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Abstract

Recent developments in graph theory have heightened the need for investigating the dis-

ruptions in the topological structure of functional brain network in major depressive disorder

(MDD). In this study, we employed resting-state functional magnetic resonance imaging

(fMRI) and graph theory to examine the whole-brain functional networks among 42 MDD

patients and 42 healthy controls. Our results showed that compared with healthy controls,

MDD patients showed higher local efficiency and modularity. Furthermore, MDD patients

showed altered nodal centralities of many brain regions, including hippocampus, temporal

cortex, anterior cingulate gyrus and dorsolateral prefrontal gyrus, mainly located in default

mode network and cognitive control network. Together, our results suggested that MDD

was associated with disruptions in the topological structure of functional brain networks,

and provided new insights concerning the pathophysiological mechanisms of MDD.

Introduction

Major depressive disorder (MDD) is one of the most prevalent mental disorders, and it is char-

acterized by persistent feeling of sadness, low self-esteem, sleep disturbances, and withdrawal

from pleasurable activities [1]. Although much efforts have been made in the treatments of

MDD, up to 80% of patients still suffer from a relapse [2].

Previous studies suggest that MDD not only has relationships with the regional deficits,

but also with the abnormal functional integration of distributed brain regions [3,4,5,6,7].

Using typical regional measures including regional homogeneity and the (fractional) amplitude

of characteristic low-frequency fluctuations, a number of brain regions with abnormal activities

in the resting-state have been identified associated with MDD, such as parahippocampal

gyrus [4,5], prefrontal cortex [8,9,10], cingulate gyrus [11,12], fusiform gyrus [5,11], and thala-

mus [13]. Moreover, disruptions in functional connectivity have been observed between spe-

cific region pairs in MDD through functional connectivity analyses (including seed-based
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connectivity, independent component analyses and network homogeneity), such as increased

medial prefrontal cortex and anterior cingulate cortex connectivity [6], increased subgenual

cingulate-thalamic connectivity [3,14], and reduced bilateral dorsal lateral prefrontal cortex

and right superior parietal lobule connectivity [15]. In addition, several neural networks have

been observed to mediate depressive disorders based on functional connectivity analyses, such

as the default mode network (DMN) and cognitive control network (CCN) [7,8,15,16].

Despite the above-mentioned advances, recent studies have investigated the MDD patients

in their whole-brain networks using graph theory. Graph theory is a mathematical technique

which can model the brain as a complex network represented graphically by sets of nodes and

edges [17,18]. Based on graph theory, numerous studies of healthy subjects have concluded

that human brain networks have many special organizational principles, including small-

worldness (an optimal brain network organization characterized by high efficiency of informa-

tion transfer at a low cost), and modularity (an optimal partition of a brain network into

smaller functional communities of modules) [19,20]. Furthermore, disruptions in network

organization have been related to many neuropsychiatric disorders. For patients with MDD,

several studies have reported topological changes in human brain connectome, including a loss

of the small-world network [19] and a significant reorganization of the community structure

[14,21,22]. However, these studies were limited in examining the brain network organization

of MDD patients at meso-level, which could be described by the modularity of a network

[14,19,21,22]. In addition, the application of graph theory on MDD has provided conflicting

results. Two functional neuroimaging studies found that MDD resulted in decreased path

length, but no change in clustering coefficient [14,21]. However, another study showed a prom-

inent changes of the community structure, but no significant differences in both path length

and clustering coefficient [22]. These inconsistent findings may result from differences in

methodology, study population (Chinese vs German cohort), and variability in the clinical defi-

nition of MDD.

In the present study, we employed resting-state fMRI and graph theoretical analyses to fur-

ther explore the MDD-related disruptions in functional brain networks. Given previous evi-

dence of abnormal functional connectivity in MDD, combined with findings of disrupted

network structure, we predicted that MDD disrupted the topological organization of human

brain connectome, such as significant anomalies in small-worldness and modularity. In addi-

tion, considering the importance of DMN and CCN in mediating MDD, we also hypothesized

that the DMN and CCNmodule would show significant disruptions in MDD patients. Finally,

the relationships between inter-group differences in topology properties and individual clinical

variables (Hamilton Depression Scale, HAMD) were also investigated.

Materials and Methods

Subjects

Eighty-four subjects were recruited, including 42 MDD patients and 42 sex-, age-, and educa-

tion-matched healthy controls (Table 1). The age of MDD patients and healthy controls both

ranged from 18 to 60 years. The dataset reported here was randomly selected from our ongoing

project, which examined the occurrence and development of depression. The diagnosis of

MDD was made according to the Structured Clinical Interview of the DSM-IV by experienced

psychiatrists from the First Affiliated Hospital of Chongqing Medical University [23]. All

healthy controls were carefully screened for a current or lifetime diagnosis of any Axis I or II

disorder using the Structured Clinical Interview of the DSM-IV Non-Patient Edition and

Structural Clinical Interview for DSM-IV Axis II Personality Disorder. Organic or neurologic

disorders were examined based on personal histories and complete physical examinations. The
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severity of depression was measured through the 17-item Hamilton Rating Scale for Depres-

sion (HAMD). To be suitable for this study, all patients were re-examined by a psychiatry

expert after an initial outpatient assessment. Inclusion criteria for all patients were (1) patients

met the judgment of MDD defined by DSM-IV; (2) 17-item HAMD scores were larger than 24

[24]; (3) patients were medication- naïve; and (4) diagnosed as depressive disorder, not bipolar

disorder. Exclusion criteria included the presence of (1) other Axis I psychiatric disorders and

symptoms; (2) a history of organic brain disorder, neurological disorders or cardiovascular dis-

eases; (3) pregnancy or any physical illness as assessed by personal history and laboratory anal-

ysis; and (4) the inability to undergo an fMRI scan. Healthy controls met the exclusion criteria

above and had no psychiatric illness history or any family history of major psychiatric disease

in their first-degree relatives. This study was approved by the Ethics Committee of Southwest

University, and the written informed consent was obtained for each subject.

Image Acquisition and Preprocessing

A total of 242 volumes of resting-state functional images were obtained for each subject using

an echo planar imaging (EPI) sequence through a 3T Siemens Trio scanner (TR/TE = 2000/

30ms, flip angle = 90°, acquisitionmatrix = 64×64, field of view = 220×220mm2, axial slices = 32,

and thickness/gap = 3/1mm).

Functional data preprocessing was carried out using SPM8 (http://www.fil.ion.ucl.ac.uk/

spm). The entire process included removal of the first 10 volumes, slice timing correction,

realignment to the first volume for head-motion correction, filtering (0.01~0.08 Hz), normali-

zation to the EPI template with a resampling voxel size of 3×3×3 mm3, smoothing with a 6mm

full-width at half-maximum Gaussian kernel. No subjects were excluded because all the head

motions were<2 mm or 2°.

Construction of Functional Brain Network

To construct a functional brain network, we firstly employed the automated anatomical label-

ing (AAL) template [25] to parcellate the brain into 90 regions of interest (ROIs). Secondly,

the time series was acquired on each ROI by averaging the signals of all voxels within that area

and then linearly regressing out the influences of head motion and global signal. Thirdly, by

calculating the Pearson correlation coefficients in the residual time courses between each pair

of ROIs, a correlation matrix was obtained for each subject. To improve the normality, the

Table 1. Demographic and clinical characteristics of the study samples.

MDD Control t p

Sample size (male) 42 (21) 42 (19)

Age, mean (SD) 42.14(12.33) 39.143(11.72) 1.143 0.256

Education(year), mean (SD) 10.74(3.90) 11.238(3.43) 0.624 0.534

HAMD, mean (SD) 26.88(2.92) 2.119(1.783) 46.861 0.000

Duration of illness (month), mean (SD) 49.06(68.10) a NA

Family history of psychiatric disorder 4 NA

Comorbid generalized anxiety disorder 6 NA

Comorbid obsessive-compulsive disorder 1 NA

a: information for one subject was lost

b: family history of depressive disorder up to second-degree relatives

HAMD, Hamilton Depression Scale; MDD, major depressive disorder; NA, not applicable

doi:10.1371/journal.pone.0133775.t001
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correlation map was Fisher transformed (r-z) [26]. Finally, the absolute z values were converted

into a binary connection matrix to make a graphic model of a brain network. That is, if the

absolute zij (Fisher r-to-z of the Pearson correlation coefficient) of a pair of brain regions, i and

j, exceeded a given threshold T (Fisher r-to-z), an edge was said to exist; otherwise it did not

exist.

The degree of each node, Dnod, is the number of connections that link it to the rest of the

network. The total number of edges in a network, divided by the maximum possible number of

edges (N2-N)/2, is called the connection density or the cost of the network [27]. Given that

there was no accurate way to choose a threshold in studies of brain networks [28], so the func-

tional brain networks were constructed over the whole value of costs (0.03~0.50) at the interval

of 0.01. Because a similar trend for between-group differences was observed over the range of

0.03~0.50, and the biggest difference between MDD patients and healthy controls was found

when cost is 0.21 for global measures, only results using a cost of 0.21 were reported for

regional nodal analyses [29,30].

Functional Brain Network Analysis

For functional brain networks, both the global network parameters and the regional nodal

parameters were calculated to characterize the global topological organization of functional

network and regional properties of each node [18,31,32,33]. The global network parameters

include global efficiency (Eglobal), local efficiency (Elocal) and modularity (Q). The regional

nodal parameters include nodal degree (Dnod), nodal efficiency (Enod), and nodal betweenness

(Nb).

Global Network Parameters

For a given graph G with N nodes, the global efficiency (Eglobal) is defined by the inverse of the

harmonic mean of the minimum path length between each pair of nodes:

Eglobal ¼
1

NðN � 1Þ

X

i 6¼j�G

1

Lij

;

where Li,j is the shortest path length from node i to node j.

The local efficiency (Elocal) of a graph G is defined as:

Elocal ¼
1

N

X

i�G

Eglobal ðiÞ;

where Eglobal(i) is the global efficiency of Gi. In particular, Eglobalmeasures the overall commu-

nication efficiency of the network, and Elocal measures the local cliquishness of the network.

A brain network can be considered as a small-world network, as it meets the following crite-

ria [19,34]: Eglobal(Gregular)< Eglobal(Greal)< Eglobal(Grandom) and Elocal(Grandom)< Elocal(Greal)

< Elocal(Gregular). Eglobal(Gregular), Eglobal(Greal) and Eglobal(Grandom) represent global efficiencies

of regular networks, real networks and random networks, respectively. And Elocal(Gregular), Elo-

cal(Greal) and Elocal(Grandom) represent the local efficiencies of regular networks, real networks

and random networks, respectively.

Modularity refers to the formation of the local modules that nodes in the same module are

closely connected to each other while nodes in different modules are sparsely connected. For

the study of the distribution of network modules by group, mean group functional matrices

were calculated by averaging the N×N (N = 90 in the present study) absolute connection matrix

of all the subjects within the group (MDD group and healthy group) [29]. There are several
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algorithms which are used in quantifying the partition in terms of module separation. For

example, how well a partition differentiates subsets of nodes densely connected [32,35]. The

modularity, Q, of a graph G can be quantified as the proportion of G’s edges that fall within

modules, subtracted by the proportion that would be expected due to random chance alone,

for a given partition of nodes into module [31,32]. Q can be defined as:

Q ¼
1

2m

X

i 6¼j

ðAij � PijÞdðMi;MjÞ;

wherem is the total number of edges; Aij = 1 if an edge links i and j, and 0 otherwise; δ(Mi,Mj)

is 1 if i and j are in the same module and 0 otherwise, and ensures that only intra-modular

edges are added to the sum; Pij is the probability that there would be an edge between i and j,

given a random graph comparable to G. The value of Pij could be estimated by:

Pij ¼
KiKj

2m
;

where Ki is the total number of edges connecting node i. We include this information in the

null model because it affects the expected proportion of intra-modular edges.

Nodal Centrality Parameters

The nodal degree of a node i is defined as:

Dnod ¼
X

j 6¼i2G

eij ;

where eij is the (i,j)th element in the formerly obtained binary, undirected network.

The nodal efficiency of a node i is defined as:

Enod ¼
1

N � 1

X

j6¼i2G

1

Lij

;

The nodal betweenness of a node i is defined as:

Nb ¼
X

j 6¼i 6¼k2G

djkðiÞ

djk

;

where δjk is the number of the shortest path length between node j and node k, and δjk(i) is the

number of the shortest path length between node j and node k, which pass through node i. Nb

measures the influence of node i on the flow of information between other nodes in the

network.

Statistical Analysis

Statistical comparisons of topological properties (both the global network parameters and

the regional nodal parameters) between MDD patients and healthy controls were performed

by using the two-sample two-tailed t-tests. Moreover, the relationships between topological

measurements and HAMD scores in MDD patients were assessed using Pearson Correlation.

In addition, the false discovery rate (FDR) was used for multiple comparison corrections

[36].
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Results

Altered Small-world properties in MDD Patients

In this study, we constructed functional brain networks on the global scale for MDD patients

and healthy controls. Graph theory analyses revealed that the global efficiencies of functional

brain networks in MDD patients and healthy controls were greater than regular networks but

less than random networks, and the local efficiencies were greater than random networks but

less than regular networks over the whole range of 0.03~0.50 (Fig 1). These results were typical

features of small-worldness and were compatible with previous studies of small-world brain

networks [14,21].

Despite the common small-world properties, higher local efficiencies were found in MDD

patients in comparison with healthy controls at the range of 0.15~0.30, whereas there were no

significant differences in global efficiencies (Fig 1).

Altered Modularity in MDD Patients

Functional brain networks of MDD patients and healthy controls exhibited typical features of

modular structure. Specifically, functional brain networks for both groups were significantly

more modular than random networks with the same degree distribution over the range of

0.03~0.37 (Fig 2). In addition, a two-sample two-tailed t-test revealed that MDD patients

showed increased modularity compared with healthy controls over the range of 0.14~0.22 (Fig

2). The brain networks were decomposed into 5 basic modules in healthy controls, but 6 basic

modules in MDD patients (Fig 3).

Altered Regional Nodal Properties in MDD Patients

Significant differences were found on nearly the same nodes (Fig 4, Table 2), except for right

gyrus rectus and right thalamus whose nodal betweenness showed no significant differences

Fig 1. Small-world properties of functional brain networks. (A) global efficiency and (B) local efficiency over the whole range of 0.03~0.50 for random
(green), regular (blue), and real networks (MDD patients: red; Healthy controls: black). Error bars corresponded to standard error of the mean. Purple stars
indicated where the difference between MDD patients and healthy controls was significant (p<0.05). On average, both healthy controls and MDD patients
showed small-world properties. Additionally, MDD patients showed higher local efficiencies at the range of 0.15~0.30 (p<0.05).

doi:10.1371/journal.pone.0133775.g001
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between MDD patients and healthy controls (p<0.05, FDR corrected). Specifically, MDD

patients revealed increased nodal centralities in many brain areas, including right gyrus rectus,

right hippocampus, bilateral amygdala, right fusiform gyrus, bilateral middle temporal gyrus,

and bilateral thalamus compared with healthy controls. Additionally, decreased nodal centrali-

ties in MDD patients were observed in bilateral dorsolateral prefrontal gyrus and bilateral ante-

rior cingulate gyrus.

Relationships between Network Parameters and HAMD

We found no significant correlations between global network metrics (Eglobal and Elocal) and

HAMD scores in MDD patients. However, significant positive correlation between modularity

(Q) and HAMD scores was observed (r = 0.36, p = 0.018, cost = 0.21; Fig 5). Additionally, there

were significant correlations between regional nodal parameters and HAMD scores among

many brain regions (Table 3). Specifically, nodal centralities were significantly and negatively

correlated with HAMD scores in bilateral dorsolateral frontal gyrus and bilateral anterior cin-

gulate gyrus. Furthermore, significant positive correlations were observed between HAMD

Fig 2. Modularity of functional brain networks. Functional brain networks of MDD patients (red) and
healthy controls (black) showed larger modularity than random networks (green) at the whole range of
0.03~0.37. Additionally, increased modularity in MDD patients was observed over the range of 0.14~0.22
(p<0.05). Error bars corresponded to standard error of the mean. Purple stars indicated where the difference
between MDD patients and healthy controls was significant (p<0.05).

doi:10.1371/journal.pone.0133775.g002
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scores and nodal centralities in right hippocampus, bilateral amygdala, right fusiform gyrus,

bilateral thalamus, and bilateral middle temporal gyrus.

Discussion

In this paper, we investigated the topological architecture of functional brain networks in

MDD patients. The main findings were as follows: 1) functional brain networks of MDD

patients showed increased local efficiency and modularity; 2) many local brain regions, mainly

Fig 3. Themodular organization of group averaged functional brain network at cost = 0.21. (A) Healthy
controls had five modules. (B) MDD patients had six modules. Module 1~Module 5 were the same network for
healthy controls and MDD patients, but Module 6 was a new one for MDD patients.

doi:10.1371/journal.pone.0133775.g003

Fig 4. Regions exhibited significant between-group differences in regional nodal parameters. The blue
color represented the higher values of regional nodal centralities in healthy controls, and the red color
represented the higher values of regional nodal centralities in MDD patients (p<0.05, FDR corrected).

doi:10.1371/journal.pone.0133775.g004
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located in default mode network (DMN) and cognitive control network (CCN), were signifi-

cantly affected by MDD: increased nodal centralities were observed in right gyrus rectus, right

hippocampus, bilateral amygdala, right fusiform gyrus, bilateral middle temporal gyrus and bilat-

eral thalamus, whereas decreased nodal centralities were found in bilateral dorsolateral prefrontal

gyrus and bilateral anterior cingulate gyrus. In sum, these significant findings could expand our

understanding of neurophysiologic mechanisms related to MDD from a network perspective.

Disrupted Small-world Properties in MDD Patients

Our results demonstrated that functional brain networks of both MDD patients and healthy con-

trols showed prominent small-world property, which was in line with previous studies onMDD

[14,21]. Networks with small-world properties ensure a higher information-processing efficiency

for both locally specialized and globally integrated processing [17]. Despite the common small-

world properties, the local efficiencies were significantly higher inMDD patients than healthy

controls. Local efficiency is the measure of local network connectivity, so the increase of local effi-

ciency in MDDmay represent disrupted information processing among distant brain areas

[37,38,39,40]. Contrasted with our results, one fMRI study showed a significantly increased

global efficiency, but unchanged local efficiency[14]. The discrepancies may be attributed to the

differences in the MDD populations. Zhang et al. (2011) recruited MDD patients with mean

HAMD scores≧18, whereas our study recruited MDD patients with HAMD≧24. Patients at dif-

ferent stages may manifest different symptoms with distinct neuronal correlates [41].

MDD-related Changes of Nodal Characteristics

MDD-related increases in nodal centralities were mainly located in right hippocampus, bilat-

eral amygdala, right fusiform gyrus, bilateral middle temporal gyrus and bilateral thalamus,

most of which were components of DMN [15,42]. Increasing evidence indicated that abnormal

Table 2. Regions showing disrupted nodal centralities in MDD patients as compared with healthy controls (cost = 0.21).

Brain Regions p value / pcor value

Nodal Degree Nodal Efficiency Nodal Betweenness

MDD<Control

Left superior frontal gyrus,dorsolateral 0.004 / 0.020 0.010 / 0.026 0.004 / 0.009

Right superior frontal gyrus,dorsolateral 0.023 / 0.052 0.034 / 0.040 0.010 / 0.020

Left anterior cingulate gyrus 0.009 / 0.029 0.040 / 0.041 0.009 / 0.023

Right anterior cingulate gyrus <0.001 / 0.006 0.007 / 0.005 0.022 / 0.036

MDD>Control

Right gyrus rectus 0.015 / 0.040 0.012 / 0.031 NS

Right hippocampus <0.001 / 0.005 0.010 / 0.030 0.020 / 0.035

Left amygdala 0.020 / 0.049 0.028 / 0.044 0.033 / 0.043

Right amygdala 0.004 / 0.017 0.030 / 0.046 0.009 / 0.025

Right fusiform gyrus 0.001 / 0.009 0.039 / 0.049 0.015 / 0.032

Left thalamus 0.008 / 0.030 0.013 / 0.038 0.025 / 0.037

Right thalamus <0.001 / 0.007 0.016 / 0.039 NS

Left middle temporal gyrus 0.002 / 0.012 0.009 / 0.008 0.011 / 0.026

Right middle temporal gyrus 0.013 / 0.038 0.031 / 0.047 0.002 / 0.006

p value (uncorrected); pcor value (p<0.05, FDR corrected); “NS” indicates that there were no significant differences in nodal centrlities between MDD

patients and healthy controls.

doi:10.1371/journal.pone.0133775.t002
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activities in hippocampus, amygdala, fusiform gyrus, middle temporal gyrus, and thalamus

were associated with disruptions in emotional functions [14,43,44]. Specifically, thalamus were

thought to be involved in emotional perception, and amygdala, fusiform gyrus and middle

temporal gyrus played key roles in the neural responses to negative stimuli [45,46,47,48,49].

Disruptions in these regions may result in negative bias in interpersonal feedback and somatic

complaints [7,50]. In addition, hippocampus disruptions were also closely associated with neg-

ative bias in MDD patients [38,45]. Disruptions in hippocampus would increase memory sen-

sitivity to negative stimuli in MDD patients [38,45]. Furthermore, we also found that MDD

disrupted the functioning of the gyrus rectus, a critical region involved in the regulation of

mood and cognition [47]. MDD patients showed abnormal brain activities in the gyrus rectus

during specific tasks or in a resting state [48,49]. Particularly, Fitzgerald et al. (2008) showed

that MDD patients showed increased activations in right gyrus rectus when exposed to positive

stimuli. And more notably, we also found that there were significant positive correlations

between the nodal centralities and HAMD scores in right hippocampus, bilateral amygdala,

Fig 5. Scatter plot with trend line showed the relationship betweenmodularity and HAMD scores for cost = 0.21 in MDD patients.

doi:10.1371/journal.pone.0133775.g005

Graph Theory Analysis and MDD

PLOSONE | DOI:10.1371/journal.pone.0133775 September 1, 2015 10 / 16



right fusiform gyrus, bilateral middle temporal gyrus and bilateral thalamus. This indicated

that if the severity of depression state increased across patients, the nodal centralities of these

regions would become higher. Moreover, because all of these regions were key regions impli-

cated in the pathophysiology of MDD, the properties of these regions could predict the depres-

sive state to some extent.

MDD-related decreases in nodal centralities were mainly found in bilateral anterior cingu-

late gyrus and bilateral dorsolateral prefrontal cortex, which were closely related to cognitive

control network [15,16]. Abnormalities in anterior cingulate gyrus and dorsolateral prefrontal

cortex were not surprising since they were both closely associated with emotion regulation

[48,51]. The dorsolateral prefrontal gyrus has been suggested a key role in the cognitive control

functioning, including allocation of attention [52,53]. Disruptions in this region may lead to

more focused attention on negative aspects of one’s self in MDD patients. Furthermore, the

anterior cingulate gyrus played an important role in the generation of negative mood states

[43,54]. Anomalies of this region were associated with high emotional involvement [54,55]. In

addition, significant negative correlations were observed between the nodal centralities and

HAMD scores in bilateral anterior cingulate gyrus and bilateral dorsolateral prefrontal cortex.

This implied that as the disease progresses, the emotion regulation in MDD patients would

become worse. Moreover, all of these results further strengthened our understanding of the

pathophysiological mechanism of MDD.

Disruptions in Modularity

Resting-state functional brain network has been shown as a modular organization [56]. The

highly modularized structures in MDD patients and healthy controls of the current study pro-

vided further evidence. Key circuits associated with main brain functions were consistently

observed in previous studies, such as cognitive control network (CCN), auditory system, visual

system, default mode network (DMN) and subcortical system [32,57,58]. The current results

Table 3. Pearson correlation coefficients between regional nodal properties and HAMD scores of MDD patients (cost = 0.21).

Brain Regions r value(p value / pcor value)

Nodal Degree Nodal Efficiency Nodal Betweenness

Negative correlations

Left superior frontal gyrus,dorsolateral -0.44(0.004 / 0.020) NS -0.45(0.003 / 0.019)

Right superior frontal gyrus,dorsolateral -0.47(0.002 / 0.016) -0.41(0.004 / 0.017) -0.32(0.039 / 0.062)

Left anterior cingulate gyrus -0.34(0.027 / 0.061) -0.31(0.029 / 0.040) NS

Right anterior cingulate gyrus -0.37(0.015 / 0.048) -0.29(0.040 / 0.052) -0.38(0.014 / 0.036)

Positive correlations

Right hippocampus 0.47(0.002 / 0.014) 0.30(0.034 / 0.043) NS

Left amygdala 0.38(0.014 / 0.038) 0.31(0.030 / 0.041) 0.36(0.018 / 0.032)

Right amygdala 0.47(0.002 / 0.010) 0.44(0.002 / 0.015) 0.58(<0.001 / 0.002)

Right fusiform gyrus NS NS 0.38(0.013 / 0.041)

Left thalamus 0.52(<0.001 / 0.002) 0.30(0.039 / 0.045) NS

Right thalamus 0.38(0.014 / 0.041) 0.35(0.015 / 0.022) NS

Left middle temporal gyrus NS 0.31(0.028 / 0.038) 0.43(0.004 / 0.017)

Right middle temporal gyrus NS NS 0.37(0.014 / 0.030)

p value (uncorrected); pcor value (p<0.05, FDR corrected); “NS” indicates that there were no significant differences in nodal centrlities between MDD

patients and healthy controls.

doi:10.1371/journal.pone.0133775.t003
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were compatible with these findings: Module 1 was mainly related to cognitive control; Module

2 was primarily involved in subcortical regions; Module 3 and Module 5 were mainly associ-

ated with auditory and visual functions. Although Module 4 primarily involved in DMN was

also identified, there were different brain regions in healthy controls and MDD patients. Addi-

tionally, a new module (Module 6) associated with cognitive control function was observed in

MDD patients. From above analyses, we found that the CCN and DMN showed disruptions in

MDD patients. The DMN has been shown to be associated with self-referential processing, so

disruptions in DMNmay be associated with the increases of recall and rehearsal of negative life

events among MDD patients [42,59]. And the CCN has been postulated to play an important

role in patients’ cognitive control of emotion regulation deficit [43,60]. Therefore, the DMN

and CCN may represent important neural substrates of MDD. In addition, increased modular-

ity in MDD patients indicated that there were relatively less inter-modular edges and more

intra-modular edges, which may also be associated with the disruptions in emotion regulation

by decreasing communications between the DMN and CCN [16]. Different from our results,

although Lord et al. (2012) observed a significant reorganization of the community structure in

MDD, they did not find the differences in the modularity. The inconsistencies may be due to

more severely depressed subjects in our study (their mean HAMD scores were 15.8 compared

with 24.5 in our study) [22]. In addition, culture differences (Chinese vs German populations)

may also affect the classification of depression.

Limitations and Further Considerations

There are several issues needed to be addressed. Firstly, our results of increased local efficien-

cies in MDD patients were different from one fMRI study which showed comparable local effi-

ciencies between MDD patients and healthy controls [22]. Variations in clinical characteristics

of MDDmay be one important factor to account for these discrepancies. Different clinical fea-

tures and depression severity may result in different brain activations patterns and further

cause different brain network topological properties [41,61]. Future studies, which use MDD

patients with different clinical characteristics, may give us a more complete understanding of

brain abnormalities. Secondly, the clinical diagnosis of MDD has some limitations and is easily

affected by subjective knowledge and experience. Hence, the objective diagnosis of MDD has

high clinical value in preventing severe disease. In addition, the present study suggested that

the measurement of topological properties was a preferential candidate for diagnosing MDD.

However, different topological properties were found between functional and structural brain

networks [14,40]. Thus, investigating the topological properties of human connectome in com-

bination with functional and structural neuroimaging is also important. Moreover, the ability

to diagnose MDD could be further enhanced using multi-modality MRI. Thirdly, large studies

have indicated that the cerebellum was closely associated with higher-order functions, includ-

ing emotion regulation and cognitive processing, and have suggested that the cerebellum

should be included in the pathophysiological models of MDD [62,63]. However, because the

AAL template we chose did not contain the cerebellum, the current study analyzed the func-

tional brain network without cerebellum. In future, the cerebellum should be involved in the

analyses by selecting the more comprehensive template or making a special analysis on the cer-

ebellum. Finally, the application of graph theory to investigate network disruptions in MDD

patients is still in its preliminary stage, and there are still many issues to be deepening. Until

now, MDD patients have been investigated widely using graph theory. Next, we should form a

hypothesis-generating framework to understand the relationships between abnormal topologi-

cal properties and MDD.
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Conclusion

Using graph theory, we found that the MDD patients showed increased local efficiency and

modularity. Additionally, brain regions mainly implicated in emotional and cognitive function

were significantly affected by MDD. These results provide new and important insights into the

neural correlates of MDD. Further work could be conducted to examine how the topological

structure of functional brain networks is altered with different clinical depressive symptoms

and severity.
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