are given
in Table 1.

a. Daily minimum and maximum temperature

Figure 2 displays the change under CO2 doubling of
Tmin for December–February and June–August. We see
that there are modest changes of 28–48C over the oceans
and tropical landmasses, larger changes of 48–128C over
extratropical landmasses, and very large changes of 128–
208C in high-latitude regions where the sea ice has re-
treated and the atmosphere comes into direct contact
with the ocean. The spatial pattern of the signal in daily
minimum screen temperature Tmin is similar to that of
the change in daily mean screen temperature shown in
Boer et al. (1992) for the first 10 yr of the model sim-
ulations. However, the amplitude of the change of Tmin

in middle latitudes over the continents and in high lat-
itudes is up to 48C higher than that for the mean screen
temperature.

The change in Tmax (not shown) is similar, but the
amplification resulting from the change in albedo feed-
back at high latitudes is not as pronounced. The am-
plitude is generally smaller over the continents than that
for Tmin although there is an increase of 88–108C in the
center of the Eurasian continent in summer. This in-
crease is related to the decrease of soil moisture in the
corresponding area and thus to the reduced soil heat
capacity allowing stronger diurnal variations of screen
temperature. Globally averaged, the annual changes in

Tmin and Tmax are 3.678C and 3.378C, respectively (Table
1).

Accompanying the increase in mean temperature is
an overall reduction in daily screen temperature vari-
ability in most parts of the world (Table 1). The annual
cycle, defined as the first four harmonics, is subtracted
from each year before calculating the standard devia-
tion. The global mean of the Tmin daily standard devi-
ation decreases from 1.848C in the simulated 13CO2

climate to 1.578C in the 23CO2 climate. As with the
mean, the change in daily Tmax variability is not as great
as it is for Tmin. The globally averaged daily Tmax stan-
dard deviation decreases from 1.548C to 1.368C.

b. Precipitation

Figure 3 displays changes in the annual mean daily
precipitation rate that occur in the climate of CCC
GCM2 with CO2 doubling. There is a general increase
of precipitation in high latitudes and marginal drying
in midlatitudes. Shifts in the distribution of precipitation
over the Maritime Continent, southern Asia, and the
Indian Ocean are connected with a strengthening of the
Asian summer monsoon in the warmer climate. The
daily variability of the simulated precipitation (Table 1)
increases marginally.

The changes in the annual precipitation rate shown
in Fig. 3 are in general agreement with the precipitation
signal found by Boer et al. (1992) in the first 10 yr. The
globally averaged annual mean precipitation rate in-
creases from 2.75 mm day21 in the 13CO2 climate to
2.86 mm day21. The ‘‘hydrological sensitivity’’ of CCC
GCM2 is generally weaker than that of other models
(Boer 1993) as a consequence of cloud albedo feedback.
The global average of the daily standard deviation in-
creases from 6.72 mm day21 to 7.22 mm day21.

c. Wind speed

The change in the annual mean 1000-mb wind speed
as simulated by CCC GCM2 under CO2 doubling is
shown in Fig. 4. Boer (1995) shows that, consistent with
the reduced pole-to-equator temperature gradient, the
baroclinic part of the energy cycle in the atmosphere
decreases, the eddies weaken, and the overall rate at
which the system works decreases in the warmer world.
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FIG. 2. Change in daily minimum screen temperature for December–February upper panel) and for June–August (lower panel) simulated
by CCC GCM2. Contour interval: 28C. Light, medium, and dark shading indicates changes greater than 48, 88, and 128C, respectively.

Correspondingly, near-surface wind speeds decrease
marginally everywhere except at very high latitudes.
The globally averaged annual mean wind speed de-
creases from 8.70 m s21 to 8.47 m s21. The largest
decreases, which are of the order of 0.7 m s21, occur
in the roaring 40’s of the Southern Hemisphere, in the
subtropical northern Pacific, and in the Northern Hemi-
sphere storm tracks. The reduction of wind speed in
these areas is in rough agreement with the patterns of
the mean sea level pressure change described by Boer
et al. (1992). For example, the decrease of wind speed
in the zonal belt at about 458S is accompanied by pos-
itive sea level pressure anomalies southward of that lat-
itude in the warmer world. The increase of wind speed

in high latitudes in the 23CO2 climate is apparently
related to reductions in surface roughness that occur
where the sea ice retreats. Small decreases in daily stan-
dard deviation (from 3.59 m s21 to 3.51 m s21 globally
averaged) occur over most of the globe except at very
high latitudes.

4. The extremes of the control climate

In this section we document some features of the
extremes in the control climate simulated by CCC
GCM2. Validation of this aspect of the simulated climate
is difficult on a global scale because reliable, observed
gridded data comparable to that produced by the model
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FIG. 3. Change in the annual mean daily precipitation simulated by CCC GCM2. Contour interval: 0.5 mm day21. Dark (light) shading
indicates regions in which the precipitation rate has increased (decreased) by at least 0.25 mm day21.

is scarce. Our comparisons with ‘‘observations’’ on the
globe are therefore limited primarily to the NCEP–
NCAR reanalysis data. The latter dataset, however, as
we will point out in the following discussion, is far from
perfect, at least for our purpose. In addition, we use data
records of Tmax and Tmin from about 160 stations in Can-
ada as well as rainfall data for about 500 Canadian
stations (Hogg and Carr 1985) to estimate return values
of Tmax, Tmin, and P over Canada. Zwiers and Ross
(1991) also describe analyses of observed 24-h precip-
itation extremes at some isolated locations in Canada.
In the following we will concentrate mainly on 20-yr
return values. The results for 10-yr and 50-yr return
values are essentially the same.

a. Screen temperature

Twenty-year return values for daily maximum tem-
peratures (designated Tmax,20) in the simulated 13CO2

climate, estimated as described in section 2, are displayed
in Fig. 5 (upper panel). Return values over open water
are strongly constrained because most incoming solar
radiation is either absorbed by the mixed layer ocean or
converted into latent heat. Over land there is substantial
variability in the conversion of incoming solar radiation
into sensible and latent heat in both space and time, and
thus much larger extremes (relative to the mean state)
can be generated. Very high 20-yr return values (.458C)
are found over parts of the western United States (US),
the midwestern United States, Argentina, the Sahara, the
Iberian peninsula, the Asian deserts, and Australia with
isolated regions (the midwestern United States, the Per-
sian Gulf, and the Great Indian Desert) in which there

are return values in excess of 508C. Global averages in
the model are given in Table 1.

The Tmax return values estimated from the NCEP–
NCAR data (not shown) are unrealistically large over
the continents due to a known problem in the boundary
layer formulation. The reanalysis produced unreliable
Tmax values when near-surface winds were weak (NCEP–
NCAR 1997a).

Twenty-year Tmax return values estimated from the
Canadian station data are shown in the lower panel of
Fig. 5. These values are generally higher than for the
model. For example, the values of Tmax,20 at many sta-
tions near the southern border in western and central
Canada are in excess of 388–408C whereas the corre-
sponding model values are 308–358C. Similarly, in other
regions of Canada the model underestimates 20-yr re-
turn values of Tmax by about 58C compared to the ob-
served station data. This can be attributed in part to the
fact that the model has a cold bias over North America
compared to the observations, which is comparable to
the error in the Tmax return values.

Twenty-year return values of Tmin (designated Tmin,20)
are very similar in the model (Fig. 6, upper panel) and
reanalysis data (not shown) on the global scale. The
reanalysis Tmin data is not affected by the boundary layer
problem that affects Tmax, but they may still be unreliable
because NCEP inadvertently used the 1973 snow cover
for the period 1974–94. Preliminary analysis (E. Kalnay
1997, personal communication) suggests that this error
affects 2-m temperature but that the impact is not dom-
inant since its anomalies are driven more by the upper
circulation than by the snow cover.

Return values in the model over polar and Northern
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FIG. 4. Change in the annual mean 1000-mb wind speed simulated by CCC GCM2. Contour interval: 0.2 m s21. Dark (light) shading
indicates regions in which the wind speed has increased (decreased) by at least 0.3 m s21.

Hemisphere landmasses appear to be reasonable, where-
as those over western Europe are somewhat overesti-
mated. The model also reproduced return values esti-
mated from Canadian station data reasonably well (Fig.
6, lower panel). For example, estimated return values
in the lower Great Lakes region range from 2308C to
2358C and return values across the southern Canadian
prairies range between 2408C and 2458C. Model-de-
rived estimates of Tmin,20 over northern Canada are 58–
88C too low.

b. Precipitation

Estimated 20-yr return values of daily precipitation
in the control climate and as estimated from station data
over Canada are displayed in Fig. 7. The corresponding
return value estimates for the NCEP–NCAR data are
not shown. The NCEP–NCAR precipitation data does
not appear to reproduce daily variability well. Twenty-
year return values estimated from NCEP–NCAR data
are less than 50 mm day21 over most of the globe, in-
cluding the tropical regions. Return values greater than
50 mm day21 are seen only in the storm track areas.
Thus, the return values seem to be underestimated, dras-
tically so in the Tropics. As an indication, and without
any pretension on generality for the whole region, the
20-yr return value of daily precipitation estimated from
a 17-yr record at Singapore (1.48N, 103.98E) is 207 mm
day21.

The interpretation of GCM-simulated precipitation is
an open problem that is beyond the scope of the present
paper. Some authors (e.g., Osborn and Hulme 1997)
treat simulated precipitation as grid box averages; others
(e.g., Skelly and Henderson-Sellers 1996) argue that it

should be treated as gridpoint values. However, regard-
less of interpretation, the intramonthly and intraseasonal
variability in the Tropics seems to be poorly represented
in the NCEP–NCAR model forecasts (see also NCEP–
NCAR 1997b).

Return values in the Tropics and subtropics in the
model reflect the large-scale divergent tropical circu-
lations of the simulated climate. The locations of the
upward (high return values) and downward (low return
value) branches of these circulations are easily dis-
cerned. The very large simulated return values (in ex-
cess of 200 mm day21) in the western tropical Pacific
are likely overestimated since CCC GCM2 simulates
more precipitation in the Asian summer monsoon out-
flow area than is observed (McFarlane et al. 1992).

Estimated return values derived from Canadian sta-
tion data show that, on large spatial scales, the model
simulates plausible values over much of Canada. Return
values over Atlantic Canada appear to be underesti-
mated by the model. Also, small-scale features such as
precipitation over Vancouver Island and southwest of
Canada, which depend critically on the interaction be-
tween the atmospheric flow and the local topography,
are not well reproduced.

c. Wind speed

Comparisons of simulated and observed extreme
wind statistics are very difficult for a number of reasons.
Local topographic and microclimatological effects
cause short time and space scale turbulence that is cap-
tured by some types of observations such as the hourly,
1-min mean observations routinely collected by many
weather services at anemometer (10 m) height. Clearly
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FIG. 5. Twenty-year return values for daily maximum screen temperature simulated by CCC GCM2 (upper panel) and for the Canadian
station data (lower panel). Contour interval: 58C. Light (dark) shading indicates regions in which the 20-yr return values of Tmax are larger
than 358 (458)C. Numbers in the lower panel display the 20-yr return values for individual stations.

GCMs (even high-resolution forecast models) with their
relatively coarse spatial resolutions and time stepping
schemes (20 min in the case of CCC GCM2) will not
be able to reproduce all aspects of the observed surface
wind variability. Also, different sampling schemes are
utilized in the model and the observed climate. The
simulated annual maxima are obtained from ‘‘instan-
taneous’’ wind speeds that are sampled once every 12
h (36 model time steps), whereas observed annual max-

ima are typically computed from 1-min mean wind
speeds that are sampled hourly.

Since the instantaneous values of anemometer height
wind speed were not available for CCC GCM2, we use
1000-mb wind speed. For this reason we limit the com-
parison of near-surface wind speed extremes in the mod-
el to those in the NCEP–NCAR reanalysis data only.
The wind speeds may be unreliable in high elevation
areas where the 1000-mb level is below the surface.
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FIG. 6. Twenty-year return values for daily minimum screen temperature simulated by CCC GCM2 (upper panel) and for the Canadian
station data (lower panel). Contour interval: 108C. Light (dark) shading indicates regions in which the 20-yr return values of Tmin are smaller
than 2208 (2508)C.

Also, in view of the problems with screen temperature
and precipitation, the NCEP–NCAR 1000-mb wind
speed data should be considered with care. To reduce
data volume, we considered only daily maximum wind
speed—that is, the maximum of two instantaneous val-
ues per day, hereafter simply called the wind speed.
Although the NCEP–NCAR reanalysis data are sampled
every 6 h (four values per day), we ignored every second
record to obtain comparable statistics.

Before discussing the results of the extreme value

analysis, it should be noted that the mean near-surface
wind speed in the model is generally stronger than that
in the NCEP–NCAR data; the annual mean 1000-mb
wind speed (not shown) in the Northern Hemisphere
storm tracks and in the southern roaring 40’s are up to
2 m s21 greater. The globally averaged annual mean
wind speeds in the model and NCEP–NCAR data are
8.70 and 6.88 m s21, respectively. McFarlane et al.
(1992) also found that the zonal winds simulated by
CCC GCM2 in the lower troposphere are stronger than
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FIG. 7. Twenty-year return values for daily accumulated precipitation simulated by CCC GCM2 (upper panel) and for the Canadian station
data (lower panel). Contour interval: 25 mm day21. Light (dark) shading indicates regions in which the 20-yr return values of daily precipitation
are larger than 50 (150) mm day21. Numbers in the lower panel display the 20-yr return values for individual stations.

those analyzed operationally by NCEP (McFarlane et
al. (1992), their Fig. 9).

Twenty-year return value estimates for 1000-mb wind
speed are displayed in Fig. 8. The midlatitude storm tracks
over the North Pacific and Atlantic Oceans and over the
southern circumpolar ocean are clearly apparent. Although
comparable return values of 35 m s21 are obtained from
both datasets in the North Atlantic region, the model pro-
duces extreme winds that are up to 5 m s21 stronger in
the North Pacific and in the southern roaring 40’s than the

NCEP–NCAR reanalysis. The globally averaged mean 20-
yr return value of wind speed is 24.6 m s21 in the model
and 19.2 m s21 in the reanalysis data.

Another technique for studying extreme events is to
count the number of days per year in which the variable
exceeds a certain threshold value. Figure 9 displays the
number of ‘‘strong wind’’ days per year in the 13CO2

climate and in the NCEP–NCAR reanalysis data. A
strong wind day is defined as a day with 1000-mb wind
speed greater than 18 m s21 for the model. Considering
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FIG. 8. Twenty-year return values for 1000-mb wind speed simulated by CCC GCM2 (upper panel) and for the NCEP–NCAR data (lower
panel). Contour interval: 5 m s21. Light, medium, and dark shading indicates regions in which the 20-yr return values of wind speed are
larger than 20, 25, and 30 m s21, respectively.

that the surface winds in the model are about 2 m s21

stronger than in the reanalysis data, we decreased the
threshold for the NCEP–NCAR data, rather arbitrarily,
to 16 m s21 to obtain comparable frequencies of strong
wind days. The spatial structure of the resulting strong
wind day frequencies is relatively well captured by the
model. However there are some differences between the
model and reanalysis data that are worth mentioning. In

the model, the strong wind day frequency in the North
Pacific storm track is greater than that in the North
Atlantic, whereas the opposite is true for the reanalysis
data. The local frequency maximum in the northern sub-
tropical west Pacific is stronger in the model than in the
reanalysis data. And finally, the model has a more zonal
strong wind day frequency distribution in the Southern
Hemisphere than the reanalysis.
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FIG. 9. The number of ‘‘strong wind’’ days per year in the 13CO2 climate (upper panel) and in the NCEP–NCAR reanalysis data (lower
panel). A ‘‘strong wind’’ day is defined as a day with 1000-mb wind speed greater than 18 m s21 in the 13CO2 climate and greater than
16 m s21 in the NCEP–NCAR data. Light (dark) shading indicate regions in which the frequency is larger 30 (60) days yr21.

An advantage of the threshold crossing technique is
that we can identify the time of year in which extremes
are more likely to occur. Assuming that the frequency
distribution of extremes over the annual cycle has a
single maximum, we proceed as follows. First the fre-
quency distribution of strong events over the annual
cycle was estimated by classifying the strong wind
events according to the day of year on which they occur.

Then we searched for the most compact interval that
contains at least 50% of the total number of strong
events. The median of these dates is taken as an estimate
of the time of year when strong events are mostly likely
to occur, and the interval width, or length of the strong
wind season, is an indication of whether strong events
occur only in a specific season or are distributed more
uniformly over the whole year.
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FIG. 10. The season of the median of the most compact interval that contains at least 50% of the total number of strong wind days per
year as simulated by CCC GCM2 (upper panel) and for the NCEP–NCAR data (lower panel). A strong wind day is defined as in Fig. 9.
Light, middle, heavy, and black shading indicate regions in which the median belongs to the Dec–Feb, Mar–May, Sep–Nov, or Jun–Aug
season, respectively.

Figure 10 displays the season in which strong events
are mostly likely to occur, calculated as described above,
for the control climate and for the reanalysis data. White
areas indicate areas with no events exceeding the thresh-
old value. In the NCEP–NCAR reanalysis, light shading

dominates in the Northern Hemisphere and dark shading
dominates in the Southern Hemisphere indicating that
the strong winds predominately occur in winter. The
seasonal contrast is not as apparent in the model. Dis-
agreement occurs primarily in areas where the strong
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FIG. 11. The estimated change in 20-yr return values for daily maximum (upper panel) and minimum (lower panel) screen temperature
simulated by CCC GCM2 under CO2 doubling. Contour interval: 28C for Tmax,20 and 48C for Tmin,20. Light (dark) shading indicates regions
in which the 20-yr return value has increased by at least 48 (88)C for Tmax,20 and by at least 88 (168)C for Tmin,20.

wind season is long, and hence, where the median date
for strong wind events is poorly estimated.

5. Changes in simulated extremes under CO2

doubling

a. Screen temperature

The change between the simulated 13CO2 and
23CO2 climates in the estimated 20-yr return value of

daily maximum and minimum screen temperature is dis-
played in Fig. 11. It is apparent that there are substantial
differences, both in the pattern and magnitude of
change. The global mean change for Tmax,20 is 3.148C,
whereas that for Tmin,20 is 5.08C.

The changes in Tmin,20 and Tmax,20 apparently occur for
a variety of reasons. Over the tropical and temperate
oceans the increases are roughly equal to the change
that is observed in the mean screen temperature. This
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suggests that the screen temperature distribution in these
regions moves with the mean without change of shape.
Apparently the ability of the ocean to moderate screen
temperature variations in tropical and temperate regions
is not strongly affected by the change in sea surface
temperature, which occurs between the 13CO2 and
23CO2 climates.

Elsewhere (over landmasses and polar regions) there
are changes in both the mean screen temperature and
the shape of the screen temperature distribution. In-
creases in Tmax,20 over continents (except Antarctica) are
of the order of 58C and range up to 108C. The larger
values occur in regions of North and South America
and Eurasia, which experience a substantial decrease in
soil moisture under CO2 doubling (Boer et al. 1992,
their Fig. 15). Reduced soil moisture means that max-
imum surface temperatures are less likely to be mod-
erated by evaporative cooling.

Increases in Tmin,20 over North America and western
Asia are larger than the corresponding increases in
Tmax,20. This presumably occurs because these areas ex-
perience significantly less snow cover under CO2 dou-
bling resulting in an increase in the amount of solar
radiation, that is absorbed at the ground. Some of the
absorbed solar radiation subsequently warms the air
overlying the surface at night and raises daily minimum
temperatures.

Increases in Tmin,20 over Siberia (which remains snow
covered in winter under CO2 doubling) are roughly com-
parable to the increases in Tmax,20. Changes in both quan-
tities are also roughly comparable over Africa. The band
of large increases in Tmax,20 that is seen around the edge
of Greenland occurs because Greenland experiences a
loss of snow cover in the 23CO2 climate. A corre-
sponding change is not seen in Tmin,20. Only small in-
creases in Tmax,20 occur in polar regions that retain some
sea ice while large increases are observed in Tmin,20.
Large increases (48–6 8C or more) in Tmax,20 occur in
regions that were formerly ice covered. Even larger
(more than 208C) increases are observed in Tmin,20.

To emphasize the asymmetric character of change in
extreme values of Tmax and Tmin, we display the change
in Tmax,20 and Tmin,20 relative to the corresponding change
in the annual mean of Tmax and Tmin in Fig. 12. As noted
above, the change in return values is roughly equal to
the change in the mean for both variables over the
oceans. This is also true almost everywhere over the
continents for Tmax. In high latitudes, the increase in
annual extremes of Tmax is smaller than the increase in
the annual mean by a factor of 2. This occurs because
the change in the annual extremes of Tmax at high lati-
tudes primarily reflects temperature changes in summer,
which are much smaller than the corresponding changes
in winter (see, e.g., Fig. 2). For Tmin, high values of the
ratio DTmin,20/DTmin clearly identify the areas where the
snow and sea-ice cover have retreated in the warmer
world.

The bootstrap procedure used to estimate confidence

intervals of the change in screen temperature return val-
ues, shows that the changes under CO2 doubling are
statistically significant at less than the 5% level over
most of the globe. This is not surprising since a change
in air temperature is the primary response to the in-
creased amount of carbon dioxide in the atmosphere.
The signal tends to be more statistically significant over
the oceans where the near-surface temperature vari-
ability is strongly constrained by the thermal inertia of
the ocean. The signal is statistically less significant over
the continents because natural variability is much larger.
Estimation errors of return values become larger as the
return period increases. For example, the portion of the
globe where the change is statistically significant at the
5% level decreases from 98% for 10-yr return values
of Tmax to 90% for 50-yr return values and from 88%
to 75% for corresponding Tmin return values.

b. Precipitation

We have seen that the 20-yr records available from
the 13CO2 and 23CO2 simulations appear to be ade-
quate for making inferences about the extremes of
screen temperature. This is true for both the 20-yr return
values that have been discussed and for longer period
(e.g., 50-yr) return values. That the inferences are rea-
sonable is further corroborated by the fact that the es-
timated changes can be associated with other physical
changes in the warmer climate.

Unfortunately, the same cannot be said for simulated
daily precipitation or wind speed. Twenty-year return
value estimates for daily precipitation made at grid
points show a great deal of spatial noise and very little
structure. This comes about for a number of reasons.
Precipitation, even in the simulated climate, has a lot
of small-scale spatial variability that masks the structure
of the CO2 doubling signal. Moreover, the signal itself
is relatively weak; the mean daily precipitation, an in-
dicator of the strength of the simulated hydrological
cycle, increases by a modest 4% (see Table 1).

A rough estimate of the strength of the global signal
in annual precipitation extremes may be obtained if we
compare globally averaged changes in the estimated lo-
cation parameter j in the GEV distribution with the
globally averaged scale parameter a for different vari-
ables. The former is related to the absolute value of the
signal and the latter characterizes variability. Table 2
shows the globally averaged estimates of location and
scale parameters for the quantities considered in this
study as well as the ratio of the globally averaged lo-
cation parameter change under CO2 doubling to the cor-
responding 13CO2 scale parameter. We see that the
change of the location parameter normalized by the scale
parameter is large for Tmax and Tmin, whereas the relative
signal is very modest for daily precipitation and near-
surface wind.

The change in the 20-yr return values of daily pre-
cipitation estimated for each grid box separately did not
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FIG. 12. The estimated change in 20-yr return values for daily maximum (upper panel) and minimum (lower panel) screen temperature
simulated by CCC GCM2 under CO2 doubling divided by the corresponding change in annual mean maximum and minimum screen
temperature. Contour interval 0.5. Light (dark) shading indicates regions with values below 0.5 (higher 1.5).

TABLE 2. Global means of the estimated location parameter j, scale
parameter a in the GEV distribution in the simulated control (1 3
CO2) climate, and the ratio of the simulated change of the location
parameter under CO2 doubling to the scale parameter in the control
run (Dj/a) for Tmax (8C), Tmin (8C), P (mm day21), and S (m s21).

Tmax (8C) Tmin (8C) P (mm day21) S (m s21)

j
a
Dj/a

22.98
0.69
4.52

1.66
1.39
3.40

45.40
13.38
0.30

20.41
1.63
0.50

appear to be significantly different from zero because
the sampling errors in the quantile estimates from 20-
yr time series are large. To reduce sampling errors, we
applied a modified version of a multivariate technique
described by Buishand (1991) in which extreme rainfall
estimates are derived by combining data from several
sites. The general idea is to assume that one or several
parameters in the extreme value distribution are com-
mon for different sites. For example, Buishand (1991)
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FIG. 13. The estimated change in smoothed 20-yr return values for daily accumulated precipitation simulated by CCC GCM2 under CO 2

doubling. Contour interval: 10 mm day21. Light (dark) shading indicates locations at which the 20-yr return value has increased by at least
10 (20) mm day21.

used the same shape parameter k for all sites and then
estimated the location and scale parameters for each
individual site by the maximum likelihood method. In
our study we assume that the time series of annual max-
ima of daily precipitation in any four adjacent grid boxes
(2 3 2), or any nine grid boxes (3 3 3) for even stronger
smoothing, come from the same extreme value distri-
bution. The ‘‘regional’’ L-moments estimates are ob-
tained by averaging L moments estimated separately for
each individual box over four, or nine, adjacent grid
boxes. These regional L moments are then used to derive
the regional parameters of the GEV distribution and the
corresponding return value estimates.

Confidence intervals are constructed for the return
value by assuming that the annual maxima of daily pre-
cipitation in the adjacent grid boxes are independent of
each other. This assumption holds reasonably well in
tropical and subtropical regions where the convective
precipitation dominates the total rainfall. The average
time period between the annual maxima occurring in
the same year in any two adjacent grid boxes (not
shown) exceeds at least 3 weeks in the Tropics and the
subtropics where the large values of extreme daily pre-
cipitation are found in the model.

The change in the estimated 20-yr return values of
the 3 3 3 smoothed extreme value distributions are
displayed in Fig. 13. The change between 13CO2 and
23CO2 is positive almost everywhere on the globe. The
strongest increase, over 50 mm day21 (statistically sig-
nificant at the 5% level), is found over the northwest of
India where there is the intensification of the Asian sum-
mer monsoon under CO2 doubling. Other parts of the

world with statistically significant increase in 20-yr re-
turn values of daily rainfall are northern Australia and
to a lesser degree Central America and the Caribbean
region as well as a small area south of Japan. A moderate
decrease in return values is found over the tropical In-
dian Ocean and over the Malay Archipelago. The re-
duction of extreme precipitation in this area is not sta-
tistically significant.

Globally averaged, 20-yr return values increase 9 mm
day21 (11%) with respect to the control climate, which
is greater than the 4% increase for the annual mean
precipitation (Table 1). Over Canada, 20-yr return val-
ues increase approximately 7 mm day21 (14%) on av-
erage.

Another way to express changes in frequency of ex-
treme events is to define changes in return periods. In
particular, we estimated the return periods of the 20-yr
13CO2 return values in the 23CO2 climate. The return
periods of extreme daily precipitation (not shown) de-
crease substantially in the 23CO2 run over broad areas
where the daily extreme precipitation increases. For ex-
ample, over North America, the return period of 20-yr
return values is reduced by roughly a factor of 2, on
average, indicating that extreme precipitation of that
order occurs twice as often in the warmer world. Return
periods are reduced by a factor of 5 over northwest
India. In contrast, in dry areas, such as subtropical
regions west of the African and North and South Amer-
ican continents as well as over northeast Africa, a mod-
est decrease in 20-yr return values in the 23CO2 in-
tegration leads to dramatically longer return periods.

Simple univariate threshold methods can be used to
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FIG. 14. Change in the amount of precipitation per rainday between the 13CO2 and 23CO2 climates. A rainday is defined as a day with
2 mm of precipitation or more. Contour interval: 0.5 mm day21. Dark (light) shading indicates regions in which the precipitation amount
per rainday has increased (decreased) by at least 1 mm day21.

derive some other physically reasonable information
about changes in the intensity and duration of precipi-
tation. For example, Fig. 14 displays the change in the
amount of precipitation that falls on a rainday where a
rainday is defined as any day with 2 mm or more of
precipitation. Decreases of 1 mm day21 or more are seen
primarily over the equatorial Indian Ocean and the equa-
torial western Pacific. Comparable increases in intensity
are seen at subtropical latitudes over Asia, the central
Pacific, the Indian Ocean, Australia, and the Pacific
Northwest region of North America. Smaller increases
in intensity are seen elsewhere. Similar maps computed
using higher thresholds (e.g., 10 mm) reveal similar
changes in the intensity of large precipitation events,
but are contaminated by more small-scale noise than we
see in Fig. 14.

Figure 15 displays the change in the number of rain-
days per year (again defined relative to the 2-mm thresh-
old) in the warmer climate. High-latitude regions ex-
perience more frequent precipitation events. In midlati-
tudes the frequency of raindays is generally reduced,
which is consistent with the reduction of baroclinic
storm activity in the warmer world. The pattern of rain-
day frequency change in the Tropics and subtropics re-
sembles closely that of mean precipitation change
shown in Fig. 3.

Gordon et al. (1992) display similar figures derived
from a simulation performed with the Commonwealth
Scientific and Industrial Research Organisation (CSI-
RO) GCM that are in broad agreement with Figs. 14–
15. The most notable differences are found in the Trop-
ics and subtropics. In particular, the CSIRO GCM sim-
ulates a reduction in the number of raindays and in the

amount of rain per rainday under CO2 doubling in the
northern subtropical Pacific east of the date line, where-
as the CCC GCM2 has the opposite tendency. Also, the
intensification of the Asian summer monsoon is not as
pronounced in the CSIRO model as in CCC GCM2.

c. Wind speed

The sampling variability that makes the changes in
the extremes of precipitation difficult to interpret also
affects the near-surface wind speed. According to Table
2 the strength of the globally averaged signal in the
parameters of the GEV distribution for the near-surface
wind are as small as that for precipitation. We applied
the same smoothing technique to estimate return values
of near-surface wind as for daily precipitation. However,
the assumption of the independence of annual maxima
of wind speed at adjacent grid points is no longer valid.
The wind speed annual maxima are likely to occur on
the same day in several adjacent grid points in broad
areas over the globe. Thus, although the smoothing tech-
nique results in better organized patterns, it does not
improve the signal-to-noise ratio to the extent that would
be attained if the maxima were independent.

Figure 16 displays the change in the estimated 20-yr
return value of 1000-mb wind speed under CO2 dou-
bling. Return values evidently increase in the Arctic and
in a band surrounding Antarctica. That change is sta-
tistically significant at the 5% level and may be con-
nected with sea-ice loss under CO2 doubling. The at-
mosphere experiences less friction near the surface due
to smaller surface roughness over open water areas in
the warmer world. A modest increase of globally av-
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FIG. 15. Change in the number of raindays per year under CO2 doubling. A rainday is defined as a day with 2 mm of precipitation or
more. Contour interval: 5 days yr21. Dark (light) shading indicates regions in which the number of precipitation days per year has increased
(decreased) by at least 5 days yr21.

FIG. 16. The estimated change in smoothed 20-yr return values for 1000-mb wind speed simulated by CCC GCM2 under CO 2 doubling.
Contour interval: 1 m s21. Dark (light) shading indicates regions in which the 20-yr return value has increased (decreased) by at least 1 m s21.

eraged return values (see Table 1) is basically due to
the extreme wind speed increase in the high latitudes.

In the midlatitudes and Tropics the changes in return
values are marginal at best. There are some indications
of the reduction in wind speed extremes over parts of
the extratropics and in the tropical Indian Ocean. How-
ever, these changes are not statistically significant. The

only area, except the high latitudes, which apparently
has a weakly significant increase in extreme wind speeds
is northwest Europe. This increase is explained by a low
pressure anomaly over northern Europe in the 23CO2

run (Boer et al. 1992, see their Fig. 30) which intensifies
the zonal circulation over Europe and brings more
storms into this area from the North Atlantic storm track.
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FIG. 17. Change in the number of strong wind days per year under CO2 doubling, where a strong wind day is defined as a day with
1000-mb wind speed greater than 18 m s21.

More structure can be seen by estimating the change
in frequency of threshold crossing for a moderately high
threshold. Figure 17 illustrates the change in the number
of days in which 1000-mb wind speed exceeds the 18
m s21 threshold under CO2 doubling. As in Fig. 16, we
see some evidence for an increase in the number of
moderately strong wind events in the areas where sea
ice has retreated as well over northwest Europe, al-
though not as pronounced as for extreme winds. The
number of events in the storm tracks (the North Pacific,
North Atlantic, and the southern roaring 40’s) decreases.
Note that the changes displayed in Fig. 17 are more
similar in structure to the changes in the mean (Fig. 4)
than those in Fig. 16. The time of occurrence of extreme
events does not change substantially in the warmer
world.

Beersma et al. (1997) obtained a similar result in a
study of the change in frequency of extratropical storms
in the North Atlantic region under CO2 doubling as
simulated by a high-resolution atmospheric model. They
found a negative pressure anomaly over Scandinavia in
the 23CO2 experiment. This was associated with a mar-
ginal decrease in the frequency of deep depressions and
intensity of extreme winds in the central and northern
North Atlantic and a modest increase of extreme winds
in the North Sea and over central Europe. Lambert
(1995) analyzed the cyclone frequency in a 5-yr record
of the equilibrium simulations used in this study and
found an increase of intense cyclones in the 23CO2

climate, especially in the Northern Hemisphere, whereas
the total number of cyclones decreases significantly in
the warmer world. In our study we did not find any
statistically significant evidence of increased wind ex-
tremes in the middle latitudes, except perhaps over

northwest Europe. Also König et al. (1993) found a
reduction in Northern Hemisphere cyclone frequency in
some regions and a shift of the cyclone tracks in other
regions, but no sign of significant increase of cyclone
frequency.

6. Summary

An extreme value analysis of the climate simulated
by CCC GCM2 is discussed. Two kinds of techniques
were applied to the data. First, the annual daily maxima
of several near-surface variables were fitted to the Gen-
eralized Extreme Value distribution at every grid point
by the method of L moments. Ten-, 20- and 50-yr return
values were estimated from the fitted distribution. Sec-
ond, a threshold crossing technique was used to examine
the frequency occurrence of moderately large events at
each grid point. The results for the control 13CO2 sim-
ulation were compared with those obtained from the
NCEP–NCAR reanalysis data and from Canadian sta-
tion data.

Changes in extremes under CO2 doubling are iden-
tified. A simple smoothing technique was used to an-
alyze the changes in return values of daily precipitation
and 1000-mb wind speed in the warmer CO2 world be-
cause the signal in these quantities is small. The tech-
nique assumes that the time series of annual extremes
in the adjacent grid boxes come from approximately the
same statistical distribution.

In summary:

R The extremes of the control climate are reasonably
close to those of the observed climate.

R Changes in the extremes of daily minimum and max-



SEPTEMBER 1998 2221Z W I E R S A N D K H A R I N

imum screen temperature can be reasonably well es-
timated with the available 20-yr simulations, and con-
nections to other physical changes in the warmer
world can be speculated upon.

R The patterns of the change in annual extremes of Tmax

and Tmin are different. Because annual extremes of Tmax

and Tmin usually occur in opposite seasons in the ex-
tratropics, the physical processes that cause change in
the warmer world are different. Changes in the return
values of Tmin are substantially larger than those in the
annual mean of Tmin in areas where snow and sea ice
have retreated.

R Changes in the extremes of precipitation and near-
surface wind speed are more difficult to analyze since
the CO2 signal in these variables is much weaker.
Nonetheless, changes can be identified if a ‘‘peaks-
over-threshold’’ method is applied.

R The extreme wind speed is generally reduced in the
middle latitudes, which is probably related to the re-
duced meridional temperature gradient and weaker
baroclinic activity in the warmer world. The enhance-
ment of wind extremes in high latitudes is connected
to reduced surface roughness due to sea-ice retreat.
There are some indications of increased wind speed
extremes over Europe in the simulated warmer world,
which is related to the negative pressure anomaly over
northern Europe and Scandinavia in the 23CO2 sim-
ulations.

R The precipitation extremes increased almost every-
where over the globe. The relative change in globally
averaged extreme precipitation is larger than that in
mean precipitation. This result is in general agreement
with findings of other studies (e.g., Cubasch et al.
1995). Globally averaged, the 20-yr return values in-
crease by about 1 cm day21, or more than 10%. As-
suming that this additional rainfall amount can fall in
a much smaller area than the model grid box, for
example, in a squall line, one can imagine much larger
increases of local rainfall.

R Return periods of extreme precipitation are shortened
by a factor 2 and more in the 23CO2 climate in many
parts of the world. This is consistent with many other
model studies that also report shorter return periods
for intense precipitation events (e.g., McGuffie et al.
1998, manuscript submitted to Int. J. Climatol.). The
number of raindays per year generally increases in
polar regions and decreases in midlatitudes. A similar
result was found by Gordon et al. (1992). Also Cu-
basch et al. (1995) found that the average waiting time
between precipitation events increases significantly in
the middle latitudes, but it decreases in high latitudes
and in the Tropics under CO2 doubling and tripling.

As a final note, we must emphasize that the present
study describes changes under CO2 doubling in an equi-
librium simulation. The details of some of the findings
and arguments made in this paper may therefore not
extend to more realistic transient experiments with a

coupled atmosphere–ocean GCM. The analysis of
changes in the extremes in an ensemble of transient
simulations with a coupled GCM performed at the
CCCma is currently under way.
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