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Abstract

China has been experiencing significant climate and land use changes over the past decades. Theway

inwhich these changes, particularly awarming hiatus and national ecological restoration projects that

occurred almost concurrently in the late 1990s, have influenced vegetation net primary productivity

(NPP), is not well documented.Here, we estimated annual and seasonal changes inChina’sNPP

between 1982 and 2015 using theCarnegie-Ames-Stanford Approachmodel and examined their

shifting years (SHYs) caused by the switch in climatic factors and the restoration projects. Our analyses

revealed that the growth of annual, spring and summerNPP stalled in 1997 or 1998, while the trend of

autumnNPP increased in 1992 at the national scale.We also showed that the changes in theNPP

trendsweremore sensitive to thewarming hiatus in spring and autumn, as well as in the temperate

monsoonal region and the Tibetan Plateau, while the larger trend of autumnNPP in easternChina

after the SHYwas strongly coupledwith increasedmonsoonal precipitation. Although the starting

years of the restoration projects were partially consistent with the SHYs of theNPP trends, the projects

were likely playingminor roles in enhancingNPP increase. Ourfindings can be applied for ecological

risk assessment and futuremanagement of ecological restoration projects in the context of global

change.

1. Introduction

Net primary productivity (NPP), the positive incre-

ments in plant biomass via photosynthesis per unit

time, is not only an essential factor reflecting vegeta-

tion activity but also the central variable of carbon

cycling (Field et al 1998, Luyssaert et al 2007).

Terrestrial vegetation provides most of the food, fuel,

fabrics and building materials to humans. Therefore,

the dynamics of terrestrial ecosystemNPP, a measure-

ment of potential resource products, have received

attention from a growing number of researchers in the

context of global change (Melillo et al 1993, Cramer

et al 2001, LeBauer andTreseder 2008).

Climate change is the most important and direct

factor affecting vegetation activity. Through remote

sensing data analysis and manipulation experiments,

many studies have reported the possible impacts of

the variation of temperature (Myneni et al 1997,

Richardson et al 2010), precipitation (Fang et al 2004,

Liu et al 2018) and solar radiation (Zhao and Run-

ning 2010, Wang et al 2017) on vegetation growth.

However, changes in climatic factors are usually

phased or sudden (Lockwood 2001). On a global scale,

the increase rate of average temperature between 1980

and 2000 was 0.02 °C yr−1, which is faster than ever

before (Easterling et al 2000, Karl et al 2000), but this

increase has clearly slowed down since 1998

(IPCC 2013, Li et al 2015). Moreover, because of vol-

canic eruption, solar radiation reached a minimum in

1992 (Minnis et al 1993). Apart from these global pat-

terns, climate change in China also has some region-
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specific characteristics. For example, Chen and Shi

(2003) noted that due to the shift in large-scale general

circulation, autumn precipitation continued to

decrease in most parts of China from 1951 to 1999.

The CMIP5 models predicted that East Asian mon-

soon would be enhanced in the future, and thus, the

decreasing trend of autumn precipitation was expec-

ted to be constrained (Piao et al 2010, Bao 2012). All

the aforementioned climate change patterns likely lead

to the phasic change ofNPP inChina.

Although intensive human activity is proven to be

a main cause of the reduction in vegetation cover

worldwide, this is not entirely the case in China (Lu

et al 2018, Chen et al 2019). A series of ecological

restoration projects, implemented in succession since

late 1990s, such as Natural Forest Protection (started

in 1998) (Ren et al 2018) and Grain for Green (2003)

(Feng et al 2005), created conditions for the acceler-

ated growth of the NPP. However, not all types of pro-

jects benefit NPP growth. Some studies have reported

the destruction of vegetation caused by unsuitable

afforestation and grass planting in the arid and semi-

arid areas of China (Feng et al 2015). Hence, in addi-

tion to climate change, human activity can also be

regarded as a critical factor triggering the NPP trend

change inChina.

Under the above background, it is unclear whether

the increasing trend in China’s NPP has changed and

how did climate change and human activity affect the

shifts in NPP trends. However, the following limita-

tions have prevented previous studies from analyzing

or discussing these questions thoroughly. First, esti-

mations of NPP are inaccurate. The quality of data,

interpolation method and study area all affect the esti-

mates of NPP. However, due to fewer restrictions on

these factors, previous studies show a great difference

in calculation results, even those based on the same

model (e.g. Zhu et al 2007, Gao and Liu 2008). Second,

limited by observation time and data span, researchers

did not concentrate on the shifting year (SHY) of

NPP trend or distinguished it with a low level of con-

fidence (e.g. Piao et al 2005, Yang et al 2017). Third, a

piecewise regression model is commonly used to

obtain SHYs. However, some researchers ignored the

overfitting problem and optionally added the model

parameters, misapplying the method (e.g. Liang et al

2015).

Therefore, based on more complete data and pre-

processing methods, this study aims to provide a long

time series (1982–2015) NPP estimation and achieve

the following two goals: (1) identify potential phasic

changes in China’s terrestrial ecosystemNPP at differ-

ent temporal (annual and seasonal) and spatial

(national and regional) scales; and (2) reveal climatic

or anthropogenic factors triggering shifts in NPP

trends.

2.Materials andmethods

2.1. NPPdata estimation

We estimated the NPP using the Carnegie-Ames-

Stanford Approach (CASA) model. The CASA model

is a powerful tool for large-scale NPP estimation based

on plant physiology and carbon sequestration process,

whose input includes meteorological, soil and vegeta-

tion data (Potter et al 1993, Field et al 1995). In this

model, NPP (gram carbon, gC) is expressed as the

product of the amount of photosynthetically active

radiation (APAR, megajoule, MJ) and light utilization

efficiency (ε, gCMJ−1) (equation (1)):

e= ´( ) ( ) ( ) ( )x t x t x tNPP , APAR , , , 1

where NPP(x, t) is net primary production for a

specific location (x) and period (t); APAR(x, t) and

ε(x, t) can be calculated by equations (2) and (3)

respectively.

= ´ ´( ) ( ) ( ) ( )x t x t x tAPAR , FPAR , SOL , 0.5 2

e e= ´ ´ ´( ) ( ) ( ) ( )

( )

x t T x t T x t W x t, , , , ,

3
max1 2

where FPAR(x, t) is the fraction of photosynthetically

active radiation, which can be derived from vegetation

type and normalized differential vegetation index

(NDVI); SOL(x, t) is the total solar radiation; T1(x, t)

and T2(x, t) are effects of temperature stress, which are

related to extreme temperatures and deviation from

optimum temperature respectively; W(x, t) is calcu-

lated by the soil moisture submodel and accounts for

the effect of water stress; εmax is themaximum value of

light utilization efficiency and is assigned as 0.405

gCMJ−1 in this study (Field et al 1995).

2.2.Data preprocessing

WeselectedChina except for the non-vegetated regions

marked by 1:1000 000 vegetation map (ECVMC 2007)

as the study area, which covers 91.3% of China’s

landmass. To meet the requirements of the CASA

model and clearly present the spatial differentiation of

NPP variations, the study area was classified into ten

vegetation types and four climatic regions (He et al

2019), namely temperate continental, temperate mon-

soonal, subtropical–tropical monsoonal and the Tibe-

tan Plateau (figure S1 is available online at stacks.iop.

org/ERL/14/124009/mmedia). Moreover, soil tex-

ture data for calculating the water stress coefficient

were provided by the Cold and Arid Region Sciences

DataCenter (http://westdc.westgis.ac.cn/).

We used meteorological data from 2480 conven-

tional and 130 radiation monitoring stations (http://

data.cma.cn) to create gridded monthly temperature,

precipitation, and solar radiation products. Spatial

interpolation was implemented by Anusplin 4.4,

which is based on improved thin plate spline method

and has been proven to have better interpolation

results than inverse distance weighted and kriging

methods in China (Qian et al 2010, Hutchinson and
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Xu 2013). We tried to change the order of the spline

and introduce different covariables to obtain the opti-

mal interpolation models. Parameters and deviations

derived from general cross validation of all tested

models are shown in table S1. Accordingly, we selected

a quadratic model using elevation as a covariate for

temperature interpolation and a quadratic but non-

covariate model for solar radiation. Although desig-

nating the distance to the coastline as a covariate could

help to obtain a lower error, it also led to an unusual

pattern in Northwest China (figure S2). Therefore, we

selected quadratic but non-covariate model for pre-

cipitation interpolation in practice. Elevation data

used for spatial interpolation were provided by

CGIAR-CSI (http://srtm.csi.cgiar.org/).

GIMMSNDVI data with high temporal (15 d) and

spatial (8 km or 0.083°) resolution have been widely

used for monitoring terrestrial vegetation activity

(Beck and Goetz 2011, Li et al 2014). In this study, we

applied the maximum value composition method to

denoise the dataset and obtained monthly data

between 1982 and 2015 (Holben 1986).

Using the above data, mean annual NPP values for

each pixel derived from CASA model were highly con-

sistent with those of theMOD17A3 dataset (R2=0.70,
p<0.01, figure S3(a)). In addition, annual averages of

the two datasets were quite synchronous (r=0.684,

p<0.01) (figure S3(b)). Therefore, the estimation in

this study was relatively reliable and able to accurately

depict the spatiotemporal changes ofNPP inChina.

2.3.Data analyses

2.3.1. Piecewise regressionmodel

Under the influence of climate change and human

activity, ordinary linear regressionmodel (equation (4))

is not adequate to describe the change in long time

series vegetation activity (Peng et al 2011, Piao et al

2011). Therefore, we introduced the piecewise regres-

sionmodel with a piecewise point to identify the phasic

change features ofNPP.Unlike the application scenario

for which the model was first proposed (Toms and

Lesperance 2003), changes in NPP may not continue

(Liang et al 2015), so we deformed the model as shown

in equation (5)

b b e= + ´ + ( )y t , 40 1

b b e a
b b e a

=
+ ´ +
+ ´ + >

⎧
⎨
⎩

( )y
t t

t t
, 5

2 3

4 5

where y is annual or seasonal NPP; t represents for the

year; ε is an error term; α is the piecewise point or the

SHY of the NPP trend in our case; β1 in equation (4) is

the average annual increment ofNPP during the entire

study period; β3 and β5 in equation (5) are NPP trends

before and after the SHY, respectively; β0, β2 and β4
are constant terms.

The Akaike information criterion (AIC), which

comprehensively reflects fitting error and the number

of parameters, was employed to compare the perfor-

mances of the above twomodels (equation (6))

= ´ + ´ + ´
´ + - -

( )

( ) ( ) ( )

/

/

n n k k

k n k

AIC log RSS 2 2

1 1 , 6

where RSS is the residual sum of squares; n is the

sequence length; k is the number of parameters, which

equal to 2 and 5 for equations (4) and (5) respectively.

Burnham and Anderson (2002) noted that the dif-

ference between AICs (d = -AIC AIC AIC1 2) and

the threshold of−2 can be used to choose the better of

two models. Specifically, in this study, we used piece-

wise regression formodel 1 and ordinary linear regres-

sion for model 2. Accordingly, d -AIC 2 implied

that the piecewise regression model was better and

there was a significant change in NPP trend. While

d > -AIC 2 suggested that there was no significant

difference in theNPP trend before and after the SHY.

2.3.2.Multiple regressionmodel

Taking temperature, precipitation and solar radiation

as inputs, multiple linear regression model can com-

mendably simulate changes in NPP in China (Wang

et al 2017). Thus, equations (7) and (8)were applied to

evaluate the independent impacts of these variables on

NPP trends (He et al 2019)

b b b b e= + ´ + ´ + ´ +
( )

X X XNPP ,

7
C T T P P S S

b= ´ =( ) ( )/C d X dt i T P S, , , 8i i i

where XT, XP and XS are sequences of temperature,

precipitation and solar radiation respectively; βT, βP
and βS are regression coefficients corresponding to

three climatic factors; βC is a constant term; ε is an

error term; t represents for the year;Ci is the derivative

of the product term with respect to time and denotes

the trend of NPP which is directly affected by a certain

variable. It is noteworthy that CT (CP, CS) is usually

expressed as the contribution of temperature (precipi-

tation, solar radiation) to theNPP trend in this study.

The CASAmodel and data analyses were all imple-

mentedwith R (R core team2019).

3. Results

3.1. NPP trends at the national scale

The mean annual NPP from 1982 to 2015 was 2530

TgC in China. During the entire study period, the

annual NPP significantly increased (R2=0.68,

p<0.01), with a mean annual increment of 12.63

TgC, or an increase rate of 0.5% (figure 1(a)). Because

non-evergreen vegetation, whose NPP was close to

zero in winter (December–February), occupies most

of China’s landmass, we concentrated only on the

dynamics of vegetation NPP during the growing

season (figures 1(b)–(d)). The mean annual NPP in

spring, summer and autumn were 550 TgC (21.7% of

annual value), 1279 TgC (50.4%) and 543 TgC

(21.4%) respectively. Over the 34 years, NPP in all

three seasons increased significantly (p<0.01).
Spring NPP had the largest growth rate (0.83%),

3
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followed by that of autumn (0.49%) and sum-

mer (0.30%).

3.2. Phasic changes inNPP at the national scale

The results of piecewise regression indicated that there

was a significant change in the trend of annual NPP

( d -AIC 2). The mean annual increment decreased

from 24.74 to 15.06 TgC yr−1 in 1998 (figure 1(a)). At

the seasonal scale, significant SHYs were also found in

summer and autumn. Before and after 1997, summer

NPP increased rapidly by 11.98 TgC yr−1 and then

increased slowly by 5.43 TgC yr−1. A sudden change

occurred in 1992, when the previous decreasing trend

(−1.68 TgC yr−1) of autumn NPP reversed to an

increasing trend (1.60 TgC yr−1). Moreover, the shift

in spring NPP trend appeared in 1998, but there was a

significant difference in trend values before and after

the SHY.

3.3. Spatial patterns of phasic changes inNPP

From 1982 to 2015, significant SHYs of annual NPP

were identified in 63.3% of the country. SHYs in the

Tibetan Plateau appeared early, distributed between

1992 and 1995, while those in the temperate continen-

tal region occurred relatively late, mostly after 2000

(figure 2(a)). Furthermore, the changes in the magni-

tude of NPP trends also varied from different regions.

NPP growth was accelerated in over 60% of the total

area in both the temperate continental region and the

subtropical–tropical region, whereas the proportion

was 48.8% in the temperature monsoonal region and

51.0% in the Tibetan Plateau (figure 2(b)).

As the largest component of annual NPP, change

features of summer NPP were similar to those of the

annual value. More precisely, the acceleration of NPP

growth was mainly concentrated in the boundary

between the temperate continental region and the

temperate monsoonal region as well as some parts of

southern China. The regions with reduced growth

rates after SHYs were centered in northeast and south-

west China (figures 2(a), (b), 3(c), (d)). Although SHYs

of summer and autumn NPP were different from

those of the annual NPP, the spatial distribution of the

regions where NPP growth was accelerated was highly

consistent with the annual situation. Moreover, it was

also noteworthy that the trends of autumn NPP were

increased after SHYs in some parts of northeast and

southwest China (figures 3(a), (b), (e), (f)). More

detailed statistical results of phasic change features in

four regions can be found in table S2.

Figure 1.Changes in (a) annual and (b)–(d) seasonalNPPs between 1982 and 2015 inChina’s terrestrial ecosystems. At the top of each
subplot, the label represents for the shifting year (SHY), and * indicates that therewas a significant change in theNPP trend
(δAIC�−2).
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4.Discussion

4.1. Climate drivers of changes inNPP trends at the

national scale

Our results confirmed the negative effect of the

warming hiatus on NPP growth (He et al 2019). SHYs

of annual, spring and summer NPPs all appeared in

1997 or 1998, which is similar to the time when global

average temperature reached the peak (Easterling

et al 2000, Karl et al 2000). Furthermore, the growth

rate of annual temperature in China declined from

0.056 °C yr−1 before 1998 to 0.009 °C yr−1, and the

NPP trend directly attributed to temperature changed

from 9.429 to 1.004 TgC yr−1 in the meantime, which

accounted for the largest part of the trend change

(tables 1, 2).

In contrast to temperature, China’s annual, spring

and autumn precipitation increased to varying degrees

after SHYs, which created conditions for the accelera-

tion of NPP growth. In autumn, especially, the pre-

cipitation trend increased from−3.131mm yr−1 before

1992 to 0.797mm yr−1, and its contribution increased

synchronously from −1.928 to 0.635 TgC yr−1, which

was up to 78.2% of NPP trend change. In contrast, pre-

cipitation, whose contribution was the largest among

three climatic factors, was proven to be the main cause

of decelerated summerNPPgrowth (tables 1, 2).

Some studies have shown that the increase in solar

radiation can aggravate the water stress on vegetation

growth in arid areas (Han et al 2012). However, once

the influence of temperature was removed statistically,

vegetation NPP typically had positive correlation with

solar radiation (Wang et al 2017). In our case, annual

radiation at the national scale increased by 27.252

MJ yr−1 before 1998 and by 6.322MJ yr−1 afterwards,

whichmade it another important factor, in addition to

temperature, slowing down the annual NPP growth.

Moreover, radiation also played a prominent role in

shifting the trend of autumn NPP, with its contrib-

ution accounting for 28.9% of the value, second only

to precipitation (tables 1, 2).

4.2. Regional difference of climate-relatedNPP

phasic changes

Summarizing pixel-level results of multiple regression

by region, we foundmarked spatiotemporal differences

in the response of NPP trends to climatic factors

(figures 4, 5). Thewarming hiatuswas themain cause of

the stalled annual NPP trend in all regions except for

the Tibetan Plateau, where the proportion and ampl-

itudeof the reduction in temperature contributionwere

both at high levels (figure 4(a)). The trends of annual

NPP were more sensitive to precipitation variation in

the temperate continental region and the temperate

monsoonal region, with the proportions of positive

changes in bothprecipitation trend and its contribution

reaching to 34.2% and 67.5%, respectively. In contrast,

such response was relatively weak in the subtropical–

tropical monsoonal region (figure 4(b)). In addition,

our results indicated that solar radiation was the

determinant of annual NPP change in the subtropical–

tropical monsoonal region and the Tibetan Plateau

because the proportions of changes with the same

direction in trend and contribution were the highest

among all three factors (figure 4(c)).

Due to the differences in climatic conditions, NPP

trend also had some seasonal characteristics in

response to the changes in various factors (figure 5).

Warming can advance the onset and delay the end of

the growing season in cold areas, increasing NPP

(Myneni et al 1997, Richardson et al 2010). For this

reason, in the Tibetan Plateau, the region where vege-

tation growth is chronically restricted by temperature,

the proportion of the decreased NPP trend caused by

the warming hiatus in spring and summer was highest

among all regions (figures 5(a), (d)). The high values of

Figure 2.The spatial distribution of (a) the SHY and (b) the difference inNPP trend (δTrend) before and after the SHY in annualNPP.
Roman numerals on themaps represent the temperate continental region (I), the temperatemonsoonal region (II), the subtropical–
tropical region (III) and the Tibetan Plateau (IV) for different climatic regions. The insertmap infigure 2(a) showswhether the change
inNPP trend is significant (blue) or not (yellow). All thesemarkers apply to the following figures.
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this proportion in the temperate monsoonal region

during spring and summer as well as in the sub-

tropical–tropical monsoonal region during summer

also implied that the warming hiatus indirectly influ-

enced the change in the NPP trend by regulating the

length of the growing season (figures 5(a), (d), (g)).

However, warming hiatus was found to facilitate sum-

mer NPP growth in two monsoonal regions, for the

regions with negative changes in temperature trend

and positive changes in contribution accounted for

35.8% and 37.5% of the total areas respectively

(figure 5(d)). This suggested that the warming

hiatus could partially alleviate the inhibition of vegeta-

tion growth caused by summer drought (Zhao

andRunning 2010). It is noteworthy that in the tempe-

rate continental region where vegetation growth is

theoretically susceptible to water, the proportion of

negative changes in both summer temperature trend

and contribution remained considerable (56.9%)

(figure 5(d)). The reasons for this are two-fold. First,

the elevation of this area is high, and vegetation growth

is still mainly limited by temperature. Second, the ris-

ing temperature may increase the amount of water

available, as glacier melting is a key source of water

Figure 3.The spatial distribution of (a), (c) and (e) the SHY and (b), (d), and (f) the difference inNPP trend (δTrend) before and after
the SHY in seasonalNPP.
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other than precipitation in this region (Barnett et al

2005, Zhang et al 2016).

The regional scale analysis results showed that the

increase in autumn precipitation in recent years was

mainly caused by the strengthening of the East Asian

monsoon (figure 5(h)), which was consistent with

numerous predictions based on climate models (Bao

2012, IPCC 2013). Increased monsoonal precipitation

had become the most important factor triggering the

acceleration of autumn NPP growth in Eastern China.

The proportion of positive changes in both trend and

contribution was up to 68.8% in the subtropical–tropi-

cal monsoonal region and was 62.5% in the temperate

monsoonal region (figure 5(h)). Precipitation is the key

factor limiting photosynthesis in the growing season

(Poulter et al 2014, Ahlström et al 2015). Moderate

increases in precipitation can promote vegetation

growth. While excess rainfall, on the one hand, may

cause water-logging, resulting in a severe oxygen defi-

ciency in the root zone and the decline in NPP, and on

the other hand, it may indirectly affect carbon seques-

tration of plants by weakening solar radiation (Perata

et al 2011, Liu et al 2018). Therefore, in the subtropical–

tropicalmonsoonal region with abundant rainfall, NPP

trends in spring and summer were not sensitive to the

change in precipitation, and the proportions of oppo-

site changes in trend and contribution were also larger

than that in autumn (figures 5(b), (e), (h)). However,

although the relationships between precipitation trend

and contribution in spring and summer were con-

sistent in this region, their causes were different

(figures 5(b), (e)). Under the influence of Indian Ocean

monsoon, spring precipitation accounts for a small part

of the annual total in southwest China (Yu et al 2018).

Table 2.Contributions of temperature (TEM), precipitation (PRE) and solar radiation (SOL) toNPP trend before and after
SHYs inChina, together with the proportion of theNPP trend change attributed to each of these components (the change in
contribution divided by the change ofNPP trend).

Contributions before SHY

(TgC yr−1)

Contributions after SHY

(TgC yr−1) Proportion (%)

TEM PRE SOL TEM PRE SOL TEM PRE SOL

Year 9.429 0.435 10.639 1.004 1.871 6.277 87.0 −14.8 45.0

Spring 5.250 0.016 1.995 0.603 0.260 1.797 117.1 −6.1 5.0

Summer 1.732 1.925 4.968 0.082 −0.371 3.739 25.2 35.1 18.1

Autumn 0.067 −1.928 −1.454 0.604 0.635 −0.507 16.4 78.2 28.9

Figure 4.The impacts of (a) temperature, (b) precipitation and (c) solar radiation on the trend changes of annualNPP ofChina’s
terrestrial ecosystems. In each subplot, the horizontal axis represents the trend difference of a certain climatic factor before and after
the SHY; the vertical axis represents the change in contribution of that climatic factor to theNPP trend; Romannumerals at the top left
corner represent the four different climatic regions; the percentage in red is the proportion falling into a certain quadrant.

Table 1.Trends of temperature (TEM), precipitation (PRE) and solar radiation (SOL) before and after SHYs inChina.

Trends before SHY Trends after SHY

TEM (°C yr−1) PRE (mm yr−1) SOL (MJ yr−1) TEM (°C yr−1) PRE (mm yr−1) SOL (MJ yr−1)

Year 0.056 1.445 27.572 0.009 1.667 6.322

Spring 0.062 0.025 8.778 0.019 0.432 3.050

Summer 0.033 1.946 9.969 0.008 −1.355 2.757

Autumn 0.009 −3.131 −3.830 0.036 0.797 −1.017
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As a result, vegetation growth there is limited by water

in spring and is likely to be inhibited in summer due to

excess precipitation. By comparison, the distribution of

seasonal precipitation is more balanced in southeast

China, where it is controlled by the Pacific monsoon

(Yang and Lau 2004). Thus, vegetation growth in this

regionmay experience a water deficit in summer due to

extensive evaporation.Multiple regression results based

on standardized data fully confirmed the above view-

point. The responses of NPP to increasing precipitation

were exactly opposite in spring and summer (figure S4).

The impacts of solar radiation on vegetation

growth were two-sided. A strong positive correlation

between the changes in solar radiation and contrib-

ution was found in the subtropical–tropical region.

Especially in spring and summer, the contributions of

solar radiation to the NPP trend were much higher

than those of other climatic factors (figures 5(c), (f)).

In contrast, the increase in solar radiation inhibited on

NPP growth in the western part of China, and the

proportions of opposite changes in trend and contrib-

ution were higher than those in the eastern part

(figures 5(c), (f), (i)). Such spatial differences were

probably related to the level of radiation (figure S5).

Under low exposure, the increase in solar radiation has

more of a promoting effect on vegetation growth than

inhibitory effect. However, when the level is high, the

opposite is true.

4.3.Human activity and the changes inNPP trends

In recent years, human activity, mainly in the form of

afforestation and grass planting, is profoundly affect-

ing the carbon sequestration functioning and patterns

of terrestrial ecosystems in China (Fang et al 2014, Lu

et al 2018). Accordingly, the spatial distribution of

several major ecological projects was collected and

used to explore the connection between the imple-

mentation of these projects and the phasic change in

annual NPP (figures S6, S7). The results showed that

the start time of projects was partially consistent with

Figure 5.The impacts of (a), (d) and (g) temperature, (b), (e) and (h) precipitation and (c), (f) and (i) solar radiation on the trend
changes of (a)–(c) spring, (d)–(f) summer and (g)–(i) autumnNPP inChina’s terrestrial ecosystems. For the explanations on the figure
legends, numbers and symbols, seefigure 4.
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SHYs of annual NPP. The regions where the absolute

values of time difference were less than three

accounted for 38.2% of the project area (figure S7(a)).

In addition, the positive proportion and the median

value of NPP trend changes were both higher than

those in other regions (figure S7(b)). Further calcul-

ation showed that the regions with increased NPP

trends after the implementation of projects accounted

for 63.8% of the project area, but only 8.9% of these

relationships were significant (figures S7(c), (d)),

which indicated that these ecological projects played

limited roles in promoting NPP growth. Moreover,

significant stalled trends of NPP in parts of northwest

China also confirmed that unsuitable restoration

projects might harm local vegetation (figures S7(c),

(d)) (Feng et al 2015).

4.4. Analysis of uncertainty

In order to identify climatic or anthropogenic drivers

controlling the changes in the NPP trends, it is

necessary to exclude the effect of the potential incon-

sistency of GIMMS NDVI dataset (Tian et al 2015).

The T-test was carried out to compare the 5-year

average NDVI at the national scale around the year

2000, because the sensor was changed fromAVHRR-2

to AVHRR-3 (figure S8) at around the year. The result

indicated that there was no significant difference

between the two values (t=1.030, p>0.05) and the

dataset was continuous in 2000. We also applied

piecewise regression to the sequence of NDVI, and

found that the SHY appeared in 1990, which was

consistent with the previous study by Peng et al (2011)

and was different from that of NPP (1998) (figures 1,

S8). Therefore, the potential inconsistency of GIMMS

NDVI is likely playing a limited role in triggering the

shifting of NPP, while climate changes and human

activities could be the key factors. Additionally, we

blended different NPP products to verify the stability

of SHY. Using the combined sequence which consists

of CASA NPP (1982–1999) and corrected MODIS

NPP (2000–2014), we found that the SHY of annual

NPP still appeared in 1998 (figure S9). This result also

suggested that spectral data itself didn’t significantly

influence the SHYofNPP.

5. Conclusions

Using piecewise regression and multiple regression

models, we studied the features and causes of phasic

changes in China’s NPP between 1982 and 2015 at

different temporal and spatial scales. Our results

indicated that changes in NPP trends were widespread

and their causes had apparent spatiotemporal hetero-

geneity. Our findings can be summarized as the

following three points. First, the growth of annual,

spring and summer NPP stalled in 1997 and 1998, and

the trend of autumn NPP increased in 1992 at the

national scale. Second, the changes inNPP trends were

more sensitive to the warming hiatus in spring and

autumn, as well as in the temperate monsoonal region

and theTibetanPlateau.While the accelerated growthof

autumnNPP in easternChinawas strongly coupledwith

increased monsoonal precipitation. Finally, although

the starting time of the ecological restoration projects

was partially consistent with the SHYs of NPP, these

projects played limited roles in promotingNPPgrowth.

Although we provided sufficient evidence and sys-

tematic attribution for the changes in the trend of

vegetation NPP in China, the following two limita-

tions still exist in our work: (1) the potential lag

responses of NPP to the climate changes and human

activities were not considered; and (2)we did not eval-

uate the impacts of other global change factors, such as

CO2 enrichment, nitrogen deposition, and air pollu-

tion, on the changes in the NPP trends. More data and

advanced methods should be introduced to the future

study to improve the above deficiencies.
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