
E-Mail karger@karger.com

 At the Cutting Edge 

 Neuroendocrinology 2013;98:106–115 

 DOI: 10.1159/000354702 

 Changes in the Maternal Hypothalamic-Pituitary-
Adrenal Axis in Pregnancy and Postpartum: 
Influences on Maternal and Fetal Outcomes 

 Leanne Duthie    Rebecca M. Reynolds 

 Endocrinology Unit, University/British Heart Foundation Centre for Cardiovascular Science, 

Queen’s Medical Research Institute, University of Edinburgh,  Edinburgh , UK 

 

ther understanding of the changes in the HPA axis during 

pregnancy and the impact of these changes may ultimately 

allow early identification of those most at risk of future dis-

ease. Copyright  © 2013 S. Karger AG, Basel 

 Introduction 

 There is increasing epidemiological evidence support-
ing the hypothesis that adult vulnerability to disease is 
‘programmed’ in fetal life, and therefore shaped by the 
intrauterine environment as originally postulated in the 
Barker hypothesis  [1–7] . Overexposure of the developing 
fetus to excess glucocorticoids is thought to be one of the 
key mechanisms underlying early life programming of 
disease  [8, 9] . It is proposed that dysregulation of the ma-
ternal hypothalamic-pituitary-adrenal (HPA) axis deter-
mines fetal exposure to stress hormones influencing de-
velopment and birth outcomes and also programming 
the fetal HPA axis, thus determining responses to stress 
and susceptibility to physical and mental illness in later 
life. This hypothesis is supported by animal studies show-
ing that maternal glucocorticoid overexposure leads to 
adverse outcomes in the offspring including metabolic 
disorders and behavioural/anxiety phenotypes  [10–19] . 
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 Abstract 

 Overexposure of the developing fetus to glucocorticoids is 

hypothesised to be one of the key mechanisms linking early 

life development with later life disease. The maternal hypo-

thalamic-pituitary-adrenal (HPA) axis undergoes dramatic 

changes during pregnancy and postpartum. Although corti-

sol levels rise threefold by the third trimester, the fetus is 

partially protected from high cortisol by activity of the en-

zyme 11β-hydroxysteroid dehydrogenase type 2 (HSD11B2). 

Maternal HPA axis activity and activity of HSD11B2 may be 

modified by maternal stress and disease allowing greater 

transfer of glucocorticoids from mother to fetus. Here we re-

view emerging data from human studies linking dysregula-

tion of the maternal HPA axis to outcomes in both the moth-

er and her offspring. For the offspring, greater glucocorticoid 

exposure is associated with lower birth weight and shorter 

gestation at delivery. In addition, evidence supports longer 

term consequences for the offspring including re-setting of 

the HPA axis and susceptibility to neurodevelopmental 

problems and cardiometabolic disease. For the mother, the 

changes in the HPA axis, particularly in the postpartum pe-

riod, may increase vulnerability to mood disturbances. Fur-
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In humans, fetal glucocorticoid overexposure has been 
linked to development of cardiometabolic disease  [20, 21]  
and there is a growing interest in the role of stress and 
glucocorticoid excess on offspring neurodevelopment 
and subsequent vulnerability to mental illness  [22–34] . 
This is important as childhood neurodevelopmental 
problems and mental health disorders are major public 
health issues, so understanding the origins of these disor-
ders may ultimately guide preventative strategies. In this 
mini-review we examine emerging evidence from human 
studies linking changes in the maternal HPA axis during 
pregnancy and postpartum with maternal and fetal out-
comes with particular focus on the potential role of 
11β-hydroxysteroid dehydrogenase type 2 (HSD11B2).

  The Maternal HPA Axis 

 The HPA axis mediates the stress response of glucocor-
ticoids. Corticotrophin-releasing hormone (CRH) is re-
leased from the paraventricular nucleus in the hypothala-

mus in response to stressors and stimulates the release of 
adrenocorticotrophin hormone (ACTH) from the pitu-
itary gland. In turn, ACTH stimulates the adrenal cortex 
to secrete cortisol into the bloodstream. Cortisol feeds 
back to glucocorticoid and mineralocorticoid receptors in 
the pituitary and hypothalamus to regulate its own secre-
tion. During pregnancy, the regulation of the maternal 
HPA axis undergoes dramatic changes ( fig. 1 ). Circulat-
ing cortisol levels rise markedly to around threefold non-
pregnant levels by the third trimester  [35] . This rise in 
cortisol is partly due to oestrogen stimulation of cortico-
steroid-binding globulin with a rise in free (or bioavail-
able) cortisol levels  [36, 37] . In addition, the placenta se-
cretes large quantities of CRH into the maternal blood-
stream during the second and third trimesters of 
pregnancy  [38–40] . Placental CRH stimulates the mater-
nal pituitary gland, thus further increasing both ACTH 
and consequently cortisol levels. In turn, maternal corti-
sol stimulates placental CRH synthesis creating a positive 
feed-forward drive with resultant higher cortisol levels 
 [41, 42] . Despite the increasing circulating levels of corti-
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  Fig. 1.  HPA axis in pregnancy. Secretion of cortisol from the adrenal glands is regulated by central negative feed-
back. In pregnancy, placental CRH stimulates both the maternal pituitary and adrenal, leading to increased cor-
tisol production. Rising cortisol can also stimulate further placental CRH production. Passage of cortisol through 
the placenta is partially inhibited by placental HSD2. Glucocorticoid overexposure has adverse sequelae for the 
developing fetus. 
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sol, the diurnal secretion of cortisol is maintained through-
out pregnancy  [43] . However, as pregnancy progresses, 
the increased circulating cortisol downregulates hypotha-
lamic production of CRH and thus the responsiveness of 
the HPA axis to both physiological and psychological 
stress is attenuated during late pregnancy  [44–46] .

  The fetus is protected from high levels of maternal glu-
cocorticoids by the action of the placental enzyme 
 HSD11B2. This enzyme converts active glucocorticoids 
(cortisol) into inactive glucocorticoids (cortisone), thus 
protecting the fetus from excessive glucocorticoid expo-
sure  [47–49] . Although a substantial proportion of corti-
sol (80–90%) is metabolised by the placenta during gesta-
tion, excess cortisol may reach the fetus  [50]  and the ‘bar-
rier’ can be further weakened by maternal anxiety  [51–55] , 
infection  [56]  and inflammation  [57]  allowing increased 
transfer of glucocorticoids from mother to fetus. As ma-
ternal cortisol levels are so much higher than fetal levels, 
even modest variations in placental HSD11B2 can sig-
nificantly alter fetal glucocorticoid exposure. In human 
pregnancy where it is difficult to measure HSD11B2 ac-
tivity or fetal glucocorticoid exposure, measurements of 
cortisol in amniotic fluid (which is mainly fetally derived) 
are often used as a proxy for fetal glucocorticoid expo-
sure. Maternal cortisol and amniotic fluid cortisol con-
centrations are positively correlated  [54, 58, 59] .

  In the postpartum period, maternal plasma cortisol 
levels fall and the function of the HPA axis gradually re-
turns to its pre-pregnant state. Following delivery of the 
placenta, there is a sharp drop in placental CRH levels. 
The HPA axis is relatively hyporesponsive with lack of 
cortisol suppression to dexamethasone for up to 3 weeks 
postpartum  [60]  and dynamic tests showing recovery of 
CRH secretion by 12 weeks postpartum  [61] . ACTH lev-
els also fall transiently immediately after delivery, rising 
again 3–4 days postpartum  [62] . Cortisol levels remain 
normal during the postpartum period due to elevated 
corticosteroid-binding globulin and the adrenal gland 
hypertrophy that occurred during pregnancy.

  Factors Influencing HPA Axis Activity during 

Pregnancy 

 Longitudinal studies with repeated cortisol measure-
ments suggest individual variability in cortisol levels is 
relatively stable across pregnancy  [63, 64] . So what are the 
pathways leading to interindividual variations in HPA 
axis activity in pregnancy? This has mostly been studied 
in the context of maternal ‘stress’ due to the documented 

association between a variety of different stressors rang-
ing from chronic anxiety/depressive symptoms, to acute 
stressors such as bereavement or exposure to natural di-
sasters, and poorer obstetric outcomes including reduc-
tion in gestational length, preterm delivery, and low birth 
weight (reviewed by Talge et al.  [65] ). Although many of 
these studies have not included measurements of mater-
nal cortisol, it has been suggested that dysregulation of 
the HPA axis may underlie these associations. However, 
several studies show that stress and anxiety levels assessed 
by questionnaire do not necessarily correlate with mater-
nal cortisol levels  [64, 66] . This may be related to limita-
tions in the approaches used to assess stress and cortisol 
concentrations  [67]  as there is a higher correlation for 
ambulatory assessment of maternal stress and cortisol 
concentrations than single assessments carried out in a 
research laboratory  [43] . Indeed there is some evidence 
that positive life events lower cortisol levels during preg-
nancy  [68] . In contrast, a history of prior major stress 
(child abuse) increases the cortisol awakening response 
during pregnancy  [69]  whilst experience of chronic 
stressful life events during early pregnancy blunts peak 
salivary cortisol levels in the morning  [70]  suggesting dif-
ferent stressors have differing effects on HPA axis re-
sponses. Certain circumstances may increase a woman’s 
vulnerability as exemplified by a recent study among US 
pregnant women of Mexican descent showing an associa-
tion between increased ‘acculturation’, defined as mem-
bers of one cultural group adapting to the beliefs and 
norms of another cultural group, and flatter diurnal slope 
of cortisol secretion in late pregnancy, the latter mediat-
ing the association between increased acculturation and 
lower birth weight  [71] . Low socio-economic status is also 
associated with altered placental mRNA levels of genes 
important in glucocorticoid metabolism and action  [72]  
and high maternal anxiety is associated with decreased 
placental HSD11B2  [51]  and with higher levels of cortisol 
in amniotic fluid  [54, 59] . These studies suggest that even 
if circulating maternal cortisol levels do not change in as-
sociation with maternal stressors, such stressors can still 
lead to increased glucocorticoid transfer to the fetus by 
the placenta.

  Less well studied is whether the maternal HPA axis 
function alters in association with pathophysiological 
changes associated with pregnancy. There is some evi-
dence of changes in cortisol levels  [73]  and of altered pla-
cental HSD11B2 expression  [74]  in association with pre-
eclampsia, though whether these changes are cause or 
consequence of the disease is not clear. Whether the HPA 
axis changes in response to gestational hypertension, dia-
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betes or obesity has not been studied, though dietary ma-
nipulations in animal studies can alter maternal stress re-
sponses  [75, 76] , and specific dietary supplementation 
with the methyl donor choline in the third trimester alters 
the methylation profiles of genes in fetal derived tissues 
and in genes that regulate fetal glucocorticoid metabo-
lism  [77] . The above factors suggest that some fetuses will 
be more susceptible to changes in the maternal HPA axis 
than others, but there is also evidence that the fetus can 
itself respond to adverse conditions, for example signal-
ling to the placenta to increase production of placental 
CRH, allowing greater mobilisation of maternal glucose, 
when fetal metabolic demands increase  [78] . Further 
work is needed to understand the cross-talk between fe-
tus, placenta and mother and how this regulates glucocor-
ticoid exposure to the fetus.

  Maternal HPA Axis and Offspring Outcomes 

 In animal models ranging from studies in rodents to 
non-human primates, maternal treatment with gluco-
corticoids and manipulations that increase endogenous 
glucocorticoids or reduce HSD11B2 activity lowers off-
spring birth weight  [79–81] . In some human studies the 
use of exogenous glucocorticoids administered to wom-
en at threat of preterm labour also lowers birth weight 
 [82, 83] . This does not hold true in all studies though 
which may reflect the importance of timing of steroid 
exposure  [84] . There are now a number of studies show-
ing that high endogenous cortisol levels in pregnant 
women, measured in blood, saliva, urine, or amniotic 
fluid negatively predict infant birth weight ( table 1 ). The 
findings appear dependent on timing of sample collec-

Table 1.  Maternal HPA axis and fetal growth

Birth variable Cortisol
measurement

Timing of
measurement

n Findings

Fetal growth

Diego et al.
2006 [85]

Maternal urinary 
cortisol

16–29 weeks’ 
gestation

98 Higher maternal urine cortisol associated with below average estimated fetal 
weight measured by ultrasound OR 12.8 (95% CI 4.81–34.09)

Li et al.
2012 [86]

Maternal blood 
cortisol

Late gestation 432 Maternal serum total cortisol was significantly negative correlated with 
ultrasound parameters describing the fetal brain: late biparietal diameter 
(R2 = 0.512, p = 0.009), late head circumference (R2 = 0.498, p = 0.001), 
middle biparietal diameter (R2 = 0.819, p = 0.013), middle cerebellum 
transverse diameter (R2 = 0.76, p = 0.014) and early biparietal diameter 
(R2 = 0.819, p = 0.013)

Birth size

Goedhart et al.
2010 [87]

Maternal serum 
cortisol 

Early second
trimester

2,810 Higher cortisol associated with lower birth weight (B = –0.35 (95% CI −0.53, 
−0.18), p < 0.001) and with small for gestational age OR = 1.00 (1.0–1.0), 
p = 0.027. However, findings no longer significant after adjustment for 
 covariates (gestational age, infant gender, ethnicity, maternal age, parity, 
BMI, and smoking). Post hoc analysis revealed a moderation effect by time 
of day: only in those women who provided a blood sample ≤09:00 h (n = 94), 
higher maternal cortisol levels were independently related to lower birth 
weight (B = −0.94, p = 0.025) and a higher SGA risk (OR = 1.01, p = 0.032)

Bolten et al.
2011 [88]

Maternal salivary 
cortisol awakening
response (CAR)

13–18 (early) 
and 35–37 (late) 
weeks’ gestation

70 Lower birth weight associated with higher CAR in early (β = –0.29, p < 0.05) 
and late (β = –0.30, p < 0.01) pregnancy, with overall CAR explaining 19.8% 
of birth weight variance. Overall CAR also explained 9% of variance in birth 
length

Hompes et al.
2012 [89]

Diurnal salivary 
cortisol profile

Mid-pregnancy 91 Basal cortisol predicted variance in birth weight (proportion of variance in 
growth variable explained (PVE) = 11.6%) and body mass index at birth 
(PVE = 6.8%)

D’Anna-Hernandez 
et al.
2012 [71]

Maternal diurnal 
salivary cortisol 
slope

15–18 weeks 
(early), 26–32 
weeks (mid) and 
>32 weeks (late) 
gestation

55 Blunted maternal cortisol slope during late pregnancy associated with low 
birth weight (r = –0.29, p = 0.05)
No significant correlations in early or mid-pregnancy

Baibazarova et al.
2012 [59]

Amniotic fluid 
cortisol

Second trimester 158 Higher amniotic fluid cortisol associated with lower birth weight (r = –0.25, 
p < 0.01)
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tion, gestation at assessment and whether total cortisol 
or free (bioavailable) cortisol is measured. Likewise, 
measurements of cortisol and CRH in blood, saliva, 
amniotic fluid and hair have been linked to altered 
length of gestation ( table 2 ). The changes in cortisol are 
modest yet have major influences on outcome; for ex-
ample a 2.6% increase in cortisol levels at awakening 
was associated with a 1-week shortening of pregnancy 
duration  [43] . These findings suggest that high mater-
nal cortisol levels can overcome the protective HSD11B2 
barrier and pass across the placenta, slowing fetal 
growth and altering gestational length. In support of 
this concept, observational studies show that women 
who consume large amounts of liquorice which con-
tains glycyrrhizin, an HSD11B2 inhibitor, during preg-
nancy have a shorter gestation  [95] . Likewise, lower pla-

cental HSD11B2 activity is correlated with lower birth 
weight  [96, 97]  and babies homozygous for deleterious 
mutations of the HSD11B2 gene are of lower birth 
weight, averaging 1.2 kg less than their heterozygote 
siblings  [98] . Together these studies suggest increased 
exposure to cortisol is a critical factor regulating growth 
and gestation.

  In addition to slowing fetal growth, excessive gluco-
corticoid exposure alters the set-point of the offspring 
HPA axis. Maternal and fetal/newborn cortisol levels are 
correlated  [50, 99]  and maternal cortisol levels are associ-
ated with reactivity of the newborn HPA axis as demon-
strated in a recent study showing correlations between 
higher maternal cortisol levels in mid-late gestation and 
increased cortisol response in the newborn to the stress 
of a heel prick test  [100] . The changes in offspring HPA 

Table 2.  Maternal HPA axis and gestation at delivery

Gestation at 
delivery

HPA axis 
measurement

Timing of
measurement

n Finding

Hobel et al.
1999 [90]

Maternal plasma 
cortisol, CRH and 
ACTH

18–20, 28–30, 
and 35–36 
weeks’ 
gestation

18 pre-term and 
18 controls

Patients who had preterm delivery had significantly higher plasma 
CRH levels (p < 0.0001) and ACTH levels (p < 0.001) than did control 
subjects at all 3 gestational ages and significantly elevated cortisol 
levels at 18–20 weeks’ gestation and 28–30 weeks’ gestation 
(p < 0.001)

Mancuso et al.
2004 [91]

Maternal plasma 
CRH

18–20 and 28–30 
weeks’ gestation

282 Women who delivered preterm had significantly higher rates of CRH 
at both 18–20 weeks’ gestation and 28–30 weeks’ gestation (r = –0.37, 
p < 0.01 and r = –0.41, p < 0.01 respectively) compared with women 
who delivered term

Sandman et al.
2006 [92]

Maternal plasma 
cortisol and CRH

15, 19, 25 and 31 
weeks’ gestation

203 CRH levels only at 31 weeks predicted preterm birth (F1,201 = 5.53, 
p = 0.02); levels of cortisol were higher in women who delivered 
preterm at 15 weeks’ gestation (F1,201 = 4.45, p = 0.03) with a similar 
trend at 19 weeks’ gestation

Buss et al.
2009 [93]

Maternal cortisol 
awakening 
response (CAR)

16.8 (SD 1.4) 
and 31.4 (1.3) 
weeks’ gestation

101 A larger CAR in late pregnancy and reduced attenuation of the CAR 
from early to late gestation were associated significantly with shorter 
gestational length
Less dampening of the CAR over the course of gestation by 
approximately 1% per week are associated with reduction of 
pregnancy duration by 1 week

Kramer et al.
2009 [94]

Plasma CRH and 
(in a subset) hair 
cortisol

24–26 weeks’ 
gestation

204 preterm and 
444 controls; 
subset n = 31 
cases and 86 
controls

Maternal plasma CRH was significantly higher in cases than in 
control in crude analyses but not after adjustment (for concentrations 
above the median, adjusted odds ratio = 1/1 (95% CI 0.8–1.6))
In the subset, hair cortisol levels were positively associated with 
gestational age. Concentrations were higher in the hair of women 
who delivered at term than in those who delivered at <34 weeks’ 
gestation (190.6 SD 99 vs. 148.6 SD 39.2 ng/g, p < 0.05)

Entringer et al.
2011 [43]

Diurnal salivary 
cortisol profile

23.4 (SD 9.1) 
weeks’ gestation

25 Higher salivary cortisol concentrations at awakening and throughout 
the day (p = 0.001), as well as a flatter cortisol response to awakening 
(p = 0.005), were associated with shorter length of gestation

Baibazarova
et al.
2012 [59]

Amniotic fluid 
cortisol

Second trimester 158 Higher amniotic fluid cortisol associated with shorter gestational age 
(r = –0.18, p < 0.05)
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axis activity associated with glucocorticoid overexposure 
in utero may persist into adult life as low birth weight is 
associated with higher fasting cortisol levels  [101–103]  
and with activation of the HPA axis  [104, 105] . Likewise, 
increased cortisol reactivity has been demonstrated in 6- 
to 11-year-olds born at term who had prenatal glucocor-
ticoid treatment  [82] .

  Follow-up studies of infants exposed to antenatal glu-
cocorticoids in utero suggest an increased risk of adverse 
neurodevelopmental outcomes. Though data are diffi-
cult to interpret as the babies are often born premature-
ly, studies have shown associations between antenatal 
glucocorticoid exposure and reduced head circumfer-
ence at birth and an increase in distractibility and inat-
tention in teenage offspring  [106] . There is also some 
evidence that endogenous maternal HPA axis activity 
influences fetal neurodevelopment. For example, fetuses 
of mothers with higher CRH levels showed less habitua-
tion of the fetal heart rate to repeated vibroacoustic stim-
ulation compared to those of mothers with low CRH lev-
els  [22] . This finding is thought to suggest impaired neu-
rodevelopment as fetal heart rate habituation is known 
to correlate with later infant development at 18 months 
and 3 years of age  [107] . There is inconsistency in the 
literature linking maternal cortisol to offspring tempera-
ment and emotional reactivity. Studies have shown high-
er maternal cortisol levels linked to offspring tempera-
ment, only cortisol measurements in the third trimester 
associating with infant emotional reactivity  [20]  or men-
tal and motor development  [108]  while others have re-
ported no associations between maternal cortisol mea-
surements or amniotic fluid cortisol and these outcomes 
 [59, 109] . 

  Higher levels of amniotic cortisol have also been asso-
ciated with lower cognitive scores in the infant at age 17 
months  [110] . Regulation of cortisol exposure through 
activity of HSD11B2 appears critical as the offspring of 
women who consumed large quantities of liquorice had 
significantly impaired cognitive and behavioural devel-
opment  [111, 112] . A recent study has attempted to dis-
sect the mechanisms underlying the altered infant neuro-
development showing higher maternal cortisol levels 
measured in earlier but not later gestation were associated 
with a larger right amygdala volume measured by MRI in 
girls at age 7 years  [113] . The amygdala is important for 
emotional memory processing and regulates a variety of 
emotions including fear, depression and anxiety. The 
higher maternal cortisol levels in early gestation were as-
sociated with more affective problems in girls, and this 
association was mediated in part by amygdala volume. 

Intriguingly a prospective study of 6- to 9-year-olds also 
reported that pregnancy anxiety at 16 weeks, but not later 
in gestation, was associated with altered brain structure 
detected by MRI scans  [114] .

  Exposure to exogenous glucocorticoids in utero is as-
sociated with adverse metabolic outcomes including 
higher blood pressure at age 14 years  [21]  and higher in-
sulin levels at age 30 years  [115] . Increased exposure to 
endogenous glucocorticoids, estimated from measure-
ments of cord blood cortisol and cortisone, is also associ-
ated with higher blood pressure aged 3 years  [116] . Ma-
ternal cortisol levels during pregnancy are also associated 
with changes in offspring body composition at 5 years, 
with higher maternal cortisol being independently asso-
ciated with higher fat mass index in girls and lower fat 
mass index in boys, suggesting gender differences in off-
spring vulnerability  [117] .

  Overall, these results support the hypothesis that over-
exposure to glucocorticoids increase the risk of develop-
ment of both mental and physical illness in later life. Cru-
cially, the timing of excess glucocorticoid exposure ap-
pears key to determining outcome suggesting there are 
critical windows of development during which different 
fetal organs and systems are vulnerable to glucocorti-
coids. For example, it is thought that cortisol early in 
pregnancy may prime the ‘placental clock’ predetermin-
ing the CRH surge and hence timing of delivery from very 
early in gestation  [118] . Any insult occurring in early 
pregnancy may disrupt this exquisitely sensitive system. 
Other studies have shown different windows of suscepti-
bility. For example, higher maternal cortisol in late preg-
nancy but not early pregnancy has been associated with 
more advanced physical and neuromuscular maturation 
in the neonate and mental development scores on the 
Bayley Scales at 12 months  [63, 119]  which is in keeping 
with the rapid development of the neural system which 
occurs between 28 and 32 weeks. Another potential ex-
planation is that although the circulating levels of cortisol, 
ACTH and placental CRH rise as pregnancy progresses, 
the responsiveness of the HPA axis is blunted and this 
may protect mother and fetus to effects of stress in the 
later stages of pregnancy. 

 Maternal Consequences of Stress and Altered HPA 

Axis Activity in Pregnancy 

 Changes in maternal HPA axis activity influence tim-
ing of labour but are there any longer term consequences 
of dysregulation of the HPA axis during pregnancy for 
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women? The observation that women who develop a 
physical illness in pregnancy such as pre-eclampsia are at 
later risk of hypertension and cardiovascular disease 
 [120] , suggests that pregnancy is itself a physiological 
stressor, and an adverse metabolic response to pregnancy 
predicts later disease susceptibility. Similarly, follow-up 
of women exposed to extreme stress in pregnancy indi-
cate these women are at increased risk of adverse mental 
health  [121] . In the non-pregnant state, activation of the 
HPA axis increases the risk of metabolic and psychiatric 
disease  [8, 122–130] . Preliminary evidence that altered 
HPA responses to pregnancy may influence later mater-
nal mental health comes from a small study showing that 
increased cortisol responses to a standardized psychoso-
cial stress test during healthy pregnancy predict postpar-
tum depressive symptoms  [131] . Further, higher mid-
pregnancy CRH levels are associated with increased post-
partum depressive symptoms  [132] . In addition, 
dysregulation of the normal recuperation of the HPA axis 
in the postpartum period has been implicated in mood 
disorders occurring in that time period. For example, 
women who develop the postpartum ‘blues’ have been 
reported to have higher postpartum cortisol levels  [133, 
134] , higher ACTH levels, a greater fall in CRH levels  [62]  
and blunted responses to CRH testing  [61] . In another 
study, patients with postpartum thoughts of harming the 
infant had higher levels of ACTH in the immediate post-
partum period compared to women without these intru-
sive thoughts  [135] .

  Conclusions 

 The challenges of measuring the dynamic and chang-
ing HPA axis in pregnancy have limited the translation 
of the numerous animal studies linking glucocorticoid 
overexposure to later disease into human studies. Nev-
ertheless, evidence is accumulating showing changes in 
the maternal HPA axis leading to lower birth weight and 
gestation and long-term adverse health outcomes for the 
offspring. We currently do not know whether interven-
tions during pregnancy to modulate HPA axis activity 
would be beneficial, though there is some evidence that 
use of simple stress reduction instructions can reduce 
maternal perceived stress as well as morning cortisol lev-
els  [136] . The early postpartum period may also be crit-
ical, as in animal studies postnatal care also effects off-
spring HPA axis function. Increased maternal care has 
been associated with enhanced negative feedback sensi-
tivity of the axis, reduced CRH and reduced stress re-

sponse, which consequently reduces fear behaviour in 
offspring  [137, 138] . Cross-fostering studies with rats 
with high and low maternal care can reverse the pheno-
type of offspring  [139] . These elegant studies suggest 
that a postnatal intervention may allow modification of 
some programmed changes. Therefore, early detection 
of, and preventative measures could have a huge impact 
on childhood neurodevelopment and adult mental 
health.

  Given the difficulties in assessing the HPA axis in 
pregnancy, attention is turning to use of the placenta for 
biomarkers of future disease. One such biomarker is epi-
genetic markers, i.e. changes in gene expression such as 
DNA methylation, histone modification and chromatin 
packaging, which do not involve changes in DNA se-
quence. There is now preliminary evidence in humans 
that methylation levels of genes involved in glucocorti-
coid pathways are altered by the early life environment. 
Methylation of the HSD11B2 promoter is associated with 
reduced transcription  [140]  and a recent study has shown 
that increased DNA methylation of the HSD11B2 pro-
moter in the placenta associates with lower birth weight 
and with altered newborn behaviour with poorer infant 
quality of movement, a marker of adverse neurobehav-
ioural outcomes  [141] . While these data are preliminary, 
they do suggest that it may be possible to identify at birth 
those most at risk of later disease.
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