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Abstract

Chronology is a necessary component of paleoclimatology. Radiocarbon dating plays a

central role in determining the ages of geological samples younger than ca. 50 ka BP. How-

ever, there are many limitations for its application, including radiocarbon reservoir effects,

which may cause incorrect chronology in many lakes. Here we demonstrate temporal

changes in the radiocarbon reservoir age of Lake Xingyun, Southwestern China, where ra-

diocarbon ages based on bulk organic matter have been reported in previous studies. Our

new radiocarbon ages, determined from terrestrial plant macrofossils suggest that the radio-

carbon reservoir age changed from 960 to 2200 years during the last 8500 cal a BP years.

These changes to the reservoir effect were associated with inputs from either pre-aged or-

ganic carbon or 14C-depleted hard water in Lake Xingyun caused by hydrological change in

the lake system. The radiocarbon reservoir age may in return be a good indicator for the car-

bon source in lake ecosystems and depositional environment.

Introduction

The Indian Summer Monsoon domain is a key region to understand past climatic changes [1].

This region has continuous and well-preserved lake sediment, which provides excellent ar-

chives for paleoclimatic reconstructions of the terrestrial environment [1–3]. However, a criti-

cal task in paleolimnological studies is to establish a reliable age-depth model.

Many dating methods have been applied in lacustrine sediments, including 210Pb and 137Cs

dating, optically stimulated luminescence (OSL) dating, and radiocarbon (14C) dating. Among

these methods, radiocarbon dating has been used most extensively for providing a chronologi-

cal framework for the past 50 kyr [4, 5]. Radiocarbon dating of sediment cores can be con-

ducted on various materials, such as aquatic plant macrofossils, terrestrial plant macrofossils,

and pollen grains [6–12]. Due to the lack of plant macrofossils or an insufficient concentration
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of pollen grains in lake sediments from barren landscapes [13, 14], bulk organic sediment and

biogenic carbonate are usually chosen for radiocarbon dating instead. However, radiocarbon lev-

els in bulk organic sediments might be "mixed" with fossil terrestrial carbon (old carbon) [15–

17] and aquatic plants which draw its C from 14C-depleted water (i.e. because of the hard-water

effect) [6, 9, 17]. These variables may produce a significant radiocarbon age difference between

atmosphere and contemporaneous lake water system, which has been termed as "radiocarbon

reservoir effect" [18]. Changes in reservoir age may be directly linked to changes in the hydrolog-

ical setting (e.g. water inflow and outflow, gas exchange with the atmosphere, and the size of the

carbon pool) and the variations in atmospheric 14C levels. As a consequence, reservoir ages

might be a useful tool for reconstructing the response of lacustrine hydrology to climate change

[19–23]. The uncertainties in dating lacustrine radiocarbon reservoirs significantly limit the ap-

plication of radiocarbon dating in paleolimnological research, furthermore, hinder us from di-

rectly comparing among different paleoclimatic records. Anomalously large reservoir ages have

been reported in many paleolimnological studies worldwide [14, 24–29].

In order to further understand the 14C reservoir effect, the following approaches have been

applied [29]: modern calibration approach [30], linear extrapolation of 14C age model [31],

geochemical modeling [13], stratigraphic alignment [32], and independent age determinations

[29]. Nevertheless, the application of 14C dating to lake sediments is hindered by the choice of

sampling materials which causes temporal and spatial variability because of the 14C reservoir

effects [27, 33–35]. Although we can accurately evaluate the reservoir effect by measuring mod-

ern surface samples, the assumption that the reservoir age remains constant through time is

not necessarily justified [29].

Although the radiocarbon reservoir effect of bulk organic matter from lakes has been recog-

nized [18], many paleoclimatological studies continue to use chronologies derived from such

materials because there is no alternative/better sampling material to date. In addition, the use of

macrofossils of aquatic species (i.e. Ruppia matitine), which take their carbon from the lake

water, for radiocarbon dating will also not provide reliable results due to the same reservoir issue

[27]. An ideal radiocarbon chronology of the lake sediment sequence should be entirely based on

the macrofossils of terrestrial plants [36]. Lake Xingyun is a great choice for the paleoclimatic

study in southwestern China due to its location and its large catchment. The age profile is crucial

for whether the relation between the Indian Summer Monsoonal strength and climates in Lake

Xingyun during the Holocene can be posed. 14C age of bulk sediments have been measured from

previous study [2], which has been cited for over 100 times without further conclusively justifica-

tion on the age issue. Thus it is important and necessary to evaluate the reservoir effect in this

lake and re-adjust the paleoclimatic view of this site/region. In this study, we examined the tem-

poral variations of the 14C reservoir effect inLake Xingyun. As the 14C ages on bulk organic mat-

ter have been previously reported [2], here we use a new core collected from the middle of Lake

Xingyun for comparison with the previous result. Tree twigs were carefully selected for 14C dat-

ing. Age profile of our new core and that of the previously reported were compared and the tem-

poral variations in reservoir ages were assessed on the basis of the difference between the ages

dated on different materials. Together with paleoclimatological results, we further discuss the re-

lationship between reservoir age and hydrological change of this lake system. Finally, we re-eval-

uated the paleoclimatic interpretation of previous studies with additional evidence for a more

convincing age model.

Materials and Methods

Lake Xingyun (24°17'20"N-24°23'05"N, 102°45'18"E-102°48'30"E, 1723 m a.s.l.), is a semi-

closed shallow lake (maximum water depth 10.81m) located in the India Summer Monsoon
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(ISM) controlled area of Asia. The surface area is 34.7 km2 and the catchment area is 386 km2

(Fig. 1). Several small intermittent rivers flow into Lake Xingyun, and the lake itself drains

northward via the Gehe River into Lake Fuxian. Lake Xingyun is a freshwater lake with con-

ductivity of 344 mS/cm and pH in the range of 8.4–8.7 [2]. Within the drainage basin, the

mean annual temperature is 15.6°C. A mean annual precipitation of approximately 880 mm

accumulates annually, with 85 to 90% of the precipitation falling between May and October

under the influence of strong monsoonal southwesterly winds originating in the Bay of Bengal

and Southern Indian Ocean [37]. In winter, the N–NWwinds bring dry air to this region with

minimal rainfall from November to March. Monsoon circulation has been shown to strongly

affect the amount and isotopic composition of precipitation in Kunming [38], which is about

60 km north of the lake. The local vegetation is mainly composed of agricultural crops and

pine forests. On the surrounding mountains, drought-tolerant shrubs and grasslands domi-

nate, while pine forests and broadleaved forests or shrubs consisting of evergreen and

Fig 1. Map showing the topographical features, location and coring location XY08A, XH-14-X-94 of Lake Xingyun, SWChina.

doi:10.1371/journal.pone.0121532.g001
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deciduous Quercus are distributed at relatively high altitudes. The bedrock of the Lake Xingyun

catchment is largely composed of dolomite, sandstone, and basalt [39].

Core XY08A (9.74 m long, Fig. 2) was collected at a water depth of 9.3 m from the central

part of Lake Xingyun, using a UWITEC platform and piston corer set in October 2008. Core

XY08A was sub-sampled at 2 cm intervals, freeze-dried and stored in a refrigerated room at

4°C. Core XY08A was mainly composed of silty clay and can be briefly described as follows:

490–980 cm, brown gray clay; 160–490 cm, grayish silty carbonate mud with saprogenic mud

containing gastropod shells and plant remains; 0–160 cm, reddish silty clay.

The organic matter (OM) content was determined by loss on ignition (LOI) at 550°C in a

muffle furnace for 5 hours, and the carbonate content was calculated by the mass loss at 950°C,

assuming the loss of mass at 950°C was from decomposition of CaCO3 to CaO and CO2. The

mass loss due to CO2 was multiplied by 2.27, the ratio of the molecular weights of CaCO3 and

CO2 [40]. n-Alkane analyses were performed following the procedures described by He et al.

[41]. Total lipids were extracted from freeze-dried sediments (ca. 2–6 g) with organic solvents

(dichloromethane: methanol = 9:1, v/v). The neutral lipids were extracted with n-hexane. The

n-alkanes were then further purified using silica gel column chromatography. The n-alkane

fraction was analyzed using a Gas Chromatography Agilent 7890 equipped with a flame

Fig 2. Comparison of core XH-14-X-94 [2] with core XY08A, Lake Xingyun, SWChina.

doi:10.1371/journal.pone.0121532.g002
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ionized detector at the University of Hong Kong, using n-C36 alkane for quantification and lab-

oratory standards for peak identification.

A total of eight samples of terrestrial plant macrofossils were taken for 14C dating from dif-

ferent depths (Table 1). All of them were dated using accelerator mass spectrometry (AMS).

Seven of the samples were dated at the AMS Dating Laboratory at Peking University, and one

sample was dated at Beta Analytic, USA. All dates were calibrated to calendar years before the

present (0 BP = 1950 AD) using the computer program CALIB Rev. 7.0 in conjunction with

the IntCal13 calibration data set [5]. The age-depth model was established by fitting spline

functions to the age controlling points using the Clam library [42, 43] implemented using the

statistical software package with the default smoothing parameter of 0.3.

Results

Core XY08A was drilled from the central part of the lake. Since the wood twigs we used for dat-

ing materials were all small and intact, they were deemed unlikely to have been re-worked

from earlier initial deposition. Therefore, our chronology profilesfrom core XY08A were reli-

able. However, in the case of original core XH-14-X-94 [2], only bulk sediments were chosen

for radiocarbon dating without consideration for any potential reservoir effect. Thus, by calcu-

lating the difference in 14C ages between core XY08A (this study) and core XH-14-X-94, the

reservoir effect in Lake Xingyun can be evaluated.

To ensure a direct comparison between these two cores, weconverted the depth of XH-

14-X-94 to that of XY08A by directly comparing their carbonate content (Fig. 2). For addition-

al support for these correlations, we also used two measured bulk organic samples from core

XY08A. The AMS data from 2 bulk samples in core XY08A match well with the data from core

XH-14-X-94 within the permissible error range (Table 1, marked with ��). The correlation

Table 1. Radiocarbon ages of bulk organic matter and plant remains in Lake Xingyun, SWChina.

Laboratory number Depth (cm) Materials dated δ
13C (‰ VPDB) 14C age (yr BP) Error (yr) *Adjusted depth (cm)

OS-8168 183–184 Gastropod -22.4 1620* 50 109

OS-9083 292–293 bulk organic -27.6 3060 35 185

OS-9076 389–391 bulk organic -28.64 4750 65 323

OS-9087 479–481 bulk organic -28.18 6500 50 370.5

OS-9078 587–589 bulk organic -28.2 7420 85 408.5

OS-9088 697–699 bulk organic -28.01 8710 35 447

OS-9089 783–785 bulk organic -29.52 9680 45 477

BA120226 47 Twigs N/A 265 30 47

BA120228 228 Twigs N/A 1810 30 228

BA120229 300 Twigs N/A 3130 30 300

BA120230 377 Twigs N/A 5105 25 377

LZU045** 377 Bulk organic 6620 40 377

BA120231 411 Twigs N/A 5785 25 411

BA120241 437 Twigs N/A 6715 35 437

BA120232 477 Twigs N/A 7535 30 477

LZU046** 477 Bulk organic N/A 9670 40 477

Beta333693 485 Twigs -28.5 7720 40 485

* All core depths are converted to the depth of core XY08A

** To make sure the calibration of the two cores are corrected, we also used two measured Bulk organic samples from core XY08A, the two AMS data

match well with core XH-14-X-94's curve within permissible error range

doi:10.1371/journal.pone.0121532.t001
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below 4.9 m of the XY08A core and 8.2 m of the XH-14-X-94 core was not performed, as no

significant changes in carbonate content were observed for the lower part of the cores (Fig. 2).

Because the radiocarbon ages from the two cores were not from the same depths, we used the

mixed-effect regression model based on the work of Heegaard et al. [43] by fitting a cubic

spline function of smoothing through the 68% age ranges and assigning a 95% confidence level

to the interpolated ages at 2 cm intervals. As such, two successive radiocarbon age-depth curves

were obtained (Fig. 3A, B), which represent the bulk organic matter and plant macrofossil ages,

respectively. The radiocarbon reservoir offset (RRO) was determined by calculating the differ-

ence between the un-calibrated conventional radiocarbon ages of the bulk organic (RBO) and

the plant macrofossils (RPM) at equivalent depths (Fig. 3C). The equation for the uncertainty

in the RRO was derived from the propagation of errors, assuming independence between RBO

and RPM was calculated as: sRRO ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s
2

RBO þ s
2

RPM

p

where σRBO and σRPM were the uncertainty

in RBO and RPM, respectively.

Due to the lack of radiocarbon data above the depth of 109 cm from either core XH-14-X-

94 or core XY08A, we only focused on the calculation of the radiocarbon reservoir offsets be-

tween the depths of 490–109 cm. As shown in Fig. 2, all the AMS ages on the bulk organic mat-

ter were significantly older than those of the twigs. The data suggested that the TOC

chronology contains carbon depleted in 14C with respect to the atmosphere at the time of depo-

sition, consequently yielding older ages. The differences between these two chronological pro-

files varied between 960 and 2200 years at years between depths of 490 and 109 cm.

Fig 3. Lithology, radiocarbon results, proxies and age-depthmodel of core XY08A from Lake Xingyun. (a) Radiocarbon age-depth model for Xingyun
lake using twigs (red) and bulk organic material (black). (b) Measured and modeled reservoir age offset for Lake Xingyun. LOI (c) and carbonate content (d),
(e) n-alkane record of Lake Xingyun. Relative abundance (vertical) versus carbon distribution (horizontal) of n-alkane homologues in Core XY08A. The
carbon number distribution is from C15 to C33. (f) The age model (solid line) using the method of Heegaard et al. [43]. The shaded envelope indicates the
95% confidence interval.

doi:10.1371/journal.pone.0121532.g003

Radiocarbon Reservoir Age in Lake Xingyun

PLOS ONE | DOI:10.1371/journal.pone.0121532 March 27, 2015 6 / 12



Discussion

1. Influence of lake hydrology on changes in reservoir effect in Lake
Xingyun
The radiocarbon reservoir offset can be attributed to many factors. Some of the reservoir effect

is derived from the hard water effect (HWE), which is related to riverine runoff containing

"dead" dissolved inorganic carbon [44]. The reservoir offset can also be derived from fully

aquatic plants (submerged macrophytes and phytoplankton algae), which assimilate dissolved

inorganic carbon (DIC) in lake water containing depleted 14C compared to the atmosphere

(the "lake-carbon reservoir" effect). On the other hand, reworked organic materials from catch-

ment weathering [26] can dilute the 14C content of organic materials with respect to the atmo-

sphere at the time of deposition, causing the apparent ages to be older than the depositional

event [45]. In the following section, we compare the radiocarbon reservoir ages of Lake Xin-

gyun with the LOI, CaCO3 content and n-alkane distribution (Fig. 3) to better understand the

origin of the radiocarbon reservoir effect in Lake Xingyun. Based on these findings, we further

qualitatively explain how the regional climate might affect the basin's reservoir age by influenc-

ing lake water budget and riverine runoff as well as bedrock weathering.

Organic matter derives from terrestrial plants, aquatic plants, and reworked organic matter

washed into the lake from the shore due to strong hydrological dynamics. Thus, bulk sediments

are likely to be a mixture of autochthonous (from phytoplankton) and allochthonous (from

terrestrial plants) organic matter with the proportion of each varying through time [14], de-

pending on the lake levels and aquatic productivity. On the other hand, carbonate content can

be used as a complementary indicator of hydrological balance [46, 47]. However, the increase

in carbonate and organic matter input could also be due to changes in lake size, either through

lake shrinkage or expansion. Therefore, in our study, we have also introduced the n-alkane re-

cord to further examine differences in organic matter from terrestrial compared with aquatic

sources. The dominant chain length of the n-alkanes mainly depends on the source organisms.

Generally, the distribution of n-alkanes from Lake Xingyun can be divided into two main cate-

gories: one is dominated by the C27-C31 components, which are typically derived from the leaf

wax of vascular plants [48–52]; the other is dominated by C15-C19 homologues contributed by

algae and bacterial sources [49, 53, 54]. The predominance of terrestrial higher plants, includ-

ing moss, sedge, and lichen may lead to the average chain length (ACL) values of the n-alkanes,

while an increased input of aquatic macrophytes may lead to a lower ACL value. Although dif-

ferent species of plants may influence the ACL index, preliminary data from pollen and non-

pollen palynomorphs [55] indicate that Holocene vegetation has not changed dramatically. If

so, the ACL index is primarily influenced by the proportion of aquatic to terrestrial plants.

The radiocarbon reservoir effect of Lake Xingyun would be stationary, if the hydrological

conditions remain the same. Since the radiocarbon reservoir age changes with time, this sug-

gests that the hydrological conditions have also altered. Therefore, we discuss the radiocarbon

reservoir effect in the following three intervals: 4.9–3.2 m, 3.2–2.0 m and 2.0–1.0 m. Generally,

the reservoir offset decreased between depths of 4.9–3.2 m and 2.0–1.0 m and increased at 3.2–

2.0 m, suggesting that Lake Xingyun underwent changing hydrological conditions

through time.

1) 4.9–3.2 m, decreasing reservoir effect. Below 4.9 m, TOC and carbonate contents were

extremely low. The n-alkane results showed a predominance of C15-C19, which were potentially

contributed by algae and bacteria. Between 4.9 and 3.2 m depth, the TOC content increased

significantly, suggesting that there was a higher organic input, possibly due to hydrological

changes such as the formation of closed lake conditions. The n-alkane results suggest that there

was an increase in terrestrial material relative to aquatic sources, as determined by the

Radiocarbon Reservoir Age in Lake Xingyun
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domination of long chain n-alkanes (C27–31). The high carbonate content at this section may

indicate low lake levels and a hydrologically closed basin. Therefore, we suggest that more ter-

restrial organic matter was delivered into the lake center, diluting the existing aquatic

carbon pool.

2) 3.2–2.0 m, increasing reservoir effect. In this section, we observed increased carbonate

content but decreased TOC values. Based on the n-alkane results, the organic composition

changed from mixed terrestrial and aquatic plants to mainly aquatic plants. This change sug-

gests that lake level increased gradually and reached the highest stand at the top of this section.

Under such conditions, terrestrial organic matter cannot be easily transported to the lake cen-

ter where the sediments mainly originated from the deposition of authigenic carbonate and

microphytic algae, resulting in increased carbonate levels and decreased TOC in the core.

Therefore, the increased radiocarbon reservoir age should be mainly related to the HWE.

3) 2–1 m, decreasing reservoir effect. In this section, TOC increased and remained at the

median value, while carbonate decreased significantly to nearly zero. Based on the n-alkane re-

sults, the organic matter in this section was mainly derived from aquatic algae sources, with oc-

casional macrophyte inputs. Therefore, Lake Xingyun was probably at a high lake level. In this

case, the terrestrial organic materials barely reached the central lake coring site, and the de-

creased radiocarbon reservoir age was probably not caused by dilution with terrestrial organic

matter. Therefore, we suggest that the diminished hard water effect at this stage may be due to

a change from a closed to an open lake system at this time.

In summary, over the interval of 4.9–2 m sediment depth, the variation in the radiocarbon

reservoir ages in Lake Xingyun was mainly caused by the introduction of contemporaneous or-

ganic matter with variable amounts of old terrestrial organic matter flushed into the lake from

the catchment. However, at the depth of 2–1 m, the decreased radiocarbon reservoir age was

mainly controlled by the in-situ hard water effect, which likely reflects a change in the lake sta-

tus from a closed to an open system. These results provide further insight into the hydrological

conditions and terrestrial input in Lake Xingyun during the Holocene.

2. Paleoclimatic implications of the revised records from Lake Xingyun
When comparing our radiocarbon chronology with that of Hodell et al. [2], our data suggest a

different interpretation of the previously published proxy data from Lake Xingyun. Based on

our results, the cold event corresponding to YD in NW Europe event identified by Hodell et al.

[2] from their δ18O record may have actually occurred during the early-middle Holocene

(Fig. 4). If the bulk inorganic 18O indicates the strength of the ISM, then the ISM would not

have been intensified until 9–8.5 ka, which is in contrast to the records of monsoons in the

neighboring region [56]. This suggests that the 18O record from Lake Xingyun might not be a

proxy of monsoon intensity. Rather, it might mainly be related to carbonate precipitation. Fur-

thermore, our study highlights the significance of an accurate chronological profile for the

valid interpretation of proxy records, since most proxies can be interpreted in various ways.

Another critical issue identified in this study is that the highest productivity of Lake Xingyun

occurred at approximately 8 ka (Early to Middle Holocene transition) instead of approximately

12 ka (glacial-interglacial transition). Such change in productivity might result from the re-

gional hydrological setting instead of large-scale monsoonal activities. More studies now be-

come necessary in this region to scrutinize how monsoon strength affected the hydrological

condition of this lake.

Radiocarbon Reservoir Age in Lake Xingyun
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Fig 4. Comparison of various climate proxies in the Holocene. (a) Changes in radiocarbon reservoir age during the Holocene; LOI (b) and carbonate
content (c) of Lake Xingyun for this study; changes of bulk carbonate oxygen isotope (d) during the Holocene from Hodell et al. [2], conversion of bulk organic
radiocarbon chronology to terrestrial twigs AMS dating radiocarbon chronology; changes of bulk carbonate oxygen isotope (e) during the Holocene from
Hodell et al. [2]; (f) δ18O record from Dongge cave [57]; (g) June insolation at 30°N [58].

doi:10.1371/journal.pone.0121532.g004
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Conclusions

1. There exists a pervasive reservoir age in Lake Xingyun during the last 8500 years which

changes between 1150 to 2200 years since the Early Holocene.

2. Changes in reservoir age are associated with inputs of either pre-aged organic carbon or 14C-de-

pleted hard water in Lake Xingyun, which were likely caused by hydrologic changes in the

lake system.

3. The radiocarbon reservoir offset can be used as an indicator of the carbon source in the lake

ecosystem and depositional environment. This effect can also provide useful insights for

land use in the catchment basin around a lake.
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