mRNA Expression in Huntington＇s Disease－An In Situ Hybridization Study

Thomas Arzberger，MD，Klaus Krampfl，BSc，Susanne Leimgruber，DMV，and
Abstract．The distribution of NMDA receptor subunit（NR1，NR2B）and glia－bound glutamate transporter（GLTI）mRNAs was investigated in postmortem brains of Huntington＇s disease（HD）patients and controls by means of in situ hybridization
using radiolabeled deoxyoligonucleotides．In the neostriatum of HD，NR1，NR2B and GLT1mRNA decreased in correlation to disease severity．GLT1mRNA was not as low as NR1／NR2BmRNA．Losses were more prominent in putamen than in the distinctly arrophied caudate．NR1／NR2BmRNA decreased corresponding to neuronal loss，GLTImRNA due to reduced cellular
expression．The number of GLT1mRNA expressing cells identified as astrocytes increased in the neostriatum（astrogliosis）． In contrast to controls，most of these astrocytes contained glial fibrillary acidic protein．NRI／NR2B and GLT1mRNA ex－ pression was not homogeneously lower in the neosirialum；zones with stronger hybridization signals corresponded io Ne NR2BmRNA levels were higher in these zones than in controls．These findings indicate a loss of neurons with NMDA
receptors in the neostriatum of HD．A concomitant proliferation of astrocytes with GLTI transcripts may represent a com－ pensatory mechanism protecting neostriatal neurons from glutamate excitotoxicity．

Key Words：Co－localization；Excitotoxicity；Glial fibrillary acidic protein；Glutamate transporter I；Huntington＇s disease；
In situ hybridization；NMDA receptor subunits． mechanisms，including a defective glutamate transporter centration of glutamate in the synaptic cleft，an abnor－
 of NMDA－receptors，can lead to an increased influx of
號

 NR1－3a／b，NR $1-4 a / b$ ）（14），NR2A（15），NR2B（16）and 3 different glutamate transporters termed glutamate－
aspartate transporter（GLAST），glutamate transporter 1
 have been cloned so far（17－19）．As found in rats，
GLAST and GLT1 are mainly localized in membranes of glial cells，EAAC1 only in membranes of neurons（20， To investigate changes of the glutamatergic system in postmortem intervals of HD patients at different neuro－ pathological stages of the disease and age－matched con－ trols without any neurological disorder．Performing in

号 also expressed in basal ganglia，and for GLT1，the pre－ dominant glutamate transporter in mammalian brain（21， unpublished observations）．The striosome－matrix com－
partmentation of the neostriatum was visualized by im－

 autosomal dominant progressive neurodegenerative dis－ order caused 4 pl 6.3 （1，2）．Huntington＇s disease mani－ fests with choreatic hyperkinesia and cognitive and af－ fective impairment，generally between 30 and 40 years of age（3）．The most pronounced neuropathological more severely affected than the putamen（4）．This atro－
 spiny GABA／enkephalinergic neurons projecting to ex－ ternal pallidum，followed by losses of GABA／substance P－containing neurons projecting to substantia nigra pars
reticulata and GABA／substance P－containing neurons projecting to the internal pallidum（5－8）and by a con－ comitant astrogliosis（9）． There are widespread glutamatergic projections from
most cortical areas to the degenerating neostriatum（10， 11）．Glutamate，the major excitatory neurotransmitter in the central nervous system of mammals，is a putative neurotoxin（excitotoxin）and is thought to be involved in neurodegeneration．It acts via ionotropic（AMPA，kain－ moved from the synaptic cleft by membrane－bound glu－ moved from the synaptic cleft by membrane－bound glu－
tamate transporter proteins．Various pathophysiological

Downloaded from https://academic.oup.com/jnen/article/56/4/440/2610737 by guest on 20 August 2022

441


CAA CAC TGC AGT CGG CTG ACT TTC CAT TGG CTG TGA CTG TCG TGC ATT CGC ACT TCC ACC TGC TTG GEC nex, Roosendaal, Netherlands).
nelux, Roosendaal, Netherlands).
IIH was performed under RNAse-frec conditions according
io the protocol of Wisden (26), with some modifications. Oligos
 Germany) by terminal transferase (Boohringer Mannheim, Ger-
 dylate, 125 mM Tris-HCl, bovine serum albumin, $1.25 \mathrm{mg} / \mathrm{ml}$,
 aqua dest and stopped with $40 \mu 110 \mathrm{mM}$ Tisis 1 mM EDTA buffer, pH 8.0. Unincorporated nucleotides were removed by
Bio-Spin 6 columns (Biorad, Munich, Germany). Only labels between 250,000 and $350,000 \mathrm{cpm}$ per $\mu \mathrm{l}$ of the eluate were used for experiments. Sections were rehydrated in PBS, pre-
reated with $10 \mu \mathrm{~g} / \mathrm{ml}$ proteinase K in 0.05 M TRIS-HCl, 0.05 M


 hybridized for 20 h at $42^{\circ} \mathrm{C}$ with labeled probe diluted $1: 50$ in
hybridization buffer containing $50 \%$ deionized formamide, $4 \times$ hybridization buffer containing $50 \%$ deioinized formamide, $4 \times$
standard saline cirate (SSC), $10 \%$ dexrran sulfate, $100 \mu \neq \mathrm{ml}$

 30 min at $55^{\circ} \mathrm{C}, 1 \times S S C, 0.1 \times \operatorname{SSC}$ for 1 min each at r and

 Braunschweig. Germany) for 20 days or dipped in 1: in sterile



 and axons of neurons in the matrix (22) in relation to distribution patterns of NR1, NR2B and GLTImRNA. In
addition, glial fibrillary acidic protein (GFAP), an astrogliaspecific type III intermediate filament protein $(23,24$ ), was immunohistochemically stained in order to determine the extent of astrocyte proliferation in HD and to further haracterize cells with GLTI transchps.

Preparation of Tissue: Brain specimens of 3 cases of HD $(\# 1-3)$ with dififeren neuropathological grades accorrathogical
chassification of Vonsatel le al ( 25 ; clinical and pathological data are shown in Table 1 ) and of 3 age-matched controls ( 2 males and 1 female) without clinical evidence of neurological or psychiacichy reanes drom 8 to 14 hours (h). In all cases, a
mortem delay ranged premortal agony could be excluded. Brains were cut into co-phosphate-buffered formaldehyde ( $p \mathrm{H} 7.0$ ) for 4 days and, for phryoprotection, transferred into $20 \%$ sucrose in phosphate-
cry
 with respect to anatomical structures, shock frozen with dry ice powder and stored at $-80^{\circ}$. . Ten- $\mu$ s. serial sections were cut
in a cryostat, thaw-mounted onto poly-1-lysine-coated slides, in a cryostat, thaw-mounted onto poly--lysine-coated slides,
possfixed for 5 minutes (min) in $4 \%$ phosphate-buffered paraformaldehyde, and stored in $96 \%$ ethanol a a $44^{\circ} \mathrm{C}$ until use. cleotides ( 45 mers) complementary to coding parts of cDNAs

 2: $5^{\prime}$-CGT GAC GGA GGT GGC ATT GAG CTG AAT CTT CCA GGA GCC GTG CCG - ${ }^{\prime}$, pos. 154-178), NR2A (oligo

$1: 5^{\prime}$-GCC GTT GAC CTC AAG GAC GAC CGA AGA TAG CTG TCA TTC ACC GCC $-3^{\circ} \cdot$ pos. $4182 .-4226$; oligo $2: 5^{\prime}-$ | 4 |
| :--- |
|  |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 |
| 0 | GAT GGA CCT GGA CTG GGT GGT GAA GGG TGG GTT | GAT GGA CCT GGA |
| :--- |
| GTC ACA GTC $-3^{\prime}$, pos. 3013 -3057; oligo 2: $5^{\prime}$-CCA TTG | OLL OLI LIL OOO OL DOD $\forall \forall \forall$ DII $\forall D O$ DVO OLO



[^0] dum, claustrum, insular cortex, and white matter were manualy outlined with the cursor to compute their mean gray values. For
each area, outlining and measuring were repeated 4 times and

 same way. The final mean gray value for each mRNA in each anatomical area of interest was calculated as the mean of the mean of all 4 experiments. In order to determine the correlation
between gray values and intensity of radioactivity, each film was exposed to autoradiographic $\left[{ }^{14} \mathrm{C}\right]$ micro-scale standards with a range from $0.1 \mathrm{nCi} / \mathrm{g}$ to $100 \mathrm{nCi} / \mathrm{g}$ (Amersham, Braunschweig, Germany) according to Akbarian et al (27). The mean gray value for each carbon- 14 concentration was calculated the
same way as described above for anatomical areas. With the help of the resulting calibration curve, each final mean gray value was converted into absolute values of radioactivity. Fig-

 which were considered to be nonspecific background; the values for controls represent the mean of the final mean values for
all 3 controls.
 ographs of the same experiment were selected for evaluation,
in order to guarantee the same intensity of radioactivity, batch of photoemulsion, exposure time, and photochemical procedure,
 cells of similar size belonging to the same anatomical area of trols.

## RESULTS

1. Macroscopic Changes
All 3 cases of HD showed an atrophy of the neostriatum with a pronunciation of the caudate nucleus (Figs.
$1 \mathrm{a}-\mathrm{c} ; 2 \mathrm{a}-\mathrm{c} ; 3 \mathrm{a}-\mathrm{c} ; 7 \mathrm{a}, \mathrm{b}$ ) in comparison with controls (Figs. 1d; 2d; 3d).
la. Regional Distribution of NRI and NR2BmRNA in
Controls and HD Controls: At $\beta$ max hyperfilm level, NR1 and NR2B transcripts showed the same distribution pattern, with decreasing intensities in insular cortex, tem-
poral cortex (not shown, n.s.), amygdala (n.s.), claustrum, supraoptic nucleus (n.s.), putamen, caudate, thalamus, ex-
 signals for NR1mRNA were stronger in external and internal pallidum, claustrum, insular cortex, and supraoptic
nucleus, equal in the caudate, putamen, hypothalamus, $0.5 \%$ toluidine blue, dehydrated in ethanol, cleared with xylene,

## erslipped. . showed the same distribution patern for each

 mRNA, confirming the specificity of our probes. Subsequenty, all further experiments were performed using oligo probe for each mRNA. For negative control, a 100 -fold excess of nonlabeled oligonucleotides was added to the radioactive probe and applied to the adjacent section, leading to a complete NR2AmRNA were detectable in neostriatum of controls, experiments on HD tissue were omitted.Immunohistochemistry (IHC)
GFAP and Calbindin-D Staining: Sections neighboring those whegenous peroxidase was blocked with $0.25 \% \mathrm{KMnO}_{\text {, }}$ for 5 min and washed in $1 \%$ oxalic aci completely washed out. Immunohistochemistry was performed
according to the protocol given by DAKO (Hamburg, Germany). In brief, after preincubation with rabbit serum ( $1: 10$ ) in PBS, sections were incubated with a monoclonal mouse anti-
body directed against GFAP (Boehringer Mannheim, Germany), diluted 1:4, or against calbindin-D diluted 1:200 in PBS (Sigma, Deisenhofen, Germany), overnight at $4^{\circ} \mathrm{C}$, followed the
next day by an incubation with biotinylated rabbit-anti mouse
 oxidase complex ( $1: 100$ in 0.05 MPB ) for 30 min each at rt .
The final enzymatic reaction was performed for 5 min using $0.01 \% \mathrm{H}_{2} \mathrm{O}_{2}$ as substrate and $0.1 \%$ diaminobenzidine as chromogen in 0.05M PB. Counterstaining and mounting was the icals for ISH and ICH were purchased from Sigma (Deisen-会
Co-localization of GLTImRNA and GFAP; Combining ISH with IHC, IHC was carried our after ISH. Both techniques were
performed as described above. After hybridization, washes in SSC and dehydration, slides were directly transferred into PBS for IHC. A pretreatment for blocking endogenous peroxidase
was omitted. After the final enzymatic reaction, slides were de-

Deternination of Regional mRNA Levels: $\beta$ max hyperfilms
 800 pixels per inch and a standardized grayscale ranging from
Mean gray values were determined using the program NIH Image 1.52 for Macintosh (public domain). Images of coronal sections at the level of globus pallidus were evaluated. In order o receive absolute values comparable with measurements of different experiments, the mean gray value of each film was
considered as background and subtracted. Anatomical areas of
and Pe of \#3. Signals in claustrum (Cl) and insular cortex (IC) are increasingly weaker from \#1 to \#3. There is no obvious
reduction of expression in anterior (An), ventroanterior (Va) and reticular (Re) thalamic nuclei of \#1 or hypothalamic areas (Hy) of \#1-3 compared with the control. Strong signals remain in amygdala (Am) and temporal cortex (TC) of \#1 and in supraoptic nucleus (SO) of \#3. Inset represents detail enlarged in Figure 7a. a-d, $\times 2$.


Fig. 2. NR2BmRNA expression in 3 patients with increasing severity of HD (\#1-3; a-c) and a control (d). Autoradiographs.
Fig. 2.
$\beta$ max hyp
transcripts transcripts (Fig. 1). Compared with NR 1 mRNA, hybridization signals for NR2BmRNA appear to be stronger in anterior (An),
ventroanterior (Va), and reticular (Re) thalamic nuclei of \#l and the control, equal in caudate (Cd), putamen (Pu) of the control,
amygdala (Am) and temporal cortex (TC) of $\# 1$, amygdala (Am) and temporal cortex (TC) of \#1, and weaker in all other areas in \#1-3 and the control. Alterations of NR2BmRNA ( Pe ) of $\# 2$ and there is a reduction in $\mathrm{An}, \mathrm{Va}$, and Re of $\# 1$. Cl claustrum, Hy hypothalamus. IC insular cortex, Pe external
pallidum, Pi internal pallidum, SO supraoptic nucleus. $\mathrm{a}-\mathrm{d}, \times 2$.


[^1]Downloaded from https://academic.oup.com/jnen/article/56/4/440/2610737 by guest on 20 August 2022
the exception of the external pallidum of \#2 and the thalamus. In the neostriatum, both NR1 and NR2BmRNA expression was reduced compared with controls, with decreasing intensities from in $\# 1$ to $\# 3$ (Figs. la-d; 2a-d,
$4 a, b$. The decrease was more prominent in the putamen $4 \mathrm{a}, \mathrm{b}$ ). The decrease was more prominent in the putamen bridization signals for NR1/NR2BmRNA were found bridization signals for NRI/NR2BmRNA were found
(Figs. 1a; 2a; $4 \mathrm{a}, \mathrm{b}$ ), whereas in the putamen of \#2 and $\# 3$, no signals were detectable at $\beta$ max level (Figs. 1b, $\mathrm{c}: 2 \mathrm{~b}, \mathrm{c}: 4 \mathrm{a}, \mathrm{b})$. In \#1, signals in the dorsal part of the
putamen were slightly lower than in the ventral part putamen were slightly lower than in the ventral part
(Figs. 1a; 2a). In the caudate, the signals were not uniformly impaired-they were more intense in the lateral










 In the thalamus NR2B but not NR1mRNA expression
 -sordxe VNYugzZN/IZN to uo!̣ənpar snoinqo oN '(p














 GLT1mRNA were increasingly reduced from \#1 to \#3;
in the caudate of $\# 1-3$, signals decreased to a similar








 of \#1-3 and controls. Data are shown as mean values $\pm$ SE
Asterisks indicate values not discernible from zero counts.

[^2] цו!м pales!lsonu! seare feopmoteue ine u! gzzN pue IdN
 Fig. 5. Comparison of GLT1mRNA hybridization signals
(a) with the striosome-matrix compartmentation (b) in putamen
of \#2 on neighboring sections. a. Autoradiograph. Rmax hy-
perfilm. b. Immunohistochemical staining of calbindin-D. In the
putamen, zones with more intense hybridizarion signals for
GLTImRNA (a) correspond to dark-stained calbindin-D-rich
matrix comparments (b; examples of corresponding areas are
marked by arrows pointing to the same direction). Note the
ventro-dorsal gradient of both hybridization signal intensity for
GLTImRNA and immunoreactivity for calbindin-D, indicating
a dorso-ventral progression of degeneration in HD. $\times 7$. GFAP-positive and GFAP-negative cells, suggesting that
GFAP-negative cells were also astrocytes. $H D$ : In the caudate and putamen of all 3 cases of HD,
the number of cells with hybridization signals for GLT1mRNA was higher (Figs. 6c; 7d, f; 8d, f) compared
with controls (Figs. 7h; 8h). Rarely, a cell with GLTI with controls (Figs. 7h; 8h). Rarely, a cell with GLTI
transcripts was found to be negative for GFAP. This was in contrast with caudate and putamen of controls and with a slight increase of cells with GLT1 transcripts in external a slight increase of cells with GLTI transcripts in external alterations in other areas.
2c. Changes of Cellular GLT1mRNA Levels in HD: In
the caudate and putamen of \#1-3, cellular GLT1mRNA
levels were constantly lower (Figs. 7d, f; 8b, d, $\mathrm{f} ; 9 \mathrm{~g}, \mathrm{~d}$ )
than in corresponding areas of controls (Figs. 7h; 8 h .
Somata of neostriatal cells in controls were surrounded
by a large halo of hybridization signals representing
GLT1mRNA in cell processes (Figs. 7h; 8 h ). Correspond-
ing to less extensively branching processes of astrocytes of \#2 (Fig. 3b), and medial caudate of \#3 (Fig. 3c). Compared with controls (Figs. 3d; 4c), GLT1mRNA expression in external and internal pallidum was not altered in was reduced in \#3 (Figs. 3c; 4c). In the claustrum and insular cortex, signals decreased slightly in \#1-2 (Figs. 3a, b; 4c), but distinctly in \#3 (Figs. 3c; 4c) in compar-
ison with controls (Figs. 3d; 4c). No obvious reduction of GLT1mRNA expression was found in hypothalamus (Fig. 3a-d), supraoptic nucleus (Fig. 3c; control n.s.), thalamus (Fig. 3a, d), amygdala and temporal cortex (Fig. 3a; control n.s.).
1c. Comparison of Zones with Prominent Hybridiza-
tion Signals for NRI, NR2B or GLTImRNA in the Neostriatum of \#I-3 and Relation to the Striosome-matrix Comparmentation: In the caudate of \#1-3 and the nals for GLTImRNA corresponded to zones with prominent hybridization signals for NR1/NR2B (Figs. la-c; 2a-c; $3 \mathrm{a}-\mathrm{c} ; 7 \mathrm{a}, \mathrm{b}$ ). However, in zones with prominent
hybridization signals for GLT1mRNA in striatal cell bridges and putamen of $\# 2$ (Fig. 3b), no hybridization

Immunohistochemical stainings of calbindin-D in neighboring sections revealed that zones with stronger hybridization signals for NR1/NR2B or GLT1mRNA corpartments (Fig. 5a, b)
2a. Cellular Changes in HD and GFAP Staining: In caure and prap , Hitive astrocytes (Fig. 6a) compared with controls (Fig. 6b). In external and internal pallidum, the increase of GFAP-positive astrocytes was less pronounced. In all these areas the somata of astroprocesses (Fig. 6a), in contrast with somata of astrocytes of controls, which had a round shape and many long processes (Fig. 6b). No obvious changes concerning in hypothalamus, supraoptic nucleus, thalamus, amygar corts. o-localization with GFAP, and Changes in HD to gray matter and equally distributed in all areas described above. Co-localization experiments for
GLT1mRNA and GFAP revealed that all GFAP-positive astrocytes in gray matter contained GLT1mRNA, present not only in somata but also in processes (Fig. 6d), but for GFAP. The distribution pattern of hybridization signals, present not only in somata, but also diffusely surrounding the somata (Figs. 7h; 8h), was the same in both
 Fig. 6. Astrogliosis, GLT1mRNA expression in the caudate of \#3 and characterization of a GLT1mRNA-containing cell. a,
b, d. Immunohistochemical stainings for glial fibrillary acidic protein (GFAP). c, d. Histoautoradiographs for GLT1mRNA. In caudate (Cd) of \#3 (a) the number of astrocytes, immunohistochemically marked for GFAP, is larger than in the control (b). Note

 in caudate and putamen of HD (Fig. 6a), the diameter of of neurons, NR2BmRNA levels were lower than the halo of hybridization signals was smaller; GLT1 tran- NR1mRNA levels.


 tions were found in all other areas investigated.

2e. Changes of Cellular NR1/NR2BmRNA Levels in $H D$ : In the caudate and putamen of \#1, NR1/NR2BmRNA
 controls (Fig. 7g); only in a few neurons were mRNA levels lower. This was in contrast to remaining neostriatal



 trix compartment (Fig. Sb), both the number of cells with GLT1 transcripts and their mRNA content were increased
(Figs. 7f; 8b, d) compared with neighboring areas with less intense signals (Figs. 7d; 8f), which were calbindin-D poor. In other anatomical areas with reduced GLTImRNA ex-

ower in \#1 and 2, and conspicuously lower in \#3. Controls and Changes in HD

Controls: In all areas investigated, the majority of cells with structural characteristics of neurons showed hybrid-


 ILTO ло I IVN प!M s|





Fig. 9. NR1 and GLT1mRNA expression in the caudate (a, b) and putamen (c, d) of \#3. Histoautoradiographs. a. In \#3, the


calbindin-D-rich matrix compartment, both the number of NR2B) and glutamate transporter (GLT1) mRNA in 3




 the distinctly atrophied caudate. (b) Reduction of GLT1mRNA in neostriatum in correlation to the severity expression; the reduction was also more prominent in the

Downloaded from https://academic.oup.com/jnen/article/56/4/440/2610737 by guest on 20 August 2022
putamen than in the caudate, but not as dramatic as seen responsible for a rapid removal of glutamate from the for NR1/NR2BmRNA. (c) The reduction of NR1/NR2B aining GLT1 transcripts found in HD might lead to an
increased number of transporter proteins. The astrogliosis occurs in parallel with a progressive loss of neurons and s already present at neuropathological grades 0 and 1 co-marked degree of astrocytosis in striosomes and a o-marked degree of astrocytosis in striosomes and ropathological grade 0 , but a notable decrease of neuronal density only in striosomes, indicating that a proliferation of astrocytes occurs before neuronal degeneration. Therefore, the increase of astrocytes containing glutamate
transporter mRNA could represent a compensatory mech transporter mRNA could represent a compensatory mech
anism to protect neurons from the excitotoxic effect of glutamate. With progression of the disease and loss of
 of GLT 1 mRNA in astrocytes appears to be downregulat-
ed, as our observations indicate. This is in accordance with observations of Cross et al (35), who found a remortem neostriatum of HD. The downregulation may be
 neostriatal projections, similar to the neostriatal downGLAST described by Levy et al (36) after cortical glutamatergic deafferentation.
 ority of astrocytes with GLT1 transcripts, but its presence in nearly all GLT1mRNA containing astrocytes in neostriatum of HD , is a noteworthy side observation, in-
dicating that in areas without astrogliosis, only a subpop-
 this subpopulation proliferates or that proliferating astrocytes start to express GFAP. According to O'Callaghan
(38), enhanced GFAP occurring with reactive gliosis rep(38), enhanced GFAP occurring with reactive gliosis rep-
resents a potential biomarker of neurotoxicity. Although postmortem delay was similar and type and duration of fixation and enzymatic pretreatment was the same for







 in caudate reported by Vonsattel et al (25), with a relative preservation of the lateral part in comparison with the
 volved in or even be responsible for an excitotoxic effect
of glutamate (9). The parallel existence of neostriatal neuof glutamate (9). The parallel existence of neostriatal neuwith the lowest neuroph2BmRNA levels in our case with the lowest neuropathological grade being higher,
 constantly lower mRNA levels at later stages suggest a gradual decrease of cellular NR1/NR2BmRNA expression before neuronal death.

> CONCLUSION
fo asuanbes elq!ssod e 'sōu!puy ino ol gu!piosev
 HD could be: (a) neuronal excitotoxic effect of glutamate
due to an increased number of NMDA-receptors and/or
 gliosis representing an increased number of mechanism to remove glutamate from the synaptic cleft; (c) degradation of cellular NR1/NR2BmRNA expression due to cell degeneration; (d) loss of neurons with NMDA


To further elucidate the pathogenesis of HD it will be necessary to investigate presymptomatic cases and cases of neuropathological grade 0 and 1.
 NMDA receptors are impaired in the neostriatum of HD.


 of HD may be a useful approach.
ACKNOWLEDGMENTS

REFERENCES

1. The Huntington's Disease Collaborative Research Group. A novel
gene containing a trinucleotide repeat that is expanded and unstable
on Huntington's disease chromosomes. Cell 1993;72:971-83


 ences in degeneration.

Furthermore, there were zones with pronounced hy-
bridization signals for both NMDA receptor subunit and bridization signals for both NMDA receptor subunit and
glutamate transporter transcripts corresponding to the remaining calbindin-D-rich matrix compartment. These areas consisted of a larger number of cells with enhanced poor areas representing striosomes and degenerated ma-
 jo ssol e ol lopered sem '(Ot) ie to вuilysuo-ojes Kq hybridization signals for NR1, NR2B, and GLTImRNA.
Intriguingly, the loss of NR1/NR2B transcripts was nearly complete in the putamen at neuropathological grade 3 despite a preservation of the ventral matrix compartment; only a few neurons with low hybridization signals for tions indicate a downregulation of NMDA receptor mRNA before neuronal degeneration. Since the neuronal degeneration proceeds, other neuronal populations, which do not express NMDA receptors, might also be involved in the process of degeneration. Hedreen and Folstein (34) found an early decrease of neostriatal striosome neurons.
 striosome neurons expressing NMDA receptor subunit mRNA are involved in this early degeneration. But our observation that even in the relatively well-preserved ventral putamen in our case with the lowest neuropathwith NR1/NR2B transcripts were lower in calbindin-Dpoor areas than in calbindin-D-rich areas, makes it very likely that a degeneration of neurons expressing NMDA



 in the caudate and putamen

Surprisingly, in our case with the lowest neuropathological grade, the cellular NR1 and NR2BmRNA expreshybridization signals compared with corresponding neurons of controls. Since the pharmacological treatment of all 3 patients was similar in the last months before dean, weak antipsychotic effect such as sulpiride and promazine, it is unlikely that this "upregulation" is caused by medication. Thus, it is possible that an abnormal number $\stackrel{(2}{\square}$
2. Albin RL, Tagle DA. Genetics and molecular biology of Hunting- 22. Gerfen CR, Baimbridge KG, Miller JJ, The neostriastal mosaic: ton's disease. Trends Neurosei 1995;18:11-14 Compartmental distribution of calcium-binding protein and parvalmanagement. N Engl J Med 1986;315:1267-76
Forno LS, Jose C. Huntington's chorea: A pathological study. In:
Barbeau A, Chase TN, Paulson GW, eds. Huntington's chorea. AdBarbeau A, Chase TN, Paulson GW, eds. Huntington's chorea. Advances in Neurology. Vol. I. New York: Raven Press, 1973:453-70 Kowall NW, Ferrante RJ, Martin JB. Patterns of
ington's disease. Trends Neurosci 1987;10:24-29 tington's disease. Trends Neurosci 1987;10:24-29
Reiner A, Albin RL, Anderson KD, D'Amato C. Penney JB, Young BY. Differential loss of striatal projection neuro
disease. Proc Natl Acad Sci 1988:85:5733-37 Albin RL, Reiner A. Anderson KD, et al. Preferential loss of striatoexternal pallidal projection neurons in presymptomatic Hunting-
Am's disease, Am Neurol 1992;31:425-30 Richfield EK, Maguire-Zeiss KA, Vonkeman HE, Voorn P. Preferential loss of preproenkephalin versus preprotachykinin neurons
from the striatum of Huntington's disease patients. Ann Neurol from the striatu
1995:38:852-61
Bruyn GW. Hun Bruyn GW. Huntington's chorea: Historical, elinical and laboratory
ynopsis. In: Vinken PJ, Bruyn GW, eds. Handbook of clinical neuology. Vol. 6. Amsterdam: North Holland, 1968:379-96 Damate in terminals of corticostriatal axons. Nature 1977;266:377-88
amen ganglia. Trends Neurosci 1990;1 3:244-54 Whetsell WO. Current 13 Exp Neurol 1996;55:1-13
Monyer H, Sprengel R, Schoepfer R, et al. Heteromeric NMDA receptors: Molecular
1992;256:1217-21

Foldes RL, Rampersad V, Kamboj RK. Cloning and sequence analysis of additional splice variants encoding human N-methyl-D
aspantate receptor (hNR1) subunits. Gene 1994;147:303-4 Foldes RL. Adams SL. Fantaske RP, Kamboj RK. Human N-metate receptor modulatory subunit hNR2A: Cloning and se quencing of the cDNA and primary structure of the protein. Bba
dell Res $1994 \cdot 1223.155-59$ quencing of the cDNA and Res 1994;1223:155-59
Mol Cell R
Adams SL, Foldes RL, Kamboj RK

Adams SL, Foldes RL, Karnboj RK. Human N-methyl-D-aspartate
receptor modulatory subunit hNR3: Cloning and sequencing of the
cDNA and primary structure of the protein. Bba Gene Struct Ex
Shashidharan P Plaitakis A. Cloning and characterization of a glu-
phys Acta 1993:1216:161-64
Shashidharan P. Wittenberg I, Plaitakis A. Molecular cloning of
1994; 1191:393-96
Shashidharan P, Huntley GW, Meyer T, Morrison JH, Plaitakis A. Neuron-specific human glutamate transporter: Molecular cloning, Rothstein JD, Martin L. Levey AI, et al. Localization of neuronal Lebre KP, Levy LM, Ottersen OP, Storm-Mathisen J, Danbolt NC. Differential expression of two glial glutamate transporters in the rat
brain: Quantitative and immunocytochemical observations. J Neurosei 1995;15:1835-53


[^0]:    Fig. 1. NRImRNA expression in 3 patients with increasing severity of HD (\#1-3; a-c) and a control (d). Autoradiographs. are not detectable in the Pu of \#2 or \#3. In the distinctly atrophied caudates (Cd) of \#1-3, NR1mRNA is still expressed, with
    more intense signals in the lateral caudate of $\# 1$ and medial caudates of $\# 2$ and $\# 3$. NR1mRNA expression does not appear to more intense signals in the lateral caudate of \#1 and medial caudates of \#2 and \#3. NR1mRNA expression does not appear to

[^1]:    
    
     ı! !̣
    
     stronger. Strong signals are seen in amygdala (Am) and temporal cortex (TC)
    nucleus (SO) of $\# 3$. Inset represents detail enlarged in Figure 7 b . a-d, $\times 2$.

[^2]:    Tlamus (Figs 1d. 2d. 4a, b). halamus (Figs. 1d; 2d; 4a, b).
    amygdala (n.s.), and temporal cortex (n.s.), and lower in

