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abstract

PURPOSE Lehmann et al have identified four molecular subtypes of triple-negative breast cancer (TNBC)—
basal-like (BL) 1, BL2, mesenchymal (M), and luminal androgen receptor—and an immunomodulatory (IM)
gene expression signature modifier. Our group previously showed that the response of TNBC to neoadjuvant
systemic chemotherapy (NST) differs by molecular subtype, but whether NST affects the subtype was unknown.
Here, we tested the hypothesis that in patients without pathologic complete response, TNBC subtypes can
change after NST. Moreover, in cases with the changed subtype, we determined whether epithelial-to-
mesenchymal transition (EMT) had occurred.

MATERIALS AND METHODS From the Pan-Pacific TNBC Consortium data set containing TNBC patient samples
from four countries, we examined 64 formalin-fixed, paraffin-embedded pairs of matched pre- and post-NST
tumor samples. The TNBC subtype was determined using the TNBCtype-IM assay. We analyzed a partial EMT
gene expression scoring metric using mRNA data.

RESULTS Of the 64 matched pairs, 36 (56%) showed a change in the TNBC subtype after NST. The most
frequent change was from BL1 to M subtypes (38%). No tumors changed from M to BL1. The IM signature was
positive in 14 (22%) patients before NST and eight (12.5%) patients after NST. The EMT score increased after
NST in 28 (78%) of the 36 patients with the changed subtype (v 39% of the 28 patients without change;
P = .002254).

CONCLUSION We report, to our knowledge, for the first time that the TNBC molecular subtype and IM signature
frequently change after NST. Our results also suggest that EMT is promoted by NST. Our findings may lead to
innovative adjuvant therapy strategies in TNBC cases with residual tumor after NST.
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INTRODUCTION

Many studies have elucidated triple-negative breast
cancer (TNBC) heterogeneity.1 For example, Leh-
mann et al used mRNA gene expression profiling to
identify TNBC molecular subtypes. Initially, they
identified six subtypes: basal-like (BL) 1, BL2, mes-
enchymal (M), luminal androgen receptor (LAR),
mesenchymal stem-like, and immunomodulatory
(IM).2 The group’s subsequent study,3 using laser
capture microdissection and histopathologic quanti-
fication, reduced these subtypes to four (BL1, BL2, M,
and LAR). IM status was found to be a modifier of the
other TNBC molecular subtypes4; it was shown to be
primarily driven by tumor-infiltrating lymphocytes and
thus can be used to evaluate a tumor’s immune status.

The four TNBC subtypes can be identified in the
Clinical Laboratory Improvement Amendments envi-
ronment by Oncocyte Corporation (formerly Insight
Genetics; Nashville, TN) using a highly modified lean
version of the TNBCtype algorithm consisting of 101
genes (TNBCtype-IM).

In TNBC, about 30%-40% of patients have been
shown to have a pathologic complete response (pCR)
to current standard neoadjuvant systemic chemo-
therapy (NST). Previous studies have shown strong
associations of pCR with longer overall survival and
event-free survival durations5,6; by contrast, patients
with breast cancer who did not have a pCR had sig-
nificantly shorter survival durations because of higher
relapse rates, especially in the TNBC subpopulation.6,7
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Thus, the approach to non-pCR patients is very important.
Postoperative adjuvant therapy for non-pCR TNBC has
proven to be effective in several clinical trials.8 However, to
establish the optimal adjuvant treatment, we propose that it
is important to know the TNBC molecular subtype of the
residual tumor.

In this study, we investigated TNBC molecular subtypes
before and after NST in patients without pCR to test the
hypothesis that TNBC subtypes can change after NST.
Moreover, in cases with the changed subtype, we deter-
mined whether epithelial-to-mesenchymal transition (EMT)
had occurred because EMT is a malignant phenotype
constituting the first step in the potential metastatic process
of residual tumors.

MATERIALS AND METHODS

Patients and Samples: Pan-Pacific TNBC Consortium

Data Set

Four institutions participated in the study: Department of
Breast Medical Oncology, The University of Texas MD
Anderson Cancer Center, Houston, TX; Department of
Medical Oncology, Chulalongkorn University, Bangkok,
Thailand; Department of Pathology, Asan Medical Center,
University of Ulsan College of Medicine, Seoul, South
Korea; and Department of Breast Surgical Oncology, Showa
University, Tokyo, Japan. We retrospectively collected
patients’ samples and clinical data using the following
criteria: (1) Patients had pathologically diagnosed stage I to
III TNBC and received NST and subsequent surgery be-
tween January 2009 and December 2014. (2) Tumors had
triple-negative status as determined by immunohisto-
chemistry (IHC) or fluorescence in situ hybridization. Es-
trogen receptor and progesterone receptor status was
considered negative if, 1% of cells stained positively IHC.
Human epidermal growth factor receptor 2 status was
considered negative if (a) the IHC result was 0 to +1 or (b)
the IHC result was +2 and fluorescence in situ hybridization

results were negative. (3) Patients did not have pCR after
NST, and both baseline (pretreatment) formalin-fixed,
paraffin-embedded (FFPE) core-needle biopsy speci-
mens and FFPE resection specimens (residual disease)
were available. (4) Clinical data (clinical and pathologic
stage and NST regimens) were available. All samples were
subjected to centralized review, and the presence of tumor
in the samples was confirmed by pathologists from MD
Anderson and Showa University. We collected the following
data from the medical records: patient age, clinical stage,
treatment regimen, nuclear grade, and pathologic infor-
mation for the residual tumor. The median follow-up from
diagnosis was 41 (range 7-133) months.

The study was approved by the ethics committees at Showa
University (number: 2125) and The University of Texas MD
Anderson Cancer Center (number: PA14-0544). A waiver
of informed consent was granted on the basis of the study’s
retrospective nature.

TNBC Subtype Classification (TNBCtype-IM Assay)

The pre- and post-NST pairs of TNBC samples that met our
selection criteria were classified by the TNBC molecular
subtype by Oncocyte Corporation Transcriptome libraries,
which were constructed using a TruSeq RNA Exome Li-
brary Prep Kit (Illumina, San Diego, CA) using 100 ng of
total RNA extracted from FFPE tissue sections according to
the manufacturer’s recommendations. Libraries were se-
quenced on an Illumina NextSeq 500 with 150 paired-end
cycles and a mean of 25 million reads per sample. Tran-
scripts were aligned to the human reference assembly
GRCh37 (Ensembl) using the STAR application
(v. 020201). Assembly and expression quantification were
performed using Cufflinks tools (v. 2.2.1). The resulting
FPKM data for each sample were compiled and analyzed
with the TNBCtype-IM algorithm.4 Samples that were un-
classified were labeled UNS, indicating that the patient’s
TNBC expression pattern did not correlate with a specific
subtype or IM modifier contained within the TNBCtype-IM
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assay; these samples could express a unique and unknown
signature. Additional information about TNBCtype-IM as-
say can be found in the Data Supplement.

EMT Score

We next evaluated whether EMT was accelerated in re-
sidual tumor after primary systemic chemotherapy. We
used the previously described EMT scoring metric devel-
oped by George et al.9 This metric quantifies the EMT
spectrum; it was developed via an iterative method that
ranks candidate gene products on the basis of their ability
to resolve NCI-60 cell line samples with regard to their
respective EMT status. The EMT scoring metric was applied
to transcriptomic data to quantify the extent of EMT-ness on
a scale of 0 (fully epithelial [E]) to 2 (fully M). This scoring
method, on the basis of a set of EMT-relevant predictor
transcripts and a set of normalizers for cross-platform
application, categorizes samples into E, M, or hybrid E/M
phenotypes on the basis of an ordered triple Si = (P_E, P_E/M,
P_M), which represents the probability of group membership
for each of the phenotypes. These probabilities are then
projected on a scale of 0-2: E samples are assigned values
close to 0; M samples, close to 2; and maximally hybrid E/M
samples, close to 1.

Apocrine Status

Apocrine status was assessed using hematoxylin and
eosin–stained slides (pre-NST samples only). We defined
apocrine differentiation as the presence of abundant eo-
sinophilic cytoplasm and large nuclei with prominent nu-
cleoli. Three pathologists each independently reviewed the
case slides and classified them as apocrine and non-
apocrine accordingly.

E-cadherin and Vimentin Status

We assessed E-cadherin and vimentin status by IHC to
evaluate intratumor heterogeneity in regard to EMT fea-
tures. The analysis is described in the Data Supplement,
and the results are shown in the Data Supplement.

Residual Cancer Burden Index

The residual cancer burden (RCB) index was assessed for
all cases. The RCB index was developed by Symmans et al
to evaluate the RCB after NST.10,11 The index score is
derived from the largest area and cellularity of residual
invasive primary cancer, the number of involved lymph
nodes, and the size of largest nodal metastasis. The RCB
index was scored as 0 for pathologic complete response
(stage yp-T0/is, ypN0), and residual disease was catego-
rized into three RCB index classes—RCB-I (minimal), RCB-
II (moderate), and RCB-III (extensive)—on the basis of
predefined cut points of 1.36 and 3.28 index scores.

Statistical Analysis

Statistical analyses were performed using R software
(v 3.5.1). The associations between features were analyzed
using the Fisher’s exact test.

RESULTS

Patients and Samples

We collected 78 paired archived pre- and post-NST
samples from patients in the Pan-Pacific TNBC Consor-
tium data set who had residual tumor after NST. Of those,
eight pre-NST samples and six post-NST samples did not
pass quality control (because of inadequate sample quality
or insufficient sequencing coverage depth) for TNBCtype-
IM classification. The remaining 64 matched pairs were
analyzed.

The median patient age was 53 years, and 52% of patients
were premenopausal at diagnosis (Table 1). Among the 64
patients, 20% had clinical T4 disease and 53% had lymph
node metastasis. Sixty-nine percent of patients received
anthracycline and taxane regimens, and 16% of patients
received anthracycline alone.

Chemotherapy Impact on TNBC Subtype Classification

For the 64 matched pairs of samples, the distributions of
TNBC subtypes in pre- and post-NST samples are shown in
Figures 1 and 2. Compared with previous reports in TNBC
(pCR and non-pCR),12-14 there were fewer patients with the
BL1 subtype and fewer IM-positive patients; this result is
expected in this non-pCR population because the BL1
subtype and IM positivity are known to be predictivemarkers
of pCR. However, the most common pre-NST subtype was
still BL1, 45% (29 of 64) of patients, followed by LAR, 19%
(12 of 64) of patients (Fig 1).

Of the 64 patients, 36 (56%) showed a change in the TNBC
subtype after NST, and the distribution of TNBC subtypes
changed (Fig 3). The most frequent change was from BL1,
which was the dominant subtype before NST, to M, which
was the dominant subtype after NST. By contrast, no tu-
mors changed from M to BL1 subtypes. After NST, 14% (9
of 64) of patients were classified as the BL1 subtype (v 45%
before NST) and 31% (20 of 64) were classified as M
(v 16% before NST).

Figure 3 shows the distribution of post-NST subtypes for
each pre-NST subtype. Among the 29 tumors that were of
BL1 subtype before NST, 31% (9 of 29) did not change
subtype after NST and 38% (11 of 29) converted to M
subtype. Among the five tumors that were of BL2 subtype
before NST, two tumors did not change subtype after NST,
two tumors converted to LAR subtype, and one tumor
converted to M subtype. Among the 10 tumors that were
of M subtype before NST, six tumors did not change
subtype after NST, one tumor converted to BL2, one tumor
converted to LAR, and the other two tumors were classified
as UNS. Among the 12 tumors that were of LAR subtype
before NST, 59% (7 of 12) did not change subtype after
NST and 33% (4 of 12) converted to BL2.

Pre-NST IM signature positivity strongly correlated with the
BL1 subtype; 86% of IM signature–positive samples
belonged to the BL1 group (Data Supplement). Fourteen
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TABLE 1. Patient Characteristics at Diagnosis

Characteristic Categories All (N = 64)

Pre-NST TNBCtype-IM Result, No. (%)

PBL1 (n = 29) BL2 (n = 5) M (n = 10) LAR (n = 12) UNS (n = 8)

Age, years Median 53 47 49 51.5 59 54.5 .653

Menopausal status Premenopausal 33 16 (55) 4 (80) 5 (50) 4 (33) 4 (50) .361

Postmenopausal 31 13 (45) 1 (20) 5 (50) 8 (67) 4 (50)

Clinical T classification T1 5 3 (10) 0 (0) 1 (10) 1 (8.5) 0 (0) .594

T2 39 18 (62) 4 (80) 4 (40) 10 (83) 3 (37.5)

T3 7 4 (14) 0 (0) 2 (20) 1 (8.5) 0 (0)

T4 13 4 (14) 1 (20) 3 (30) 0 (0) 5 (62.5)

Clinical N status Positive 34 19 (66) 2 (40) 4 (40) 3 (25) 6 (75) .097

Negative 30 10 (34) 3 (60) 6 (60) 9 (75) 2 (25)

Stage I 5 3 (10) 0 (0) 1 (10) 1 (8.5) 0 (0) .536

II 36 15 (52) 4 (80) 6 (60) 10 (83) 1 (12.5)

III 23 11 (38) 1 (20) 3 (30) 1 (8.5) 7 (87.5)

Nuclear grade 1 2 0 (0) 0 (0) 1 (10) 1 (8.5) 0 (0) .205

2 16 10 (34) 0 (0) 1 (10) 2 (17) 3 (37.5)

3 44 18 (63) 5 (100) 8 (80) 8 (66) 5 (62.5)

Unknown 2 1 (3) 0 (0) 0 (0) 1 (8.5) 0 (0)

Histology Invasive ductal 55 26 (90) 5 (100) 8 (80) 9 (75) 7 (87.5) .529

Others 9 3 (10) 0 (0) 2 (20) 3 (25) 1 (12.5)

Apocrine status (H&E) Positive 16 6 (21) 0 (0) 1 (10) 9 (75) 0 (0) , .001

Negative 48 23 (79) 5 (100) 9 (90) 3 (25) 8 (100)

Primary systemic therapy A + T 44 20 (69) 3 (60) 9 (90) 7 (58) 5 (62.5) .763

A alone 10 4 (14) 1 (20) 1 (10) 1 (8.5) 3 (37.5)

T alone 7 3 (10) 1 (20) 0 (0) 3 (25) 0 (0)

Others 3 2 (7) 0 (0) 0 (0) 1 (8.5) 0 (0)

Surgery Mastectomy 41 19 (66) 3 (60) 4 (40) 7 (58) 8 (100) .558

Partial resection 23 10 (34) 2 (40) 6 (60) 5 (42) 0 (0)

Pathologic T classification T0 4 2 (7) 0 (0) 1 (10) 0 (0) 1 (12.5) .673

T1 24 11 (38) 2 (40) 2 (20) 6 (50) 3 (37.5)

T2 27 13 (45) 2 (40) 5 (50) 6 (50) 1 (12.5)

T3 3 1 (3) 1 (20) 0 (0) 0 (0) 1 (12.5)

T4 6 2 (7) 0 (0) 2 (20) 0 (0) 2 (25)

Pathologic N status Positive 26 13 (45) 1 (20) 2 (20) 6 (50) 4 (50) .376

Negative 38 16 (55) 4 (80) 8 (80) 6 (50) 4 (50)

Pathologic stage I 19 10 (34) 2 (40) 1 (10) 4 (33) 2 (25) .47

II 32 12 (42) 3 (60) 7 (70) 8 (67) 2 (25)

III 12 6 (21) 0 (0) 2 (20) 0 (0) 4 (50)

IV 1 1 (3) 0 (0) 0 (0) 0 (0) 0 (0)

Vascular invasion Positive 6 2 (7) 1 (20) 0 (0) 1 (8.5) 2 (25) .572

Negative 46 21 (72) 3 (60) 8 (80) 10 (83) 4 (50)

Unknown 12 6 (21) 1 (20) 2 (20) 1 (8.5) 2 (25)

Lymphatic invasion Positive 14 6 (21) 2 (40) 2 (20) 2 (17) 2 (25) .799

Negative 45 20 (69) 3 (60) 8 (80) 10 (83) 4 (50)

Unknown 5 3 (10) 0 (0) 0 (0) 0 (0) 2 (25)

(Continued on following page)
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(22%) patients had a positive IM signature in their pre-NST
samples, and eight (12.5%) had a positive IM signature in
their post-NST samples. Nine patients converted to IM-
negative status, and three patients acquired IM-positive
status after NST (Data Supplement).

To assess how morphological findings correlate with molec-
ular subtypes, we examined hematoxylin and eosin–stained
pre-NST tumor samples. Apocrine differentiation correlated
with the LAR subtype; 75% (9 of 12) of LAR patients showed
apocrine differentiation. In addition, 21% (6 of 29) of BL1
patients showed apocrine differentiation (Table 1).

Chemotherapy Impact on EMT Score

An increased EMT score after NST was seen in 78% (28 of
36) of patients whose subtype changed, compared with

only 39% (11 of 28) of patients whose subtype did not
change (P = .00225; Table 2). Among the patients with a
subtype change from BL1 to M, 82% (9 of 11) of patients
had increased EMT scores and one patient had a de-
creased EMT score (Data Supplement).

Correlation Between the Subtype Change and the

RCB Score

RCB was evaluable for all samples. Subtype changes were
observed regardless of the residual tumor volume, but were
more pronounced in tumors with a low residual tumor
volume (Table 3).

Correlation Between the EMT Score and the RCB Score

We also determined the correlation between the EMT score
and the RCB score to eliminate the possibility that in tumors
with a low residual tumor volume, more stromal compo-
nents were included in the analysis, which may increase
EMT. There was no statistically significant difference be-
tween these scores (Data Supplement).

DISCUSSION

To our knowledge, this is the first report that NST can
change the molecular subtype of the residual tumor in
TNBC. We found that the TNBC molecular subtype and IM
signature frequently changed after NST. In addition, we
showed that EMT was promoted by chemotherapy as
measured by a partial EMT gene expression scoring metric.
Our findings may lead to innovative adjuvant therapy
strategies in TNBCs that do not achieve pCR after NST.
Moreover, although the number of samples was small, we
demonstrated that there are occasions in which chemo-
therapy may induce an IM signature, which could expand
treatment options with immunotherapies for non-pCR
patients.

Evidence has shown that cancer treatments affect the
tumor biology and can lead to acquired epigenetic changes
and mutations, some of which cause resistance.15-17

The risk of relapse is higher in patients with pathologic
residual invasive disease after NST than in patients with

TABLE 1. Patient Characteristics at Diagnosis (Continued)

Characteristic Categories All (N = 64)

Pre-NST TNBCtype-IM Result, No. (%)

PBL1 (n = 29) BL2 (n = 5) M (n = 10) LAR (n = 12) UNS (n = 8)

Adjuvant chemotherapy Yes 11 4 (14) 1 (20) 2 (20) 1 (8.5) 3 (37.5) .79

No 53 25 (86) 4 (80) 8 (80) 11 (91.5) 5 (62.5)

Adjuvant radiation Yes 49 22 (76) 5 (100) 6 (60) 8 (67) 8 (100) .445

No 15 7 (24) 0 (0) 4 (40) 4 (33) 0 (0)

Institution location Japan 26 10 (34) 2 (40) 4 (40) 10 (83) 0 (0) .109

United States 15 8 (28) 0 (0) 3 (30) 0 (0) 4 (50)

Thailand 16 8 (28) 2 (40) 1 (10) 1 (8.5) 4 (50)

Korea 7 3 (10) 1 (20) 2 (20) 1 (8.5) 0 (0)

NOTE. Data represent No. of patients unless otherwise specified. Abbreviations: A, anthracycline; BL, basal-like; H&E, hematoxylin and eosin; IM,
immunomodulatory; LAR, luminal androgen receptor; M, mesenchymal; T, taxane; TNBC, triple-negative breast cancer; UNS, unstable.

BL1 BL2 M LAR UNS

BL2
5 of 64
(8%)

M
10 of 64
(16%)

BL1
29 of 64
(45%)

LAR
12 of 64
(19%)

UNS
8 of 64
(12%)

FIG 1. Distribution of triple-negative breast cancer subtypes
before NST (core needle samples) for patients who did not have
pathologic complete response (n = 64). BL, basal-like; LAR,
luminal androgen receptor; M, mesenchymal; UNS, unstable.
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pCR.6 Although it has been unclear whether there is a
survival benefit from postoperative systemic chemotherapy
after NST, several studies recently reported that adjuvant
therapy for the non-pCR population increased disease-free
and overall survival.8,18 According to these results, adjuvant
therapies are promising treatment options for patients with
breast cancer who have residual tumor after NST. To seek
optimal adjuvant treatments, we must evaluate the biology

of the residual tumor and elucidate the effect of NST. Our
study is a valuable first step in revealing the effect of NST in
inducing molecular subtype changes in more than 50% of
patients; mRNA profiling analysis after NST may suggest
the optimal adjuvant treatment for the individual patient.
Moreover, this study showed that unlike intrinsic
subtypes,19 TNBCtype-IM dynamically captured changes
in molecular biology through temporal mRNA profiling.

On the other hand, intratumor heterogeneity is attracting
attention because of the development of the technique of
genome-wide profiling, which distinguishes single tumor
cells and circulating tumor cells.20-22 Intratumor hetero-
geneity in breast cancers has been confirmed genetically
and epigenetically in recent genome profiling reports.22

Thus, the possibility exists that pre-NST samples may
not represent the characteristics of the tumor as a whole
because of the small region of tumor tissue that is obtained
through a core needle biopsy.

RCB was evaluable for all samples. As we expected, a low
RCB-I was more common in patients with subtype change
(9 of 36 [25%]) than in patients without subtype change
(1 of 28 [3.5%]; Table 3). However, focusing on RCB-II and
RCB-III, which reflect a moderate or extensive amount of
residual tumor, 50% (27 of 54) changed subtype and the
most frequent change was from BL1 to M subtypes (37%).
Thus, the subtype changed even in cases in which the
effect of chemotherapy was poor and high RCB remained.

Confirming our hypothesis, certain TNBC subtypes were
found to have changed after NST. In fact, more patients
had the M and BL2 subtypes after NST. Consistent with
our previous knowledge of populations with pCR, in which

BL1 BL2 M LAR UNS

LAR
12 of 64
(19%)

UNS
12 of 64
(19%)

BL1
9 of 64
(14%)

BL2
11 of 64
(17%)

M
20 of 64
(31%)

FIG 2. Distribution of triple-negative breast cancer subtypes
after NST (surgical samples) for patients who did not have
pathologic complete response (n = 64). BL, basal-like; LAR,
luminal androgen receptor; M, mesenchymal; UNS, unstable.

BL1

BL1 M BL2 LAR UNS

31% 38% 7% 7% 17%

BL2

BL2 LAR M

40% 40% 20%

M

M BL2 LAR UNS

60% 10% 10% 20%

LAR

BL2LAR UNS

59% 33% 8%

UNS

UNS BL2 M

50% 25% 25%

Before (BL1)

After

Before (BL2)

Before (M)

After

After

After

After

Before (LAR)

Before (UNS)

FIG 3. Post-NST triple-negative breast
cancer subtypes for patients in each
pre-NST subtype group. BL, basal-
like; LAR, luminal androgen receptor;
M, mesenchymal; UNS, unstable.
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80% of patients had the BL1 subtype,23 the non-pCR
population was under-represented in the BL1 subtype
(45%) and had fewer IM-positive samples because the
BL1 subtype and IM positivity are predictive markers for
achieving pCR.12,13,23,24

The most frequent subtype change was from the BL1 to
the M subtype (38% after NST), and no tumors did the
opposite. This subtype is characterized by genes involved
in motility, the extracellular matrix, cell differentiation
pathways, and EMT.23 This subtype is also enriched in gene
expression related to cell motility (the Rho pathway), cel-
lular differentiation, and growth pathways (the anaplastic
lymphoma kinase pathway, transforming growth factor beta
signaling, and the Wnt/β-catenin pathway). This finding
suggests that either chemotherapy accelerates the devel-
opment of M features and EMT or there was heterogeneity
of cell types within tumors and selective resistance and
outgrowth of M cells during NST.

To clarify the validity of this hypothesis, we evaluated EMT
using a gene expression scoring metric.9 EMT is a cellular
process involving a multitude of phenotypic and morpho-
logic changes that drive increased migratory and invasive
potential.9 It has been implicated in acceleration of me-
tastasis, acquisition of tumor initiation potential, resistance
to anoikis, refractory response to chemotherapy, and the
ability to evade the immune system.25-27 Recent studies
have shown that cells need not undergo complete EMT for
dissemination and that cells in one or more hybrid E/M
phenotypes may be more metastatic than those that have
undergone complete EMT.28 Thus, quantification of EMT
status in a given sample can indicate metastatic aggres-
siveness. We evaluated the EMT score to infer whether the
change in subtype was acquired because of the effects of
chemotherapy. Although the small number of patients
prevented determining the precise relationship with the
EMT score for each subtype, the increased EMT score after
NST in the patients with subtype changes (P = .00225)
suggests that EMT is promoted by chemotherapy in at least

some of the population. This result provides support that
subtype changes occurred not only because of intratumor
heterogeneity.

The limitations of this study include the small number of
patients; although we created a pan-Pacific data set, the
number of patients with each molecular subtype was
limited and the patients had varying characteristics be-
cause of the retrospective nature of the study. For example,
there were several NST regimens although the majority of
patients received anthracycline and taxane regimens.
Because of these diverse characteristics, it was difficult to
measure clinically relevant outcomes, such as overall
survival and disease-free survival. A further limitation was
that the institutions had different specimen storage
conditions.

Our findings suggest that when considering adjuvant
treatment for non-pCR patients, the biology of the residual
tumor should be considered and residual tumor might have
more M properties than the pretreatment TNBC. Thus,
targeting M features and EMT has potential as optimal
therapy for non-pCR patients. A number of EMT targets
have potential. These include Ras-mitogen–activated pro-
tein kinase activation, which cooperates to promote EMT
and metastasis29 and Hedgehog signaling, which regulates
EMT.30 Phosphatidylinositol 3-kinase has also been sug-
gested to trigger EMT.31-33 EMT is regulated by transforming
growth factor beta signaling, which promotes tumor growth,
invasion, and evasion of immune surveillance.34,35 Similarly,
FGF-2 induces EMT and is another druggable target.36-38

Inhibitors of these growth factors may have potential as
targeted therapies for non-pCR patients.

In summary, we found that the TNBC molecular subtype
and IM signature frequently changed in patients with re-
sidual disease after NST. In addition, we provide evidence
suggesting that EMT is promoted by chemotherapy in some
patients. Further investigation is necessary to determine
whether the cause of the subtype change is intratumor

TABLE 2. Correlation Between the Subtype Change and the EMT Score
Status After NST Increased EMT Score Decreased or Equal EMT Score P

Same subtype (n = 28) 11 17 .00225

Change in subtype (n = 36) 28 8

Abbreviation: EMT, epithelial-to-mesenchymal transition.

TABLE 3. Correlation Between the Subtype Change and the RCB Score
Status After NST RCB-I (n = 10) RCB-II (n = 39) RCB-III (n = 15) P

Same subtype (n = 28) 1 17 10 .019

Change in subtype (n = 36) 9 22 5

Status After NST RCB-I (n = 10) RCB-II/RCB-III (n = 54) P

Same subtype (n = 28) 1 27 .034

Change in subtype (n = 36) 9 27

Abbreviation: RCB, residual cancer burden.
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heterogeneity or acquired biologic changes. Our findings
may lead to innovative adjuvant chemotherapy strategies in
TNBCs that do not show pCR after NST. Our findings
support re-evaluation of residual tumor in future clinical
trials for non-PCR patients. Furthermore, since the most
frequent subtype change was from the BL1 to the M

subtype and there were no cases of the reverse, targeting M
features and EMT might have potential for the optimal
treatment of non-pCR patients. Finally, re-evaluating im-
mune status (ie, the IM signature) may expand the op-
portunity to use immunotherapies. These findings warrant
independent confirmation in future studies.
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