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Abstract: Since the 21st century, China has experienced rapid development, and the spatial and
temporal changes in vegetation cover have become increasingly significant. Southern China is a
representative region for human activities, climate change, and vegetation change, but the current
human understanding of the interactions between vegetation and its influencing factors is still very
limited. In our study, we use NDVI as the vegetation greenness data, land cover data, temperature,
precipitation, downgradient shortwave radiation, and CO2 data to investigate the interrelationship
among vegetation, climate change, and human activities in southern China. The changes and their
consistency were studied by trend analysis and Hurst exponent analysis. Then, the contribution of
each influencing factor from 2001 to 2020 was quantified by random forest. The results showed that the
vegetation in southern China showed an overall rising trend, and areas with a continuous changing
trend were concentrated in the Pearl River Delta, western Guangdong, and eastern Guangdong, with
a growth rate of 0.02∼0.04%. The vegetation in northern Guangdong did not change significantly. The
main factor of NDVI spatial variation in southern China is the land-use factor, accounting for 79.4%
of the variation, while climate factors produce further differences. The contributions and lagged
effects of NDVI factors on different land-use types and the lagged effects of different climate factors
are different and are related to the climate and vegetation background in Sourthern China. Our study
is useful in estimating the contribution of NDVI change by each considered factor and formulating
environmentally friendly regional development strategies and promoting human–land harmony.

Keywords: southern China; NDVI; vegetation variation; factor contribution

1. Introduction

Changes in vegetation greenness are important indicators of ecosystem stability and
have far-reaching effects on socioeconomics, as well as agriculture [1]. As one of the most
active parts of the surface system, vegetation is influenced by CO2, solar radiation, atmo-
spheric circulation, human activities, and other factors [2]. The changes in the influencing
factors are reflected not only in the vegetation greenness but also in the various indicators
of vegetation change in different trends, such as the influence on the mesoscale atmospheric
circulation in the local area through the evapotranspiration mechanism [2]. The influence on
the local water cycle occurs through the interception of surface and subsurface runoff [3,4].
Some studies have shown that the recovery of spring temperature in the context of global
warming enhances the intensity of soil moisture acquisition by vegetation, which might
potentially cause more frequent seasonal droughts in the future [5]. The productivity
changes in vegetation such as crops also play an important role in the stability of local
agricultural activities; for example, it has been shown that the increase in temperature
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has a correlative effect on the reduction in crop yield in humid areas [6]. Therefore, the
study of changes in vegetation greenness contributes to an in-depth understanding of the
mechanisms of the action of phenological factors in the region.

A large number of studies have attributed and quantified the influencing factors of
vegetation greenness and the intensity of influence, which are mainly classified into three
types: natural factors, anthropogenic factors, and mixed natural and anthropogenic effects.
Among the natural factors, the main research objects in recent years have been climate
factors such as precipitation and sunshine duration [7] and vapor pressure deficit (VPD) [8];
research on the influence of anthropogenic factors focuses on the influence of governmental
decisions related to vegetation cover in the study area [9]. Moreover, the integrated
influence of anthropogenic and natural factors on vegetation growth is explored, especially
focusing on the contribution of carbon emission behavior in the natural carbon cycle system,
such as the different degrees of influence of human and natural factors on vegetation growth
at different scales [10] and the importance of human ecological restoration measures in
increasing the vegetation cover in climatic transition zones [11]. Several studies have
also highlighted the effects of climate change and different land-use types on vegetation
in more sparsely populated regions [12], providing insights to the relationship between
vegetation and climate change. In the current studies on vegetation, research on the
mechanism of compound influence is concentrated in agro-pastoral transition zones, as
well as ecologically fragile zones, and the influence of human activities on vegetation,
mainly in urban activities, is less studied.

With its complex land-use composition, southern China is a typical area to study the at-
tribution of mixed natural and anthropogenic effects on changes in vegetation greenness. It
is not only a representative region of highly urbanized and rapidly urbanizing clusters [13]
but also a representative region of severe urbanization imbalance, and the development
patterns of the western and eastern regions of southern China, such as population urban-
ization and social urbanization dominated by the northern regions, have certain impacts on
the ecological landscape in their regions, such as the resource intensity in western Guang-
dong. The petrochemical industry in western Guangdong has caused atmospheric and
soil pollution [14], and the extensive planting of fast-growing eucalyptus forests in eastern
Guangdong has caused land degradation [15]. Previous studies have generally focused on
the effects of intra-urban land-use changes on vegetation [16]. However, in terms of large
developing countries such as China, much research has shown that land-use transition
has an important contribution to vegetation greenness change [17,18], but at such a study
scale, the effect of land-use conversion on changes in vegetation greenness is difficult to
obtain [19]. Furthermore, urbanization characteristics in southern China are driven by its
unique export-oriented economy, which leads to a more equal level of urbanization and
more connectivity among cities, which makes regional holism non-negligible as well.

For all these reasons, we argue that the influencing factors of vegetation in areas of
excessive urbanization and high-intensity human activities require further study. In this
study, we aim to investigating the characteristics of the changes in vegetation greenness in
southern China from 2001 to 2020. We expected to investigate the mechanism of human
activities in the surface–atmosphere coupling system, the contribution of various influ-
encing factors to vegetation production, and the difference in the contribution of various
influencing factors in different regions. We also expected to provide multi-faceted sugges-
tions for the future development and construction of new cities and the transition of urban
governance and the improvement in ecological environment quality.

2. Materials and Methods
2.1. Study Area

In this study, we select Guangdong as our study area, which is located in southern
China (Figure 1a) with contiguous territories extending from 109◦26′E to 117◦20′E and
20◦07′N to 25◦31′N, straddling the tropics and subtropics. Its climate is dominated by
a subtropical monsoon climate with annual precipitation of 1500–2000 mm and a mean
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annual temperature of approximately 19–26 ◦C. Its regional topography is dominated by
the hills of northern Guangdong [20], yet its abundant water and thermal resources create a
diverse vegetation type and high vegetation cover in its region [21]. The Pearl River Delta
alluvial plain is located in the south, with an overall terrain pattern of stepped terrain with
high elevation in the north and low elevation in the south. Guangdong Province has high
level of economic and urbanization. It has Guangzhou and Shenzhen, both of which have
more than 10 million people. Figure 1 shows the geographical location and the spatial
distribution and area percentage of land-use in Guangdong Province.

Figure 1. Map of the geographical location of China and southern China: (a) China’s administrative
divisions map. PRD, WG, EG, and NG denote the Pearl River Delta, western Guangdong, eastern
Guangdong, and northern Guangdong, respectively; (b) spatial distribution of land-use pluralities
in southern China from 2001 to 2020; (c) statistics on the number and percentage of plural land-use
types of pixels.

According to Figure 1c, the main land-use types in Guangdong are evergreen broad-
leaved forest (EBF, 18.3%), savanna (SA, 61.4%), croplands, cropland/natural vegetation
mosaic (CN, 8.4%), and urban built-up areas (UB, 6.8%). UBs are mainly concentrated
in PRD and parts of EG, while SAs are distributed in the periphery of the PRD, various
ministries in WG, and northern Guangdong (NG). EBFs are distributed in the transition
zone between the PRD, WG, and EG, most in NG and WG, and the distribution of crop
land is more fragmented, with small areas distributed along the coast and various parts of
NG. There is a wide distribution of secondary scrubs in WG and EG, caused by typhoon
disasters and the poor water storage capacity of the soil [22]. Guangdong was split into the
Tropical flora and the Pan-Arctic flora [23,24], while some other studies split Guangdong
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into the Paleotropic flora and the East Asiatic flora [25]. It seems that the vegetation in
Guangdong shows obvious spatial variation due to the division of its flora.

2.2. Data Sources

The MOD13Q1 normalized difference vegetation index (NDVI) product of MODIS is
used in this study as a measure of vegetation greenness in southern China. The advantages
of NDVI include a precise description of vegetation growth status [26], a consistent correla-
tion with vegetation biomass and dynamics in various ecosystems [27], and a high stability
in supporting long time series analysis [28]. The platform for acquiring and preprocessing
NDVI data is the Google Earth Engine (GEE), and the interactive function of this platform
makes the acquisition of multitemporal images easier [29]. In this study, NDVI data prod-
ucts from March 2001 to 2020 were acquired, and to minimize the obscuration by clouds,
the NDVI data were synthesized by taking the maximum value of each pixel in the study
area within a month on a monthly scale. We use the MODIS quality control file to eliminate
abnormal image values and select images with high quality. Then, we calculate a 16-day
maximum-value composite (MVC) for better cloud-covered area reduction. To maintain
consistency with the resolution of land-use data, NDVI data were eventually resampled to
a resolution of 500 m using the nearest neighbor interpolation method [30].

The MCD12Q1 land-use product we used in this study is published by the MODIS
Land Science team, which spans the period 2001–2020 with interannual temporal resolution
and 500 m spatial resolution [31]. The IGBP classification scheme was chosen as the
classification label for the features. MCD12Q1 has been widely used for evaluating the
interaction between land-cover or land-use transitions and climate factors in China [32–34].
Furthermore, its consistency and stability in most common scenarios in urban areas have
been proven in previous studies [35].

Precipitation, temperature, and radiation data were collected from the Terra Climate
global climate dataset available in GEE [36], which was obtained by auxiliary interpolation
based on WorldClimate and has a large improvement in the absolute level error of the
overall mean compared to the original data. The spatial resolution of the dataset is 4 km, and
the time range is from 1958 to 2021, with intermonth temporal accuracy. Considering the
lag effect of meteorological conditions on vegetation growth, the precipitation, intermonth
maximum temperature, intermonth minimum temperature, and monthly total radiation
data provided by the dataset since October 2000 were obtained and used in this study.

The CO2 data downloaded from WDCGG data center has been accessed at 22 January
2022 (https://gaw.kishou.go.jp/). The raw data include daily CO2 observation data,
monthly synthetic data, and annual synthetic data. Among the current CO2 monitoring
stations in China, only the data from the Waliguan site in Qinghai (WLG) cover the time
period of 2001–2020, so the monthly synthetic CO2 data from the WLG for the period
2001–2020 were used in this paper to represent the CO2 content in Guangdong. To measure
the difference in CO2 between WLG, which is located in northwest China, and southern
China, we also compare the CO2 data between WLG and Lulin, Taiwan, from 2006 to 2020,
with an average difference of 1.13%. Therefore, the CO2 data from WLG are still highly
representative of CO2 in southern China.

2.3. Methods
2.3.1. Vegetation Greenness Changes

We used linear regression to analyze the trend of vegetation greenness. For each pixel
of the NDVI image, its value reveals the growth of vegetation within the pixel. The specific
calculation of the vegetation greenness estimator can be calculated as follows:

NDVI = a×Year + b (1)

where NDVI denotes the value in the image; a denotes the slope trend value of the fitted
equation, which reflects the degree of the vegetation change trend over time; and b denotes
the intercept of the fitted equation. Based on the basic principle of pixelwise regression,

https://gaw.kishou.go.jp/
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we used MATLAB to calculate the regression trend for the pixel value array obtained from
the intermonth maximum synthetic NDVI images of southern China from 2000 to 2020.
The raster image of the vegetation change trend value in the study area can reflect the
spatial distribution characteristics of the vegetation change trend. We also calculated the
p-value using the t-test method on each pixel to ensure that the NDVI changing trend
was statistically significant. p ≤ 0.01, 0.01 < p ≤ 0.05, and p > 0.05 indicate that the NDVI
changing trend is extremely significant, significant, and insignificant, respectively. To show
the overall differences, Guangdong Province was divided into four major regions: the Pearl
River Delta (PRD), western Guangdong (WG), eastern Guangdong (EG), and northern
Guangdong (NG).

2.3.2. Vegetation Greenness Change Consistency

Although regression analysis can give a trend in vegetation change, the consistency of
the trend is still unclear. The vegetation trend consistency indicates the potential vegetation
growth patterns based on the fluctuation status of the existing time series. The Hurst
exponent can quantitatively denote positive or negative consistency based on previous time
series changes [37]. It has also been used for trend analysis of remote sensing inversion
indices and has confirmed the effectiveness for portraying consistency of time series in
vegetation indices such as NDVI [38,39]. R/S Analysis is the most typical method for
measuring the Hurst Exponent. The main calculation is as follows [40]:

• The time series of the image values of a single pixel, whose length is n, will be divided
into several subseries X(τ) according to different lengths of sublists (1, 2, . . . , τ), where
τ denotes the length of the sublist.

• Calculate the mean value of each sublist in each subseries:

Xmean,τ =
1
τ

n

∑
i=1

X(τ), τ = 1, 2, . . . , n (2)

• Calculate the cumulative deviation of each subseries:

D(τ, t) =
t

∑
i=1

(X(i)− Xmean,t), 1 ≤ t ≤ τ (3)

• Calculate the standard deviation sequence of all sublists in each subseries:

S(τ) =

√
1
τ

τ

∑
i=1

X(i)− X2
mean,τ , τ = 1, 2, . . . , n (4)

• Compute the range sequence of each subseries:

R = max
(1≤t≤τ)

D(τ, t)− min
(1≤t≤τ)

D(τ, t), τ = 1, 2, . . . , n (5)

• Calculate the rescaled range of each subseries (R/S):

R(τ)
S(τ)

= (cτ)H (6)

• Calculate the logarithm of Equation (6):

ln
R(τ)
S(τ)

= H ln τ + H ln c (7)

We performed a linear regression analysis of Equation (7) using ln τ as the independent
variable and ln R(τ)

S(τ) as the dependent variable. The Hurst exponent is the slope of the
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regression with a range of 0 to 1. When it is less than 0.5, the changing trend of the series in
the future is more likely to maintain the same trend as the current trend; when it is close to
0.5, the changing trend of the series in the future presents a random wandering state and
does not show a significant trend in the same direction or the opposite direction; when it is
greater than 0.5, the changing trend of the series in the future shows consistency with the
current series.

We used MATLAB to calculate the pixel-by-image Hurst exponent for the pixel array
obtained from the 20-year intermonth maximum synthetic NDVI raster image conversion
of southern China. Combining the Hurst exponent analysis with the linear regression
results, we were able to conclude the consistency of vegetation changes (Table 1).

Table 1. Assessment of vegetation greenness change persistence using linear regression results and
the Hurst exponent.

Pixel Category Linear Regression Slope Hurst Exponent

Continuous Improvement (CI) >0, significant ≥0.5
Continuous Deterioration (CD) <0, significant ≥0.5

Anti-continuous Improvement (AI) >0, significant ≤0.5
Anti-continuous Deterioration (AD) <0, significant ≤0.5

No Significant Change (NSC) not significant Any

2.3.3. Contribution of Factors Affecting Vegetation Greenness and Their Time-Lag Effects

The vegetation ecosystem is a complex multi-factor system, and there are differences
in the level of influence of each factor. Random forest is able to regress the complex non-
linear system and assess the contribution of each factor. The NDVI’s influencing factors we
selected, including land-use (LULC), monthly precipitation (PR), monthly downgradient
shortwave radiation (SRAD), monthly maximum temperature (TMMX), and monthly
minimum temperature (TMMN), and the NDVI was regressed by a random forest regressor
(RFR) through the above factors.

Since vegetation is affected by climate factors with a time-lag effect, it should be
considered when studying the climate–vegetation response relationship [41], which helps
to improve the accuracy of the model [42]. Existing studies have shown that the time-lag
effect of overall vegetation on the temperature in southern China is not significant [43],
while the time-lag effect on precipitation is in the range of 32 to 80 days [41]. Since the
average temperature of the coldest month in southern China is also above 10 ◦C and the
lower boundary of the effective cumulative temperature for vegetation growth in China is
10 ◦C [44], it can be assumed that southern China has a growing season throughout the
year. For the crop land in southern China, double-season rice is the main crop cultivated
from early February to mid-late November [45], covering most of the year. Therefore, the
overall growing season in southern China is basically year-round, and there is no need for
temporal screening based on the growing season. Based on this, 240 (20 years × 12 months)
samples can be presented on each pixel in Guangdong Province.

We use the random forest to regress the difference between NDVI and the average
NDVI of the pixel’s LULC. The independent variables of the random forest include the
CO2, PR, SRAD, TMMX, and TMMN within the last 3 months. We trained the random
forest regressor and calculated its R2 as R2

0.
We use the mean decrease accuracy (MDA) [46] to estimate the attribution of each

factor. MDA is a widely accepted measure of factor attribution [47] and has been applied
in several geoscientific fields [48,49]. The MDA method can be used for the evaluation of
the factor attribution of pure RF, in addition to the evaluation of the factor attribution of
other machine learning models [49].

For a regression model with multi-factors, the attribution of each factor can be calcu-
lated as:

VIj = R2
0 − R2

j , 1 ≤ j ≤ n (8)
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where R2
j is the R2 calculated by modifying the i-th variable according to the original distri-

bution and following the fitted regression model, and R2
0 is the R2 when the independent

variable is not modified. Then, the attribution of each factor is:

IMPj =
VIj

∑n
i=1 VIi

(9)

where IMPj is the contribution of the factor j. In this way, the attribution can be calculated.
In particular, since the temperature is divided into monthly maximum and minimum, we
add the attribution of both as the attribution of temperature to NDVI.

In order to calculate the lag time of each factor on vegetation changes, we calculated
the contribution of each factor to the current month and the previous two months of
vegetation greenness and extracted the month with the maximum contribution. The
difference between the month with the maximum contribution and the current month is
the lag time.

3. Results
3.1. Dynamic Trend and Consistency of Vegetation Greenness

We first used linear regression and the Hurst exponent to quantify the spatial and
temporal changes in vegetation greenness in southern China. The vegetation greenness
trends were calculated separately in these four regions.

We found that the changes in vegetation greenness in southern China show a spatial
heterogeneity. The increasing trend covered most of the built-up area and border areas
between the two cities, and the decreasing trend tended to be distributed in the urban
sprawl zone. An insignificant trend was found in NG, while the other three regions partly
showed a significant trend (Figure 2a). From the temporal trend, the vegetation change in
the four regions shows a slowly increasing trend, with growth rates of 0.03%/10a in the PRD
and WG, 0.04%/10a in EG, and 0.04%/10a in NG. The growth rate of NG was 0.02%/10a
(Figure 2b); the proportion of significantly increasing pixels in the PRD region was 49.6%;
the proportion of significantly increasing pixels in WG was 63.65%; the proportion in EG
was 53.95%; the proportion in NG was 40%; and the proportion in the PRD region and NG
was smaller than that in WG and EG (Figure 2c).

The vegetation change in the PRD may be affected by the urban greening policy
in recent years [50]. From the land-use pattern (Figure 1), we find that the proportion
of secondary shrubs is significantly higher in the WG and EG than in the other two
regions. This is presumably caused by the ecological restoration of degraded fast-growing
eucalyptus forests carried out in recent years [51], which is consistent with the findings of a
study about the change in vegetation greenness in southern China [1]. The built-up urban
area in NG has a low proportion of significantly increasing pixels and is mainly covered
by natural native vegetation, so the trend of change is mostly insignificant oscillation or
slowly increasing change.

The slope values of each type of change in the four regions are basically the same,
with a slightly larger increasing trend in PRD (Figure 2d), presumably due to the effect
of afforestation and green conservation [50,52]. NG shows a slightly larger decreasing
trend than other regions, which is consistent with the conclusion of Wu et al.’s study on
forest destruction in the Guangdong Province region [53]. Presumably, the cause of this
phenomenon is the short-term impact of natural disasters such as forest fires on high
vegetation coverage areas. The difference in slope value types between significant and
nonsignificant changes is not certain, and no significant values are higher in the positive
trend but lower in the negative trend, so it is necessary to investigate the consistency of the
vegetation greenness trend in the following sections.
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Figure 2. Spatial and temporal trends of the NDVI from 2000 to 2020 in southern China. (a) The
spatial distribution of the NDVI trend in southern China from 2000 to 2020 monthly maxima. PES,
PS, PN, NES, NS, and NN denote Positive Extremely Significant, Positive Significant, Positive None
Significant, Negative Extremely Significant, Negative Significant, and Negative None Significant,
respectively. (b) The fold line graph of the NDVI mean trend in major regions from 2000 to 2020
in southern China. (c) The stack bar of the trend grouped by types of significance in major regions.
(d) The box graph of the NDVI trend slope in southern China from 2000 to 2020 grouped by trend
significance type and region.

The distribution of the Hurst exponent shows significant regional heterogeneity. The
spatial distribution of the Hurst exponent less than 0.5 pixels has a high correlation with the
topography, while the pixels with Hurst exponents greater than 0.5 are mainly distributed
in the plains, with higher urbanization in the southv(Figure 3a). The consistency in the
changing trend of vegetation in southern China can be categorized into five types according
to the current trend types combined with the Hurst exponent values for categorizing
consistency trends: continuous improvement (CI), continuous deterioration (CD), anti-
continuous improvement (AI), anti-continuous deterioration (AD), and nonsignificant
change (NSC). Because of the rare distribution of AI and AD types in southern China
(less than 1%), the vegetation change trend did not shift on most of the pixels. The
continuous trend of the NDVI in southern China was mainly agglomerated in the PRD,
WG, and EG; NG mainly showed a stochastic trend (Figure 3b). The consistency of the
vegetation greenness trend also shows a divergence between different regions and LULC
types (Figure 3c,d). The LULC types that are similar to forests are mainly NSC, including
EBF, MF, and WS. Pixels with types that are similar to scrub or grassland are mainly marked
as CI, including SA, GR, and CN. UB, which is influenced by human activities, shows the
highest proportion of CD. AI and AD occupy only a very small proportion, except for CR,
for which AI has a higher proportion. Overall, CI and NSC were distributed within each
region, with CD to a lesser extent, and AI and AD were rarely distributed. The proportion
of CD in PRD and EG was much higher than that in WG and EG, while the proportion of
NSC in NG was the highest in these regions.
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Figure 3. Consistency of vegetation greenness in southern China. (a) The spatial distribution of the
2000–2020 NDVI monthly maximum Hurst exponent in southern China. (b) the spatial distribution
of the NDVI change trend in Guangdong Province. CI, CD, AI, AD, and NSC denote continuous
improvement, continuous deterioration, anti-continuous improvement, anti-continuous deterioration,
and nonsignificant change, respectively. (c) The proportion of each greenness trend and consistency
categories in each LULC types. (d) The categorized box graph of the 2000–2020 NDVI monthly
maximum Hurst exponent in southern China by types of region and change trends.

In general, the consistency of the vegetation greenness trend in southern China shows
some spatial divergence, with consistent trends mainly distributed in the central part of
Guangdong south of approximately 24°N. The CD of vegetation is mainly distributed in
densely distributed urban agglomerations such as the EG and PRD, where human activities
are more frequent, and NSCs are mainly distributed in areas with fewer human activities
and dominated by natural elements such as NG.

3.2. Spatial Distribution of Vegetation Influencing Factors and Its Lag Effect

We analyzed the mean values and trends of precipitation (PR), downgradient short-
wave radiation (SRAD), monthly minimum temperature (TMMN), and monthly maximum
temperature (TMMX) in southern China from 2001 to 2020, which are shown in Figure 4.

As shown in Figure 4, the PR decreases from the west coast of the Pearl River Delta
to the surrounding area (Figure 4a), SRAD decreases from the Pearl River Delta city
group to the surrounding area (Figure 4b), and temperature decreases from south to north
(Figure 4c,d), showing a clear latitudinal zonality phenomenon.

The annual mean rates of change in the PR, SRAD, and TMMX are more similar to the
annual mean distribution pattern (Figure 4e,f,h), while the trend of TMMN increases from
the middle to both sides to some extent (Figure 4g). Numerically, the interannual variation
in precipitation increases and decreases, and the downward shortwave radiation shows a
decreasing trend in the province, while the temperature shows an increasing trend in the
province.
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As seen in Figure 4, there is obvious heterogeneity in the spatial distribution and
temporal variation in climate factors in Guangdong Province, and the spatial differences in
the factors influencing NDVI cannot be ignored.

Figure 4. Twenty-year averages (a–d) and annual mean change rates (e–h) of precipitation, downgra-
dient shortwave radiation, monthly minimum temperature, and monthly maximum temperature in
southern China.

We also estimated the time-lag effects on different LULC types, and the results are
shown in Figure 5.

Figure 5. Time-lag effect of NDVI impact factors for each LULC type in Guangdong Province: (a) for
temperature, (b) for precipitation, (c) for shortwave downgradient radiation, and (d) for CO2.

As shown in Figure 5, the results indicate that there are differences in the lag effect of
different meteorological factors on different LULC types. Among them, there is a significant
timely response phenomenon for temperature, while there is a significant time-lag effect
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for precipitation, which is more consistent with the findings of existing studies [41]. The
time-lag effects differed only to a lesser extent for different LULC types. For TEMP, the most
significant lag effect was observed for EBF, while a significant temporal response of NDVI
was shown in all LULC types except WB. Existing studies have shown that the time-lag
effects of temperature change are more pronounced in forests at lower elevations [54], so the
lagging effect is more significant in EBF at lower elevations than in MF at higher elevations.
There is a significant lag effect of precipitation overall except for the CR. The lag effect of
SRAD and CO2 was more uniform across LULC types, and only the lag effect of MF on
radiation was more significant than that of other land-use types. This further demonstrates
that the effects of climate factors on NDVI are different for different LULC types.

3.3. Attribution of the Variation in Vegetation Greenness

We regressed NDVI using the LULC factor and meteorological factors in southern
China by RF and estimated the factor contribution by MDA. The results are shown in
Figure 6.

Figure 6. The contribution of each factor to NDVI given by random forest: (a) plotting the R, G, and
B channels of LULC, CO2, and climate factors; (b) plots the R, G, and B channels of precipitation,
shortwave radiation, and temperature; (c) shows the average of the contribution of each factor for
each pixel; (d) shows the average contribution of each factor for each LULC type.

As Figure 6a,c show, the LULC, which accounts for 79.4% of the total contribution, is
the major factor affecting the NDVI. Figure 6a also shows that the influence of the climate
factor is more significant in WG and NG, while the CO2 factor is more significant in the
city fringe area of the PRD. Specifically, for the three meteorological factors (Figure 6b),
the regions dominated by temperature are striped, which is similar to the land-use type
map (Figure 1b). The area dominated by precipitation is wider with an insignificant striped
distribution, while the area dominated by radiation is small and fragmented. The tempera-
ture has obvious differences (4∼27%) in distinct LULC types, while the contributions of
precipitation (2∼6%) and radiation (3∼12%) are more uniform in distinct LULC types.
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4. Discussion

Studies show that global climate change is affecting the world’s vegetation [55], which
has put vegetation at risk of unknown changes. Southern China is a key area of rapid
urbanization in China [13] and a transition zone between two floras [23–25]. Changes in
climate and vegetation here may cause heatwaves, haze, and the rapid spread of tropical
diseases [56], threatening human production, health, and even life. Vegetation is more
sensitive to the influence of temperature [57], and the increase in temperature may also
affect vegetation changes through evapotranspiration [58]. Therefore, for the complex
coupled system of meteorology–human activities–vegetation, a comprehensive analysis of
multiple factors will help to improve our understanding of vegetation changes.

Our vegetation greenness change consistency analyses show that there has been a
continuous greenness trend during 2001–2020 in most plain areas of southern China, which
is probably contributed by the vegetation restoration and soil and water conservation
policies [59,60]. Although the pattern of greenness change consistency is similar among
different regions, NSC and CD still show significant regional variation. The proportion of
CD is higher in PRD and EG, with a spatial distribution along the river, which indicates
different urbanization modes and connectivity within southern China. The proportion
of NSC was higher in NG, which was caused by the higher forest distribution in NG.
The differences in the greenness change consistency on different land-use types are more
significant. Land-use types that can maintain their NDVI show a high proportion of NSC
in EBF, MF, and WS because they have reached their climax [61]. CD is mainly observed
in urban areas because urban sprawl can lead to significant vegetation degradation [62].
The other land-use types have more shrubs and are continuing to succession to forest
communities, and their NDVIs are mainly represented as CI. Additionally, the amount of
anti-continuous pixels is much less than that of continuous pixels, which is probably due
to anti-continuous change being more like “Mutation” in a short period, mainly caused by
shifts land-use type, such as the expansion of urban fringes [63], while continuous change
acts more steadily, mainly caused by activities without a shift in land-use type shift such as
afforestation and agricultural-scale expansion of deforestation [17].

In terms of method selection, we regressed the anomaly between the NDVI and the
corresponding land-use type rather than directly regressing the original value of the NDVI.
The reason can be seen in Figure 7.

Figure 7. The NDVI of different LULC and the number of LULC types that have occurred in 20 years
in southern China. (a) The NDVI boxplot of each LULC type in southern China. (b) The proportion
of the number of pixels in different LULC types during the 20 years. (c) The number of different
LULC types during the 20 years in each pixel.

Figure 7a shows that there is NDVI divergence among the different LULC types. The
forest-dominated LULC types EBF, MF, and WS had the highest NDVIs, followed by the
grassland and cropland LULC types, SA, GR, CR, and CN, which were dominated by
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herbaceous plants. PW, UB, and WA, which were dominated by impervious surfaces and
water bodies, had the lowest NDVIs. Thus, there is no doubt that the regional NDVI is
mainly controlled by land-use types. As seen in Figure 7b, pixels with only two or fewer
land-use types account for more than 90% of the province, and pixels with three or fewer
land-use types account for 99.6% of the province. Moreover, 54.1% of the pixels do not
undergo land-use type changes. Therefore, LULC can be approximated as constants. For the
RFR, the MSE before and after partitioning with constants as features remains unchanged,
so the random forest will almost never include LULC in the model, which also leads to the
RF not learning the contribution of LULC correctly. In similar studies thus far, separating
the NDVI influenced by climate factors from the land-use-influenced part from each
other [64,65] and then using RF to regress the NDVI influenced by climate factors separately
is a feasible solution, and the two parts of NDVI can be calculated by averaging [66]. In
order to ensure the comparability of the contributions among those factors, we use the
mean decrease accuracy method to estimate the contribution.

The most important factor influencing the distribution of NDVI was LULC, with a
contribution of 79.4%. For vegetation distribution, LULC, as the most important influencing
factor, has been confirmed by existing studies [67]. Different land-use patterns result in
significant differences in the cover of surface vegetation and thus produce significant NDVI
differences. Climate factors contributed to 20.6% of the variance in NDVI distribution.
Influenced by factors such as latitude, sea–land location, and topography, meteorologi-
cal factors differ spatially and directly influence the growth and development process of
vegetation [68]. Among them, the temperature factor is the dominant factor, while pre-
cipitation and CO2 are secondary factors [69]. The contribution of the radiation factor
varies widely among studiess at different scales, especially at the Chinese scale [70] and
the world scale [71], where solar radiation is considered to be the most dominant climate
factor affecting the vegetation of southern China. At larger scales, the vegetation types in
southern China are often considered to be evergreen broadleaf or mixed forests and ignore
the less representative scrub vegetation, and the higher contribution of solar radiation to
forest vegetation types is more consistent with the findings of our study. The conclusions of
this study at a small scale have more details, which are important for the study conducted
in southern China.

The environmental factors whose values are close to the tolerance limit are more
important for vegetation [72]. Because the tolerance limit and ecological amplitude change
with different vegetation types [73], the contribution of each factor to different LULCs also
differs. For LULCs that are not controlled by climate, such as urban and water bodies,
the impact of land-use is greater because climate change can barely affect areas where
vegetation does not exist, and the NDVI is closer to the base NDVI that is only related
to LULC. A similar phenomenon exists in croplands and natural vegetation mosaics [74],
which may be because this type is mainly artificial fruit tree orchards, which are clearly
subject to human care. For cropland, the increase in temperature will cause a significant
yield reduction [75], so it has a significant effect on the NDVI. However, during the life
cycle of double-season rice in Guangdong Province [45,74], the variation in CO2 is very
low, and the effect on the NDVI is not significant [76]. Precipitation in Guangdong Province
is generally very abundant and does not easily affect the growth of crops, which makes
the contribution of precipitation insignificant. Mixed forest is significantly more affected
by temperature than evergreen broadleaf forest. While the vapor pressure deficit (VPD)
is fully controlled by the temperature with abundant water resources [77], mixed forest,
which is more affected by VPD [78], shows a stronger significant relation between tem-
perature and NDVI than evergreen broadleaf forest. Woody savannas and savannas were
more influenced by LULC and more influenced by temperature among the climate factors.
Their vegetation is dominated by Baeckea frutescens scrub, which is a secondary scrub
formed by the succession of subtropical native vegetation after repeated deforestation or fire
damage [74], significantly affected by temperature and not significantly affected by precipi-
tation [79].
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Although the influencing factors of the NDVI in southern China were quantified in
our study, there are still some deficiencies in this study. The pathways through which
land-use affects NDVI are still controversial. LULC changes may lead to the destruction of
vegetation, resulting in changes in NDVI, and LULC may cause changes in microclimate,
which in turn affects NDVI [80]. Factors other than land-use and temperature, precipita-
tion, downgradient shortwave radiation, and CO2 are ignored in our study, but nitrogen
deposition [81], topography [82], and forest fires [83] can also affect changes in vegetation.
The temporal and spatial precision of the land-use data in our study is not high enough.
This lack of precision makes it difficult for us to observe the urban edge expansion and the
NDVI changes it brings. In addition, although the growing period of vegetation in southern
China is considered to be year-round in our study, differences in different phenologies can
also bring about differences in vegetation changes. In summary, the assessment of more
influencing factors at finer temporal and spatial scales is the focus of future research work.

5. Conclusions

The ecosystem is a complex system influenced by many factors, including vegetation
greenness. It is important to estimate the factors contributing to vegetation greenness
for urban governance and the improvement of ecosystems, especially for complex areas
with intertwined human–natural interactions. We quantitatively assessed the spatial and
temporal trends of NDVI and the contributions of different climate factors to NDVI in
southern China over 20 years using the Hurst exponent, random forest regression, and
MDA contribution analysis and obtained the following conclusions:

In the past 20 years, the vegetation in Guangdong has generally shown a slow upward
trend, and the growth rate is between 0.02% and 0.04%. The significant upward trend is
concentrated in the Pearl River Delta, western Guangdong, and eastern Guangdong, and
the upward trend in most areas in northern Guangdong is not significant. The analysis of
the Hurst exponent shows that in the past 20 years, the Guangdong area has only shown the
characteristics of parallel change. The pixels with continuous vegetation degradation and
continuous improvement are concentrated in the Pearl River Delta, eastern Guangdong,
and western Guangdong. The northern Guangdong area mainly presents nonsignificant
random walks.

RFR is shown in this study as a useful method for assessing the contribution of factors
(e.g., land-use, CO2, precipitation, radiation, temperature, etc.) affecting vegetation change.
The most important factor for the NDVI in southern China is land-use, which accounts for
approximately 79.4% of the total contribution. Climate factors further act on the basis of
land-use factors, resulting in further differentiation of NDVI on the same land-use type.
There are also differences in the contributions of climate factors to the NDVI on the basis of
different land-use types. The cause of this phenomenon is mainly related to the climate
and vegetation background of southern China.

Different climate factors show different degrees of lagging effects on the NDVI. Among
them, the lag effect of temperature is the least significant, while the lag effect of precipitation
is the most significant, and the lag effect of CO2 and radiation is moderate. The lagged
impacts on different land-use types differed to a lesser extent.
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