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ABSTRACT

Away from the tropical Pacific Ocean, an ENSO event is associated with relatively minor changes of the
probability distributions of atmospheric variables. It is nonetheless important to estimate the changes accurately
for each ENSO event, because even small changes of means and variances can imply large changes of the
likelihood of extreme values. The mean signals are not strictly symmetric with respect to El Niño and La Niña.
They also depend upon the unique aspects of the SST anomaly patterns for each event. As for changes of
variance and higher moments, little is known at present. This is a concern especially for precipitation, whose
distribution is strongly skewed in areas of mean tropospheric descent.

These issues are examined here in observations and GCM simulations of the northern winter (January–March,
JFM). For the observational analysis, the 42-yr (1958–99) reanalysis data generated at NCEP are stratified into
neutral, El Niño, and La Niña winters. The GCM analysis is based on NCEP atmospheric GCM runs made with
prescribed seasonally evolving SSTs for neutral, warm, and cold ENSO conditions. A large number (180) of
seasonal integrations, differing only in initial atmospheric states, are made each for observed climatological
mean JFM SSTs, the SSTs for an observed warm event (JFM 1987), and the SSTs for an observed cold event
(JFM 1989). With such a large ensemble, the changes of probability even in regions not usually associated with
strong ENSO signals are ascertained.

The results suggest a substantial asymmetry in the remote response to El Niño and La Niña, not only in the
mean but also the variability. In general the remote seasonal mean geopotential height response in the El Niño
experiment is stronger, but also more variable, than in the La Niña experiment. One implication of this result
is that seasonal extratropical anomalies may not necessarily be more predictable during El Niño than La Niña.
The stronger seasonal extratropical variability during El Niño is suggested to arise partly in response to stronger
variability of rainfall over the central equatorial Pacific Ocean. The changes of extratropical variability in these
experiments are large enough to affect substantially the risks of extreme seasonal anomalies in many regions.
These and other results confirm that the remote impacts of individual tropical ENSO events can deviate sub-
stantially from historical composite El Niño and La Niña signals. They also highlight the necessity of generating
much larger GCM ensembles than has traditionally been done to estimate reliably the changes to the full
probability distribution, and especially the altered risks of extreme anomalies, during those events.

1. Introduction

The coupling of the atmosphere and ocean in the
tropical Pacific basin gives rise to the quasi-regular in-
terannual El Niño–Southern Oscillation (ENSO) whose
effects are felt around the globe. Several elements of
the phenomenon, such as the sea surface temperature
(SST) anomalies in the eastern equatorial Pacific, can
now be predicted two or more seasons in advance. This
raises the hope that at least some aspects of interannual
variability may also be predictable in other regions at
similar lead times. This hope is being pursued in the
climate modeling community to improve seasonal pre-
dictions in both the Tropics and extratropics. Unfortu-
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nately, the ENSO signal is small in the extratropics (e.g.,
Horel and Wallace 1981; Lau 1985; Barnston 1993; Liv-
ezey and Mo 1987; Palmer and Anderson 1994; Barnett
1995; Stern and Miyakoda 1995; and many others).
Even so, it is perhaps the strongest predictable inter-
annual signal there, and the question is how best to use
it in seasonal predictions.

This paper was originally motivated by the fact that
even a small ENSO signal-to-noise ratio of 0.5, while
not large enough to affect appreciably the expected sea-
sonal mean of an extratropical variable x, can still great-
ly affect the probability of extreme values of x. This
follows from elementary considerations of the normal
probability density function (PDF) in Fig. 1. Figure 1a
illustrates a scenario in which ENSO results in, say, a
shift of 0.5 (in units of the standard deviation) of the
PDF of x to the right. Even though the shift is ‘‘small,’’
the likelihood (or risk) of obtaining an extreme positive
value of x, defined here as greater than 11, increases
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FIG. 1. (a) Normal probability density function (PDF) N(0, 1) (solid curve) and N(0.5, 1) (dashed curve) with means
0 and 0.5, respectively, and standard deviations 1.0. Shaded areas indicate difference in probability of extreme values
greater than 11 (5A1) and difference in probability of extreme values less than 21 (5A2). (b) Same as (a) but for
PDFs N(0, 1) and N(0.5, 0.82). (c) Here A1 is expressed as a percentage for normal distributions N(m0, ) and N(m, s 2).2s 0

The symbols ‘‘a’’ and ‘‘b’’ on the plot refer to the cases illustrated in the upper two panels. (d) As in (c) but for A2.

from 16% to 31%. Similarly, the likelihood of obtaining
an extreme negative value of less than 21 decreases
from 16% to 7%. Thus without ENSO the risks of ex-
treme positive and negative anomalies are the same, but
with ENSO the risk of an extreme positive anomaly
becomes 31/7 5 4.4 times the risk of an extreme neg-
ative anomaly.

When even small PDF shifts imply large changes of
the likelihood of extremes, determining those shifts ac-
curately becomes important. For this reason it is also
important to determine how ENSO affects the extra-
tropical noise, represented in Fig. 1a by the spread of
the PDF. Figure 1b depicts another scenario in which
the ENSO signal (i.e., the shift) is the same as in Fig.
1a, but the noise is reduced from 1 to 0.8. The risk of
an extreme positive anomaly is now 27%, while that of

an extreme negative anomaly is 3%, giving an altered
positive/negative risk ratio of 27/3 5 9 that is more than
double the ratio of 4.4 for the scenario of Fig. 1a. The
remaining two panels of Fig. 1 show the changes of risk
of extreme positive (Fig. 1c) and extreme negative (Fig.
1d) anomalies for other combinations of shift and
spread. A wide range of possibilities is depicted in Figs.
1c and 1d. Note that for small shifts any reduction of
spread implies a reduced risk of both positive and neg-
ative extremes. Clearly, knowledge of not just the mean
shift but the change of the entire distribution is neces-
sary if the altered risks are to be estimated reliably.

One might think of approaching this problem empir-
ically, using observations of the past 501 winters. For
example, one might fit a linear regression model to the
observations and use it to predict the shift of the PDF
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during an individual ENSO event. The noise might be
estimated as the standard error of the regression fit.
Unfortunately, the observational record is not long
enough for the regression parameters to be estimated
with sufficient accuracy for our purpose. Given the small
ENSO signal-to-noise ratios in the extratropics and rel-
atively few (501) seasonal samples, it is not hard to
see how relatively small uncertainties in the estimated
parameters would translate into unacceptably large un-
certainties in the predicted risks of extremes. Such an
empirical approach would also assume that (i) the ex-
tratropical response to ENSO is linear, (ii) ENSO does
not affect the extratropical noise, and (iii) all the relevant
PDFs are Gaussian. This scenario is essentially that of
Fig. 1a, but with the added simplification that the shifts
are linear with respect to ENSO forcing: El Niño events
cause a shift one way, La Niña the other, and strong
events cause proportionately larger shifts than weak
ones. It is important to ascertain the extent to which
such assumptions are valid, since they have a large bear-
ing on the problem at hand.

The obvious alternative is to approach the problem
with a dynamical numerical model. It is reasonable to
expect general circulation models (GCMs), with their
comprehensive nonlinear dynamics and also with many
more degrees of freedom than can be treated adequately
in the limited observational record, to perform much
better than empirical models. Nonetheless, two factors
work against the fulfillment of such expectations. First,
in a chaotic atmosphere with a deterministic predict-
ability limit of about two weeks, the problem of pre-
dicting seasonal averages even using deterministic
GCMs becomes a probabilistic one. As numerous mod-
eling groups have found, an ensemble of seasonal mean
atmospheric GCM forecasts made with the same pre-
scribed anomalous SST boundary forcing but with
slightly different initial conditions has a spread that is
comparable to the climatological standard deviation of
observed seasonal means. This chaos is associated with
unpredictable nonlinear interactions in the atmosphere.
Only the statistical properties of the ensemble are mean-
ingful in such a situation, not individual ensemble mem-
bers. The best one can do is to issue the ensemble mean
as an ‘‘expected value’’ forecast, and interpret the en-
semble spread as indicative of the reliability of that
forecast. This presentation format is similar to that of
the empirical models of ‘‘expected value’’ and ‘‘stan-
dard error.’’ To the extent that the nonlinear interactions
are unpredictable (or parameterizable on seasonal scales
as linear terms plus unpredictable noise), a GCM’s non-
linear advantage over an empirical model is then lost.
For it to have an advantage, a GCM must nonlinearly
affect the ensemble mean and spread of atmospheric
variables in response to anomalous tropical SST forcing.
The issue is not yet settled (e.g., Peng et al. 2000) and
provides another motivation for this paper.

Second, although a GCM can treat many more de-
grees of freedom than is feasible in an empirical frame-

work, that advantage may be more apparent than real.
A large part of interannual tropical Pacific SST vari-
ability can be described with about 20 degrees of free-
dom (see, e.g., Penland and Sardeshmukh 1995), and
possibly an even smaller subset is important in tropical–
extratropical interactions. There is evidence that the ex-
tratropical atmosphere is sensitive only to large-scale
features of the SST anomaly fields and not to their de-
tails (see, e.g., Barsugli et al. 1997). This raises the
possibility that even if the tropical SST anomaly patterns
differ considerably between ENSO events, their impact
on the extratropical circulation may not. In such a sit-
uation a relatively small number of empirical regression
parameters may suffice, and may be adequately esti-
mated from the available observations. If true, this too
would undercut a GCM’s advantage.

The apparently large advantages of a GCM over sim-
ple empirical linear regressions (or other linear statis-
tical methods) in predicting ENSO-related global sig-
nals, and especially the altered risks of extreme anom-
alies, may thus be limited even in principle. In practice,
they are reduced further by errors in the representation
of tropical diabatic heating and the associated divergent
circulation that continue to plague GCMs (Gates et al.
1999). There is already evidence suggesting that sea-
sonal GCM forecasts are not unambiguously superior
to empirical forecasts based on the simplest historical
ENSO composites (Fig. 2 of Kumar et al. 1996; see also
Peng et al. 2000).

With these considerations in mind, we will first es-
timate here, using past observations, the altered PDFs
of global 500-mb height and precipitation for an indi-
vidual El Niño winter [January–March (JFM) 1987] and
an individual La Niña winter (JFM 1989) given the
historical El Niño and La Niña composite anomaly
fields. The composites will be derived with respect to
observed SST anomalies in the Niño-3.4 area of the
eastern equatorial Pacific. All anomalies will be defined
as departures from the means of ‘‘neutral’’ ENSO win-
ters. This will give us 10 El Niño, 10 neutral, and 10
La Niña winters in the 42-yr record from which to con-
struct the composites. In the context of Fig. 1, our em-
pirically predicted shifts for 1987 and 1989 will consist
of adjusting the amplitudes of these historical composite
fields to be consistent with those of the Niño-3.4 SST
anomalies in 1987 and 1989, respectively. Note that in
view of the limited samples, we will only be able to
estimate shifts of the mean, but not the changes of
spread, by this approach.

We will then ask to what extent an atmospheric GCM
(AGCM) would predict substantially different PDFs for
these two winters. Using the NCEP atmospheric GCM
for this purpose, we will estimate the PDFs for JFM 87
and JFM 89 from large ensembles (with 180 members
each) of seasonal integrations made with prescribed sea-
sonally evolving observed global SSTs for these two
winters. We will estimate the climatological PDF as-
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FIG. 2. Contours indicate the expected value of Dks between sam-
pled normal distributions N(m0, ) and N(m, s 2), based on 50 0002s 0

Monte Carlo trials of (a) 25 and (b) 180 samples. Green shading
indicates values significant at the 5% level, that is, the sample
N(m, s 2) distribution can be distinguished from the sample
N(m0, ) distribution. Scattered points represent the magnitudes of2s 0

the mean and standard deviation of JFM-mean 500-mb heights in the
El Niño (red) and La Niña (blue) GCM ensembles relative to those
in the neutral ensemble, (a) using only the first 25 members of the
180 available members in the GCM ensembles, and (b) using all 180
members.

sociated with the neutral winters through a parallel set
of 180 integrations made with climatological JFM SSTs.

The distinguishing feature of these calculations is the
very large number of AGCM ensemble members gen-
erated for SST forcing corresponding to an observed
warm and an observed cold ENSO event. As will be
shown below, one needs large ensembles to generate
reliable estimates of the ENSO-induced changes of
spread. Also, the aim here is to determine not just that
there are statistically significant remote ENSO signals,
but to what extent those signals might differ from event
to event and also between El Niño and La Niña events.
Large ensembles are necessary for a reliable estimation

of such formally second-order effects. With the com-
putational constraints of generating large GCM ensem-
bles in mind, we will interpret the difference between
our single-event El Niño and sign-reversed La Niña
signals as roughly indicative of the range of signal var-
iation to expect between events, in addition to an asym-
metry of the response to El Niño and La Niña.

Our focus in this paper will thus be on clarifying (i)
the extent to which a GCM’s predicted response (i.e.,
the PDF shifts) can differ for individual El Niño and
La Niña events and also from empirically predicted
shifts, (ii) whether there are appreciable changes of
spread associated with ENSO, and if so, (iii) whether
those changes differ in character for El Niño and La
Niña. The answers to these questions have implications
not only for the predictability of extreme risks but also
of the seasonal averages themselves during ENSO
events.

The paper is organized as follows. Because the rel-
evant PDFs are in general not Gaussian, we discuss
assessing the differences between them in terms of a
nonparametric Kolmogorov–Smirnov measure in sec-
tion 2. The important issue of sampling, that is, the
number of ensemble members required to claim statis-
tically significant differences between two PDFs, is also
considered there. Section 3 describes the observational
and GCM datasets used in the study. Section 4 compares
the PDF shifts for JFM 87 and JFM 89 predicted by the
empirical and dynamical methods and presents, perhaps
for the first time in the literature, the changes of spread
of seasonal means predicted by the dynamical method.
Section 5 addresses special problems associated with
assessing changes of precipitation PDFs, which can be
substantially non-Gaussian. Section 6 discusses some
potentially important asymmetries in the PDF changes
for El Niño and La Niña. Section 7 speculates on the
link between the changes of spread of the 500-mb height
PDFs and those of the tropical precipitation PDFs. The
implications of these changes of spread for the risks of
extreme seasonal anomalies and the predictability of
seasonal averages are discussed in sections 8 and 9, and
concluding remarks are made in section 10.

2. Assessing differences between PDFs

The Student’s t and Fisher’s F tests are standard tests
for assessing shifts of the mean and changes of variance,
respectively, and we will use them where appropriate.
For convenience we will consider an equal number of
seasonal members N in our neutral, El Niño, and La
Niña ensembles, with N 5 10 for observations and N
5 180 for the GCM. When looking at the results, it will
be useful to keep the following rules of thumb in mind
for the 5% significance level. (Other significance levels
will have different constant factors in the expressions
below, but the same form.) To establish the significance
of a shift x of the mean (in units of the sample standard
deviation s0 of the original PDF), the number of mem-
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TABLE 1. Northern Hemisphere winters (Dec–Apr) classified as El Niño, La Niña, and neutral winters in this paper. Year in the table refers
to that of the January of the event listed. The number below the year is the intensity of the SST index in the El Niño-3.4 area defined in
the text.

El Niño: 1983,
1.70,

1998,
1.68,

1992,
1.30,

1958,
1.07,

1973,
0.89,

1966,
0.87,

1969,
0.86,

1995,
0.79,

1987,
0.76,

1993,
0.46

La Niña: 1974,
21.64,

1989,
21.39,

1976,
21.39,

1971,
21.34,

1999,
21.24,

1985,
20.79,

1975,
20.74,

1968,
20.64,

1965,
20.53,

1967,
20.51

Neutral: 1959,
0.29,

1978,
0.29,

1964,
0.27,

1980,
0.26,

1990,
0.15,

1982,
0.09,

1979,
20.07,

1961,
20.08,

1997,
20.14,

1960,
20.16

bers drawn from each distribution should exceed ap-
proximately

N . ;8/x 2 (1)

according to the t test. On the other hand, to establish
that the sample standard deviation s is significantly dif-
ferent from 1 (again in units of s0), it is easy to show
that the number of members should exceed approxi-
mately

N . ;3/(s 2 1)2 (2)

according to the F test. This approximation is excellent
for s ; 1. To get a feel for these numbers, consider
again the x 5 0.5, s 5 0.8 scenario of Fig. 1. Equation
(1) then states that N should exceed 32 to establish the
shift of the mean, whereas Eq. (2) states that N should
exceed 75 to establish the change of spread.

We will also assess our PDF changes in terms of the
nonparametric two-sample Kolmogorov–Smirnov mea-
sure Dks (see appendix A), defined as the magnitude of
the maximum difference between the corresponding cu-
mulative distribution functions (CDFs). Note that Dks

lies between 0 and 1, with larger values indicating pro-
gressively more different PDFs. The contours in Fig. 2
show the expected value of Dks estimated from N 5 25
(upper panel) and N 5 180 (lower panel) members
drawn from two Gaussian PDFs N(0, 1) and N(x , s 2)
for a range of values of x and s. The shading indicates
values significant at the 5% level, that is, higher than a
value that could be obtained by chance for two sets of
N members drawn from the same distribution. With 25
members only values greater than 0.4 are significant,
whereas with 180 members, values as small as 0.15 are
significant. The scattered dots highlight the importance
of the sampling issue in assessing the significance of
ENSO-induced PDF changes in the atmosphere. The
dots in the lower panel represent the magnitude of the
180-member ensemble mean anomalies and standard de-
viations of our GCM-predicted 500-mb heights for JFM
1987 and 1989 relative to those of the climatological
JFM 500-mb heights at (nearly) all model grid points.
(The excluded points are in the Tropics where the shifts
are greater than 2.0.) The dots in the upper panel were
derived using only the first 25 of the 180 members. The
scatter in the upper panel is much larger, and a much
larger fraction (51%) of points lies in the statistically
insignificant white area than in the lower panel (19%).

The dots in Fig. 2 illustrate the well-known fact that

away from the Tropics the PDF changes associated with
ENSO are minor. They also highlight the requirement
of large samples to establish the statistical significance
of those PDF changes. The N ; 25 (or fewer) members
available in the observational record are simply not
enough in this regard. The N ; 25 (or fewer) members
generated in many GCM studies for individual ENSO
events are also not enough.

3. Observational and GCM datasets

For brevity we will focus on 500-mb height and pre-
cipitation fields in this paper. The observational height
fields were obtained from the 42-yr (1958–99) NCEP–
NCAR reanalysis dataset (Kalnay et al. 1996). An
ENSO SST index, derived from the GISST-2.3b SST
dataset (Parker et al. 1995), was defined as the area-
averaged SST anomaly in the Niño-3.4 area 5.58N–
5.58S, 1708–1208W. The anomalies were constructed by
removing a least-squares fit to the first three harmonics
of the annual cycle and smoothing with a 5-month run-
ning mean filter (Trenberth 1997). The SST index was
then ranked, and winters (December–April) with the
highest 10, lowest 10, and middle 10 ranks were clas-
sified as El Niño, La Niña, and neutral winters, respec-
tively (see Table 1). Composites were constructed as
averages over the 10 cases, and finally the composite
anomalies for El Niño and La Niña were determined as
departures from the neutral composite. The composite
SST indices for El Niño and La Niña determined in this
manner were 11.048 and 21.028C, respectively. Note
that since the standard errors for these were 60.308 and
60.318C, the composite SST index amplitudes were not
statistically different from each other at the 5% level
according to the t test.

The SST indices for JFM 1987 and 1989 were 10.76
and 21.39. Thus, according to this measure, the 1987
El Niño event was ‘‘moderate’’ and the 1989 La Niña
event was ‘‘strong.’’ Our empirical estimates of the 500-
mb height ENSO signals in these two winters were then
obtained by multiplying the El Niño and La Niña com-
posite anomaly fields by the appropriate scale factors:
0.73 (50.76/1.04) for JFM 1987 and 1.36 (51.39/1.02)
for JFM 1989.

Similar procedures were applied to the observational
precipitation fields in the 20-yr (1979–98) Xie–Arkin
dataset (Xie and Arkin 1997). The National Centers for
Environmental Prediction (NCEP) reanalysis precipi-
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FIG. 3. The ENSO signal in JFM-mean 500-mb heights during the (top) 1987 El Niño and (bottom) 1989 La Niña
estimated from the (left) historical observations and the (right) NCEP GCM ensembles. The observational fields were
obtained by first forming 10-event composite fields for El Niño and La Niña in the 1958–99 NCEP reanalysis dataset,
and then adjusting their amplitudes to account for the relatively weak 1987 El Niño and relatively strong 1989 La Niña
events, respectively. The AGCM fields represent the average of 180 seasonal integrations with prescribed global SST
fields for JFM 1987 and JFM 1989. Contour interval in all panels is 10 m and negative values are shaded. Note that
the La Niña fields are shown with their signs reversed to enable a quick grasp of their similarity to the El Niño fields.
See text for further details.

tation data were not used in this study because of their
relatively low interannual variability over most of the
globe compared to the Xie–Arkin estimates (see Tren-
berth and Guillemot 1996). This shorter 20-yr dataset
was also stratified into El Niño, La Niña, and neutral
sets based on the SST index, but now with only five
members each.

The NCEP atmospheric GCM used was identical to
that employed by Kumar et al. (1996) and Chen and
van den Dool (1997). The model has a spatial discret-
ization of T40 in the horizontal (about 38 lat 3 38 long)
and 18 sigma (normalized pressure) levels in the ver-
tical. It differs from earlier versions of the NCEP model
(Kanamitsu et al. 1991) chiefly in a closer prescribed
link between SST and the onset of deep convection in
the convection scheme, and in its restriction of the ra-
diative effects of convective clouds to deep clouds in
the radiation scheme (see Kumar et al. 1996). Seasonal
GCM integrations were made with observed global cli-
matological JFM SSTs and observed global SSTs for
JFM 87 and JFM 89. Ensembles of 180 integrations,
differing only in initial atmospheric states, were made
for each of these SST boundary conditions. The initial
atmospheric conditions were drawn from a separate 50-
yr seasonal cycle run made with climatological SSTs as
boundary forcing.

Finally, ensemble means and spreads were deter-
mined for each of the three 180-member ensembles.

Note that the term ‘‘spread’’ here refers to the standard
deviation of the 180 simulated seasonal (JFM) averages.
For all model fields, the JFM 1987 (1989) ENSO signal
was defined as the JFM 1987 (1989) ensemble mean
minus the climatological JFM ensemble mean.

4. Results for 500-mb height

For brevity, we will refer to JFM 1987 and JFM 1989
as simply El Niño and La Niña where there is no pos-
sibility of confusion. We will also display the mean La
Niña anomaly fields with their sign reversed to enable
a quicker grasp of their similarity or dissimilarity to the
El Niño fields.

Figure 3 shows the ENSO signal in seasonal mean
500-mb height in JFM 1987 (top) and JFM 1989 (bot-
tom) as estimated from the historical record (left) and
the GCM ensembles (right). The contour interval is 10
m in all panels, and negative values are shaded. Note
again that the observational patterns are identical to the
historical composite El Niño and La Niña patterns, but
their amplitudes have been multiplied by 0.73 and 1.36
to account for the moderate 1987 and strong 1989
events, respectively. The empirically predicted signal
patterns resemble each other only broadly: in the Trop-
ics, in the Pacific–North American (PNA) sector, and
over the south Pacific Ocean. In most other regions there
are differences not only of magnitude but also of sign.
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FIG. 4. As in Fig. 3 but with the local signal normalized by the local standard deviation of winter-mean 500-mb
heights in the neutral ensembles. The standard deviations used in the observational and GCM plots were estimated
from 10 ‘‘neutral’’ years in the observational dataset and 180 members in the GCM’s neutral ensemble. Contouring
begins at 60.5 (60.25) standardized units in the observational (GCM) plots and the contour value doubles at each
interval. Negative values are dashed. Shading indicates values significantly different from zero at the 5% level using
a two-sided Student’s t-test.

Given the small samples, it is difficult to judge whether
these differences reflect (i) sampling error, (ii) different
linear responses to the slightly different composite SSTs
anomaly patterns for El Niño and La Niña, or (iii) truly
nonlinear responses. The GCM’s predicted signal pat-
terns for JFM 1987 and JFM 1989, on the other hand,
are much more similar to one another. Inadequate sam-
pling is now much less of a concern, so the differences
are almost certainly due to different SST forcing for
JFM 1987 and JFM 1989 and/or nonlinearity.

Figure 4 is in a similar format to Fig. 3 except that
it shows the mean anomalies in units of the local cli-
matological spread, that is, the local standard deviation
of the JFM-mean 500-mb heights in the neutral winter
ensemble. These represent precisely the standardized
ENSO-induced PDF shifts of Fig. 1. The contour value
doubles at each interval starting at 60.5 in the obser-
vational and 60.25 in the GCM panels. Negative con-
tours are dashed. The shading indicates values signifi-
cant at the 5% level according to a local two-sided t
test. For the observations, the statistically significant
signals outside the Tropics are confined mainly to the
Pacific–American sector. On the other hand, every plot-
ted contour is significant in the GCM panels.

Although the signal patterns for El Niño and La Niña
are generally similar to one another, some notable dif-
ferences exist. In the GCM, the El Niño response is
stronger in both the Tropics and the Pacific-American
sector, despite the weaker tropical SST forcing. This is
true of only the PNA region in the observations. On the

other hand, the GCM shows a weaker El Niño signal
south of Australia that is consistent with observations.
There is little else to compare between the GCM and
observations because of the limited observational sam-
ples. Note that the shading in the El Niño and sign-
reversed La Niña panels only indicates values that are
statistically different from the ‘‘neutral’’ values, and not
from each other. In areas such as the North Atlantic
where observations suggest a strong asymmetric signal
of the same sign in El Niño and La Niña, the significance
of that asymmetry is therefore questionable. It is inter-
esting that the GCM also suggests an asymmetric signal
in the North Atlantic, but one that is displaced farther
west toward Newfoundland. Similar remarks may be
made about the observational and GCM signals over
China. These asymmetries between El Niño and La Niña
have not been noted previously in the literature, and we
will return to them in section 6. An asymmetry that has
been emphasized previously (e.g., Hoerling et al. 1997)
is the slight eastward shift of the North Pacific low in
El Niño relative to (the sign reversed) La Niña. The
significance of this observed North Pacific asymmetry,
however, can again be questioned for the reason given
above. Note that it is much less apparent in Fig. 3, and
is also absent in our GCM simulations.

Figure 5 shows the spread of the seasonal mean 500-
mb heights in the El Niño (top) and La Niña (bottom)
GCM ensembles relative to the spread of the neutral
ensemble. The contour interval is 0.1, and the 1 contour
is suppressed. Ratios greater (less) than 1 are indicated
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FIG. 5. (a) Ratio of the standard deviation of winter-mean 500-mb
heights in the 180-member El Niño GCM ensemble to the standard
deviation in the 180-member neutral ensemble. (b) Ratio of the stan-
dard deviation of the La Niña and neutral GCM ensembles. Ratios
less than 1.0 are dashed. Shading indicates values significantly dif-
ferent from 1.0 at the 5% level using a two-sided F test.

by solid (dashed) contours. The major features to note
are (i) over much of the globe, El Niño is associated
with an increase of the spread of seasonal mean 500-
mb heights, whereas La Niña is associated with a de-
crease, (ii) the patterns of the change of spread are dif-
ferent for El Niño and La Niña, and (iii) the patterns
show considerable symmetry about the equator on plan-
etary scales.

A figure such as Fig. 5 has not appeared previously
in the literature. It shows evidence of significant sys-
tematic changes of spread induced by ENSO, which can
locally be as high as 25% for both El Niño and La Niña.
The changes of spread for both El Niño and La Niña
are also ‘‘field significant’’ in the sense of Livezey and
Chen (1983). This was established by performing a
bootstrap (i.e., a resampling with replacement) proce-
dure on two sets of 360-member ensembles containing
the 180 warm and 180 neutral, and the 180 cold and
180 neutral, members to generate 1000 synthetic warm/
neutral and 1000 cold/neutral variance ratio maps, re-
spectively. The percentage of the area in each of these
synthetic maps where the 5% significance level was
exceeded locally was then calculated. This percentage
was greater than 6.9% and 8.2%, respectively, in fewer

than 5% (i.e., 50) of the 1000 maps. The percentages
of area in Figs. 5a and 5b exceeding the local 5% level
were considerably higher, 25.4% and 12%. We will dis-
cuss these changes of spread further in section 7.

5. Results for precipitation

Figure 6 shows, in a similar format to Fig. 3, the
ENSO signal in seasonal precipitation in JFM 1987 (top)
and JFM 1989 (bottom), as estimated from the historical
record (left) and the GCM (right). As in Fig. 3, the
results for JFM 1989 are shown with the signs reversed.
The contour value doubles at each interval starting at
60.5 mm day21 in the observational and 60.25 mm
day21 in the GCM panels. Values less than the first
negative contour value are shaded. We repeat that the
observational patterns are identical to the historical
composite patterns (but now based on only five samples
each), whose overall amplitudes are adjusted to reflect
the moderate 1987 El Niño and strong 1989 La Niña
events.

In terms of anomaly magnitudes, the largest precip-
itation signals are confined to the Tropics and the sub-
tropics. The observational fields are considerably noisier
due to the small number of samples, and many of their
details are not significant. They are included here mainly
to provide reassurance that the NCEP AGCM’s precip-
itation response to ENSO is not grossly unrealistic. A
large degree of symmetry is evident in the GCM’s re-
sponse to El Niño and La Niña. However, one can also
discern many regions with an asymmetric response. In-
deed it is striking how the precipitation response is
asymmetric almost everywhere except in regions iden-
tified with strong ENSO signals in observations using
El Niño minus La Niña composite differences, such as
the western and central (but not eastern) tropical Pacific,
northeast Brazil, and the southeast United States (see
also Ropelewski and Halpert 1987, 1996).

To establish the statistical significance of these re-
sults, the non-Gaussian character of precipitation vari-
ability needs to be taken into account. Precipitation
PDFs, unlike 500-mb height PDFs, can be highly non-
Gaussian, especially in areas of mean tropospheric de-
scent. Figure 7 demonstrates this for monthly precipi-
tation in the winter months of January, February, and
March in observations (top panel) and the GCM (middle
panel). The observational panel is based on 30 monthly
fields in the 10 neutral winters in the NCEP–National
Center for Atmospheric Research (NCAR) dataset, and
the GCM panel on 540 monthly fields in the 180-mem-
ber neutral winter ensemble. The thick solid contour in
both maps separates areas of mean descent from areas
of ascent at 500 mb, and the thin contour shows areas
of strong descent. The shading indicates areas in which
the precipitation PDFs are significantly different from
Gaussian PDFs with the same mean and variance ac-
cording to the Lilliefors test (see appendix A). These
areas correspond well with the areas of descent, with
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FIG. 6. As in Fig. 3 but for precipitation. The observational fields were obtained by first forming five-event composite
fields for El Niño and La Niña in the 1979–98 Xie–Arkin precipitation dataset, and then adjusting their amplitudes to
account for the relatively weak 1987 El Niño and relatively strong 1989 La Niña events, respectively. Contour value
doubles at each interval in all panels starting from 60.5 (60.25) mm day21 in the observations (GCM). Negative values
are shaded. The zero contour is suppressed.

the strongest departures from normality generally oc-
curring in the areas of the strongest descent. In terms
of the Dks statistic, these departures can be greater than
0.2. Note again, however, that these values are for the
PDFs of monthly and not seasonal mean precipitation.
One might expect the latter to be more Gaussian by
virtue of time averaging and the Central Limit Theorem.
The bottom panel of Fig. 7 shows the departure of the
PDFs of seasonal (JFM) mean precipitation from Gaus-
sianity in the neutral GCM ensemble in an identical
format to that of the middle panel. The Dks values are
indeed smaller than in the middle panel, but remain
highly significant in the areas of descent.

To view our precipitation results in the format of Fig.
4, and also to demonstrate their significance in terms of
the familiar t statistic, we therefore transformed the
GCM’s seasonal precipitation values to standardized
Gaussian deviates using a probability-integral transfor-
mation described in appendix B. Figure 8 shows the
GCM’s seasonal ensemble-mean precipitation response
so standardized, in the format of Fig. 4. The contours
are 60.25, 60.5, 61, 62, 64, . . . , etc. and negative
values are indicated by dashed contours. Areas in which
the precipitation response is significant at the 5% level
using a two-sided t test are shaded. The figure shows
that this GCM can evidently produce substantially dif-
ferent precipitation response patterns for the different
SST forcings associated with individual El Niño and La
Niña events. For example, El Niño (La Niña) is gen-
erally associated with wet (dry) winters over California
and the southeast United States. Figure 8 is consistent

with this general tendency, but with differences of detail
that would be important when making seasonal precip-
itation forecasts in these regions.

Figure 8 also reproduces the well-known tendency of
the central equatorial Pacific rainfall anomaly extremum
during El Niño to occur east of the corresponding ex-
tremum during La Niña. This is also evident in Fig. 6,
and has been speculated by Hoerling et al. (1997) to be
responsible for the observed eastward shift of the geo-
potential low in the subtropical northern Pacific in Fig.
4. As remarked earlier, the GCM produces much less
of this eastward geopotential shift, despite producing a
strong eastward rainfall shift along the equator.

Our large ensemble sizes enable us to be confident
that the asymmetries of the precipitation response evi-
dent in Fig. 8 are not due to sampling error. The strong
asymmetry over the Indian Ocean is interesting. There
is a hint of it in the observational panels of Fig. 6, but
more importantly, it is also evident in several 100-yr
station records of precipitation in the region (not
shown).

The GCM also predicts significantly different spreads
(both locally and in the ‘‘field significance’’ sense) of
the seasonal mean precipitation in the El Niño and La
Niña ensembles. We will postpone presentation of these
results until section 7.

6. ENSO-induced PDF changes

An ENSO event affects the mean as well as the stan-
dard deviation of the PDFs of atmospheric variables
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FIG. 7. Shading highlights regions in which the probability distri-
bution of monthly precipitation is significantly non-Gaussian in (a)
the 30 months of the 10 neutral winters in the NCEP reanalyses for
1958–99, (b) the 540 months in the 180-member neutral winter GCM
ensemble, and (c) the 180 winter (JFM) means in the neutral GCM
ensemble. The (a) stippled and (b, c) shaded contours indicate the
Kolmogorov–Smirnov statistic Dks between the precipitation distri-
bution and a Gaussian distribution with the same mean and variance.
The stippled contours in (a) are 0.175 and 0.25, which are well above
the 5% significance level with 30 samples (50.161) according to the
Lilliefors test (Wilks 1995), and in (b) and (c) are 0.075 and 0.15,
which are well above the 5% significance level with 540 samples
(50.035), and with 180 samples (0.060). In all panels, the thick
contour separates areas of JFM-mean 500-mb ascent from areas of
descent, and the thin contour shows areas of descent with vertical
velocity equal to 0.025 Pa s21 in the observational and neutral GCM
ensembles.

FIG. 8. As in Fig. 4 but for the GCM’s transformed ensemble-mean
precipitation anomalies normalized by the standard deviation of the
transformed winter-mean precipitation in the 180-member neutral en-
semble. Contours double with each interval beginning at 60.25.
Shading indicates values significantly different from zero at the 5%
level using a two-sided Student’s t-test.

worldwide. As discussed earlier, the Dks statistic is use-
ful for summarizing these and other changes to the PDF.
In an important sense, Dks measures the total impact of
ENSO on the probability distribution associated with an
atmospheric variable.

The upper panel of Fig. 9 shows, for seasonal mean

500-mb heights, the Dks of the El Niño and La Niña
distributions derived from the El Niño and La Niña
GCM ensembles, respectively. The lower panel shows
the same quantity for seasonal mean precipitation. The
plotting conventions are identical in the two panels. The
contours drawn are 0.15, 0.4, and 0.9, with orange and
red colors indicating regions in which Dks is significant
at the 5% level with 180 members (Dks $ 0.144). In
other words, these are regions in which the PDFs for
El Niño and La Niña can be distinguished from one
another. In the light blue regions, the PDFs cannot be
distinguished even with 180 members. In the dark blue
areas, the PDFs are still indistinguishable from one an-
other; however, the El Niño and/or the La Niña distri-
bution can be distinguished from the neutral distribu-
tion. The responses in these dark blue areas are therefore
both highly significant and highly asymmetric with re-
spect to the neutral distribution.

Thus, in all regions except the light blue regions, there
is a statistically significant response to ENSO in these
GCM experiments, where the term ‘‘response’’ is to be
interpreted more broadly as any change of the PDF rath-
er than a shift of the mean alone. The red regions in
Fig. 9 are already familiar as regions with significant
ENSO signals in 500-mb height and precipitation, and
are entirely consistent with the emphasis on them in
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FIG. 9. Kolmogorov–Smirnov measure Dks of the difference between the probability distributions
of El Niño and La Niña GCM ensembles for (a) JFM-mean 500-mb heights and (b) JFM-mean
precipitation. Contours drawn are 0.15, 0.40, and 0.90. The orange and red regions indicate regions
in which Dks is significant at the 5% confidence level (Dks $ 0.144). The blue regions indicate
where the El Niño and La Niña distributions are not significantly different from each other at the
5% level. The dark blue regions indicate where the El Niño and/or the La Niña distribution is
significantly different from the neutral distribution, but where the El Niño and La Niña distributions
are still indistinguishable from each other. All ensembles have 180 members.

previous ENSO studies. The dark blue regions are per-
haps the most interesting. It is possible that they rep-
resent regions with a highly nonlinear response to trop-
ical SST forcing, but our experimental design precludes
us from addressing this cleanly. They can alternatively,
and unambiguously, be interpreted as areas in which
there can be a substantial impact of ENSO during some
events, which may be obscured by examining El Niño
minus La Niña differences. The 500-mb responses over
central Asia and China, the northeast United States,
southeast Australia, and southern South America are
noteworthy in this regard. The dark blue regions are
equally extensive in the precipitation panel of Fig 9.

The Nordeste region of Brazil, as well as the eastern
Mediterranean and the Middle East, emerge as sensitive
areas in this respect.

7. Another look at the changes of spread

A reliable estimation of ENSO-induced changes of
variability is one of the original contributions of this
paper, made possible by our generation of large ensem-
bles. To get a feel for these changes, Fig. 10 shows the
standard deviation of seasonal mean 500-mb heights and
precipitation in the 180-member neutral ensemble. The
contour interval is 10 m for the heights, and values
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FIG. 10. (a) Standard deviation of JFM-mean 500-mb heights in
the neutral GCM ensemble. Contours are at 10-m intervals starting
at 5 m. (b) As in (a) but for JFM-mean precipitation. Contour interval
is 0.5 mm day21.

FIG. 11. The difference in the standard deviations of the (left) JFM-mean precipitation and (right) 500-mb height
El Niño and (top) neutral GCM ensembles and (bottom) La Niña and neutral GCM ensembles. Contours in the
precipitation plots are drawn at intervals of 0.2 mm day21 starting at 0.1 mm day21. Those in the 500-mb height plots
are drawn at 2-m intervals starting at 1 m. Positive values are indicated by dark and negative values by light shading.

greater than 25 (45) m are indicated by light (dark)
shading. The contour interval for precipitation is 0.5
mm day21, with values greater than 1.0 (2.0) mm day21

indicated by light (dark) shading. The figure shows gen-
erally increasing variability of the 500-mb heights as
one moves poleward from the Tropics, with regional
maxima over the northeast Pacific and Atlantic Oceans.
The precipitation variability is largely confined to the
Tropics, with a tendency for the maxima to be colocated
with the maxima of the mean precipitation itself (not
shown).

Figure 11 shows how the values in Fig. 10 are affected
by El Niño and La Niña forcing in our GCM experi-
ments. It shows the change of the standard deviation of
seasonal mean 500-mb heights (right) and precipitation
(left) for El Niño (top) and La Niña (bottom). (Note
that unlike in Figs. 3, 4, 6, and 8, the La Niña fields do
not have their signs reversed in any of the variance-
change plots.) The contours in the height plots are 61,
63, 65, . . . , m; those in the precipitation plots are
60.1, 60.3, 60.5, . . . , mm day21. In all the panels,
positive (negative) values are indicated by dark (light)
shading.

The height panels in Fig. 11 convey the information
of Fig. 5 (and also Fig. 2) in a different manner. The
general increase of extratropical 500-mb height variance
during El Niño, and decrease during La Niña, are now
clearly evident. So is the general symmetry of these
changes with respect to the Northern and Southern
Hemispheres. The changes of the height spread are typ-
ically around 5 m in the extratropics, although locally
they can be as high as 9 m in the PNA region.
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FIG. 12. The difference in the standard deviations of bandpass-filtered 500-mb heights between (left) ENSO and neutral
winters in the NCEP reanalyses (left) and (right) the GCM’s ENSO and neutral winter ensembles. Results are shown
for El Niño minus neutral in the upper and La Niña minus neutral in the lower panels. Contours in all panels are drawn
at 2-m intervals starting at 1 m. Positive values are indicated by dark and negative values by light shading, and the zero
contour is suppressed. The bandpass filter passes periods between 2 and 7 days.

The precipitation panels of Fig. 11 tell a different
story. There is some tendency for the patterns to be of
opposite sign for El Niño and La Niña, although again
primarily in those regions identified with large ENSO
signals through El Niño minus La Niña composite dif-
ferences, such as the central and eastern equatorial Pa-
cific, northeast Brazil, and the southern United States.
Elsewhere, the patterns are highly asymmetric. The
asymmetry over the Indian Ocean is again striking.

It is tempting to understand the altered spread of the
500-mb heights in terms of the altered spread of pre-
cipitation, but the precipitation panels in Fig. 11 do not
suggest an obvious link. One may speculate that to the
extent that the mean rainfall anomalies in Fig. 6 in the
central equatorial Pacific are important in determining
the mean extratropical response, the greater (lesser) var-
iability of the precipitation in this region in Fig. 11
during El Niña (La Niño) may also partly account for
the greater (lesser) variability of the extratropical re-
sponse. The typically 10%–20% changes of the precip-
itation spread are consistent with the 10%–20% changes
of the geopotential height spread in this regard. The
central equatorial Pacific has also been identified by
Barsugli et al. (1997) as a sensitive forcing region for
generating a large global response. A detailed dynamical
diagnosis is needed, and will be reported in a future
publication.

Figure 11 will be unfamiliar to many readers, espe-

cially since an observational counterpart does not yet
exist. Still, the result that El Niño is associated with
increased extratropical seasonal height variability may
come as somewhat of a surprise. Such a result must
ultimately be reproduced by other GCMs and for other
ENSO events before one can gain confidence in it. Note
that the impact of ENSO on synoptic variability is very
different from its impact on seasonal variability. Figure
12 shows ENSO-induced changes of the standard de-
viation of 500-mb heights on 2–7-day timescales. Re-
sults are shown for El Niño (top) and La Niña (bottom)
for the GCM (right) and the NCEP–NCAR reanalyses
(left). As with the other comparisons of GCM and ob-
servational fields in this paper, the comparison in Fig.
12 is not clean in that the observational results are for
10 sets of El Niño and La Niña events whereas the GCM
results are for one set. Nevertheless, the observed south-
ward shift of the storm tracks over the eastern Pacific
and United States during El Niño, and the northward
shift during La Niña, are reasonably well captured by
the GCM for this particular set of events.

8. Altered risks of extreme seasonal anomalies

As discussed in section 1, the original motivation for
this paper was to explore how to maximize the utility
of seasonal forecasts even when the signal-to-noise ratio
is small, by focusing on the altered risks of extreme
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FIG. 13. The change in the probability of extreme values of JFM-mean 500-mb height estimated from the AGCM
for (top) El Niño and (bottom) La Niña ensembles. Colored shading depicts the changes of probability of (left panels)
extreme positive values A1 and (right panels) extreme negative values A2 defined in Fig. 1. Green (orange) shading
indicates an increase (decrease) of the probability of extreme values. The shading contours are 5% and 25%. (Note
that the negative changes cannot be greater than 16%; see Fig. 1). The stippled (striped) regions indicate where the
ENSO-induced changes of variability make relatively large positive (negative) contributions to the values of A1 and
A2. The contours drawn are 25% and 100%. A 100% contour indicates that the ENSO-induced change of variability
makes just as large a contribution to the value of A as the ENSO-induced shift of the mean.

seasonal anomalies. Having established statistically sig-
nificant ENSO-induced changes of variability as well as
shifts of the mean through our large GCM ensembles,
we are now in a position to address this issue.

Figure 13 summarizes the results for 500-mb heights
in the framework of Fig. 1. The colored shading in all
four panels indicates the change in the likelihood of
extreme positive (A1) and extreme negative (A2) JFM-
mean anomalies for La Niña and El Niño SST forcing
as predicted by this particular GCM for this particular
set of ENSO events. Positive values are colored green
and negative orange; for clarity only the 5% and 25%
shading levels are shown. In addition to all the well-
known aspects of the 500-mb height response to ENSO,
the asymmetries of the response discussed in the pre-
vious sections are also evident in Fig. 13. But perhaps
the most interesting features are the stippled and striped
regions. These show where the ENSO-induced changes
of noise (i.e., the seasonal variability changes in Fig.
11) make a substantial positive (stippled) and negative
(striped) contribution to the predicted values of A1 and
A2. In other words, in these regions a scenario such
as that of Fig. 1b is relevant; in other regions, that of
Fig. 1a is sufficient. Figure 13 suggests that in many
regions around the globe, but especially in the PNA and
North Atlantic Oscillation regions of interest to the cli-
mate research community, the changes of seasonal var-
iance can be as effective as the mean ENSO signal in

affecting the risks of extreme seasonal anomalies in
ENSO winters. Figure 14 is a similar figure for seasonal
precipitation, in an identical format, and further supports
this conclusion.

9. Implications for predictability

Finally, our results also have implications for the pre-
dictability of seasonal averages during El Niño and La
Niña events. This issue is conveniently addressed in the
context of Fig. 15, as explained below.

Let us say that the multivariate distribution P(^x&, C0)
represents the altered PDF of seasonal averages asso-
ciated with an ENSO event, where ^x& is the population-
mean anomaly state vector and C0 is the covariance
matrix of the variations x9 of the anomaly state vector
around ^x&. Note that P need not be multinormal. We
define a perfect GCM as one that correctly reproduces
P with an infinite-member ensemble. The PDF of the
ensemble mean of finite n-member ensembles is there-
fore P(^x&, n21C0). A vector y from this distribution is
issued as the seasonal average forecast. The real at-
mosphere picks a vector x from P(^x&, C0) as its seasonal
average. The average anomaly correlation of the ob-
served and predicted vectors can then be shown to be



4282 VOLUME 13J O U R N A L O F C L I M A T E

FIG. 14. Same as Fig. 13 but for precipitation.

FIG. 15. (a) Theoretical predictability curves for ensemble sizes of
1, 5, 25, and infinity as a function of the signal-to-noise ratio s based
on Eq. (4). The solid vertical bar indicates the maximum distance
(50.25) between the r` and r1 curves obtained at s 5 1/ 3. (b) TheÏ
r` and r1 curves are copied from the upper panel. The dashed curves
now show the modified predicability r` [Eq. (6)] with a nonzero
systematic error se whose magnitude is 50% and 150% that of s. See
text for a full explanation.

1/2r 5 ^x · y&/(^x · x&^y · y&)n

5 ^x& · ^x&

21 1/24 [(^x& · ^x& 1 ^x9 · x9&)(^x& · ^x& 1 n ^x9 · x9&)] .

(3)

In this expression the dot product signifies a general
scalar product of the form x · y 5 xTWy, where W is
any suitable positive-definite weight matrix. Note that
^x9 · x9& 5 Tr[W1/2C0W1/2]. The weight matrix W can be
chosen to emphasize one variable at one grid point, a
linear combination of variables over a region, or be set
equal to identity and examine forecast skill over the
atmosphere as a whole.

The average anomaly correlation can be expressed
more concisely as

rn 5 s2/[(s2 1 1)(s2 1 n21)]1/2, (4)

where s 5 (^x& · ^x&/^x9 · x9&)1/2 is a measure of the pop-
ulation mean anomaly relative to the population spread,
that is, the ‘‘true’’ signal-to-noise ratio. Figure 15a
shows how rn varies as a function of s and ensemble
size n. Note that rl 5 , a fact also noted by Rowell2r`

(1998). The difference between the rl and r` curves
shows the gain to be made in forecast skill by using
forecast ensembles instead of a single forecast. The
maximum gain in anomaly correlation of 0.25 is
achieved for s 5 1/ 3. Note that most of this gain isÏ
achieved with 25 members.

The r` curve represents a hard predictability limit
with a perfect model, and shows that to produce
‘‘useful’’ forecasts with anomaly correlations greater
than 0.6, s needs to be greater than 0.75. To produce
‘‘excellent’’ forecasts with anomaly correlations greater
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than 0.9, s needs to be greater than 2. The question is
what the appropriate values of s are during individual
ENSO events for different atmospheric variables in dif-
ferent parts of the globe. Figures 4 and 8 are useful in
this regard for seasonal mean 500-mb height and pre-
cipitation. Note that these only represent estimates of
s, both because of finite samples and more subtly, be-
cause the signals in those panels were divided by the
standard deviation of the original rather than the altered
distributions. With these caveats, we estimate s to be
greater than 2 for geopotential heights only in the Trop-
ics and for precipitation only in the central equatorial
Pacific. The weaker requirement of s . 0.75 for useful
forecasts is met additionally for precipitation over Aus-
tralia and northeast Brazil, and for geopotential heights
in the PNA region. These statements are entirely con-
sistent with the emphasis on these regions in numerous
ENSO studies. The predictability of seasonal precipi-
tation over the United States, however, emerges as less
promising according to these measures.

In this paper we have stressed the need of large en-
sembles and the fact that s can be different for individual
El Niño and La Niña events due to differences of both
signal and noise. All of these factors are important for
locating oneself on the s axis in Fig. 15. For example,
one might expect seasonal averages to be less predict-
able during La Niña than El Niño since the signal is
generally weaker. However, this ignores our result in
Fig. 11 that the noise is also weaker in some regions
during La Niña, so values of s need not in fact be smaller.
Similarly, 25 ensemble members may suffice for esti-
mating the population mean in most cases. However,
many more than 25 members are needed to estimate the
population spread within 20%, whose inaccurate esti-
mates can lead to both false predictability estimates and
a reduced ability to forecast the forecast skill.

Note that Fig. 15a was generated under the ‘‘perfect
model’’ assumption. If an imperfect model predicts a
distribution P(^x 1 x e &, C 0m ) instead of P(^x&, C 0 ),
where ^xe& represents the model error in predicting the
population mean, and C0m the model’s covariability
around ^x 1 xe&, then Eq. (3) becomes

r 5 ^x& · ^x 1 x &/[(^x& · ^x& 1 ^x9 · x9&)n e

21 1/23 (^x& · ^x 1 x & 1 n ^x9 · x9& )] .e m

(5)

This expression can also be simplified if we assume that
x · xe 5 0 and C0m 5 C0. We then have

rn 5 s2/[(s2 1 1)(s2 1 1 n21)]1/2,2se (6)

where se 5 [^xe& · ^xe&/^x9 · x9&]1/2. Figure 15b shows
how the potential predictability r` is degraded if se 5
0.5 s and se 5 1.5 s. For the latter, the skill even using
infinite member-ensembles is much less than the skill
of a perfect model using a single member.

10. Concluding remarks

Our GCM results suggest that the global atmospheric
response to individual El Niño and La Niña events can
differ substantially from historical composite signals.
They also indicate substantial asymmetry in the re-
sponse to El Niño and La Niña. This asymmetry is due
to both multilinearity (i.e., the fact that the tropical SST
anomaly patterns for El Niño and La Niña are not mirror
images of each other) and nonlinearity (i.e., some asym-
metry would be expected even if the SST patterns were
mirror images). The asymmetry of the mean response
is particularly marked for precipitation over the central
equatorial Pacific and western Indian Oceans, and for
500-mb heights over the northern Atlantic Ocean, east-
ern Asia, and south of Australia.

In general the seasonal response to El Niño is stron-
ger, but also more variable, than the response to La Niña
in our GCM experiments. We have speculated that the
greater seasonal variability of the 500-mb heights may
be partly due to the greater variability of seasonal rain-
fall in the central equatorial Pacific during El Niño. If
true, this would provide an interesting link between
‘‘tropical chaos’’ and ‘‘extratropical chaos.’’ Another
reason for the altered extratropical variability could be
an adjustment to the altered mean state. Changes of
synoptic variability are probably controlled by this
mechanism. According to the linear storm-track theory
of Whitaker and Sardeshmukh (1998), the approxi-
mately opposite mean anomalies forced by El Niño and
La Niña could induce the approximately opposite chang-
es in the extratropical storm tracks seen in Fig. 12. Fur-
ther, those altered storm tracks could induce opposite
effects on the lower-frequency variability through op-
posite eddy/mean-flow feedbacks. All of these possi-
bilities need to be investigated in a careful dynamical
diagnosis of the problem.

That both the population mean and spread of seasonal
averages can differ for individual ENSO episodes has
implications for the predictability of seasonal averages
during such episodes. Because of the relatively small
signal-to-noise ratio s, the predictability of seasonal av-
erages is modest outside the Tropics. According to Fig.
15, the average seasonal anomaly correlation skill r` of
ensemble-mean seasonal forecasts will be less than 0.6
for variables with s , 0.75 even for a perfect model
utilizing infinite-member ensembles. However, because
r` increases rapidly with s for small s, an accurate de-
termination of s becomes relatively more important in
such situations, both for improving the skill of the fore-
cast and for assessing its reliability. In this connection
it is interesting that our GCM results do not always
imply lower extratropical predictability during La Niña.
Although the La Niña signal is weaker, the noise can
also be weaker, so s, and therefore r`, can remain rel-
atively unchanged. Note that r` refers strictly to the
average forecast skill of infinite-member ensemble
means over an infinite number of forecast cases in a
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FIG. A1. (a) Normal PDFs N(0, 1) (solid curve) and N(0.5, 1.22)
(dashed curve). (b) CDFs corresponding to the PDFs in (a). The
vertical segment indicates the maximum distance between the two
curves and is referred to as the Kolmogorov–Smirnov statistic Dks.
(c) Values of Dks between normal distributions N(m0, ) and2s 0

N(m, s 2), where the mean shift is m 2 m0.

perfect model setting. This should be borne in mind
when considering the results of say Chen and van den
Dool (1997), who report greater average hindcast skill
during El Niño than La Niña based on 13-member mean
hindcasts for seven El Niño and seven La Niña cases.

A GCM should in principle be able to capture the
detailed changes of s from event to event. Most empir-
ical models, because of their assumption of linearity (or
at most low-dimensional multilinearity; see Peng et al.
2000) imposed by the limited observational record, do
not have the flexibility to represent such details. Their
erroneous prediction of signal, plus their inability to
predict changes of noise, amount in effect to a system-
atic error se in Fig. 15b. In several extratropical regions
in Fig. 4, the differences between the empirical and
GCM signals are of the order of the signal itself, that
is, se ; s. If these differences are interpreted as reflecting
errors of the empirical model, then a GCM would indeed
have an advantage in predicting seasonal averages.
However, that advantage would be slight for s , 0.75,
and become evident only after averaging over many
cases, because the spread of forecast skill in Fig. 15 is
large for small s (not shown). It is, of course, equally
possible that the differences between the GCM and em-
pirical signals in Fig. 4 reflect GCM error. Such an
interpretation should certainly motivate GCM improve-
ments with the goal of approaching the r` curve in Fig.
15a.

The gap between the r` and r1 curves in Fig. 15 is
a measure of the gain in forecast skill to be realized by
running GCM ensembles. Although there is always
something to be gained by running large forecast en-
sembles rather than a single forecast, the usefulness of
that gain can be moot. For s . 3, a single forecast is
already ‘‘excellent,’’ whereas for s , 0.75 the gain,
though relatively large, is still not large enough to render
the ensemble-mean forecast ‘‘useful.’’ In this sense, en-
sembles are unnecessary for large s, and for small s they
remain useless, for predicting seasonal averages. For
intermediate values of s, however, say between 0.75 and
3, the gain of anomaly correlation skill of up to 0.25
can be both substantial and useful. Figure 15b none-
theless provides a sobering reminder that even this gain
can be nullified by a model’s systematic error.

In conclusion, the r` curve in Fig. 15 strongly con-
strains the predictability of seasonal averages during
ENSO events, and because of this even a perfect GCM’s
advantage over an empirical model may well turn out
to be modest. The results of this paper show, however,
that a GCM’s apparently minor advantages in predicting
variations of the ENSO signal from event to event, and
certainly the changes of noise, would translate into enor-
mous advantages in predicting the variations of extreme
risks. Accurate estimation of these altered risks would
benefit not only from GCM improvements, but also from
running large ensembles to determine accurately the ap-
parently minor but nonetheless important changes of
noise.
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APPENDIX A

The Kolmogorov–Smirnov Distance between
Two Probability Distributions

Our interest in this paper is in ENSO-induced changes
to the entire PDF and not only in the changes of the
mean and variance. The t and F tests are not entirely
appropriate in this context. They are strictly applicable
only to Gaussian distributions, and further, the t test is
strictly applicable only when there is no change of var-
iance. One way to assess the difference between two
PDFs is in terms of the nonparametric two-sample Kol-
mogorov–Smirnov measure Dks (see also Anderson and
Stern 1996). Figure A1 illustrates the concept for two
Gaussian PDFs N(0, 1) and N(0.5, 1.22). The Dks mea-
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FIG. B1. A graphical illustration of the probability-integral trans-
form for transforming a random variable x with cumulative distri-
bution function F(x) to a standard Gaussian deviate z. In the example
shown, x0 is mapped into z0.

sure of their difference is defined as the magnitude of
the maximum difference between their corresponding
cumulative distribution functions (CDFs), which in this
case is 0.19. Since all CDFs rise from 0 to 1, the value
of Dks also always lies between 0 and 1. To get a feel
for what gives rise to high values of Dks, the lower panel
of Fig. A1 gives the Dks between N(0, 1) and N(x , s 2)
for a range of values of x and s. Note that the plot is
symmetric about the x 5 0 axis, so only the right half-
plane is shown. It is clear that changes of spread (s ±

1) can be as effective in increasing Dks as shifts of the
mean (x ± 0)

As in the t and F tests, one again needs to address
the question of whether the number of members drawn
from each distribution are sufficient for a sample value
of Dks obtained to be statistically significant, that is,
higher than a value that could be obtained by chance
for two sets of N samples drawn from the same distri-
bution. This issue is taken up in Fig. 2.

The Kolmogorov–Smirnov distance can also be used
to test a sample distribution’s goodness-of-fit to a spec-
ified theoretical distribution such as a Gaussian. When
the parameters of the specified distribution are estimated
from the same sample data instead of being known a
priori, the standard KS significance levels are not ap-
plicable and modifications must be made to them
(Crutcher 1975). This modified goodness-of-fit KS test,
called a Lilliefors test (Wilks 1995), was developed by
Lilliefors (1967) and apparently independently by Ste-
phens (1970).

APPENDIX B

The Probability-Integral Transformation to
Standard Gaussian Deviates

Suppose x is a random variable with PDF f (x) and
CDF F(x) such that dF 5 f (x) dx. Let z be a standard
Gaussian variable with zero mean and unit variance,
with PDF g(z) and CDF G(z) such that dG 5 g(z) dz.
We transform x to z by equating probability such that

dG(z) 5 dF(x).

Integrating the left and right hand sides from 2` to z,
and 2` to x, respectively, gives

G(z) 5 F(x) 1 C,

where C is a constant of integration which must be zero
since G(`) 5 F(`) 5 1. The transformation linking z
to x is therefore

z 5 G21F(x) (B1)

This equation states that the cumulative probability dis-
tribution function of x can be inverted to find the quan-
tiles of the N(0, 1) distribution with the same cumulative
probability. Note that F(x) can be any cumulative dis-
tribution function and can even be empirical, given N
values F(x i) 5 i/(N 1 1).

The above idea is of course the same as used in trans-
forming a random deviate with uniform density in the
interval [0, 1] to a deviate in any interval [a, b] with
any specified distribution (e.g., Kendall and Stuart
1977). It is routinely employed, for example, in random
number generators. It does not, however, appear to have
been used in meteorology to transform precipitation to
Gaussian deviates. Figure B1 illustrates the transfor-
mation. Note that precipitation takes on only positive
values [i.e., F(x) is zero for negative x]. A value x0 is
mapped into z0 by first dropping a vertical from x0 to
F(x0), moving horizontally across to G(z0), and finally
dropping vertically to z0 All values of x between 0 and
1` can thus be mapped into values of z between 2`
and 1`.

To transform the precipitation values at each grid
point in our GCM runs, F(x) was estimated by fitting a
Gamma distribution (Wilks 1995) to the 180 seasonal
values in the neutral ensemble. This F(x) was then used
in Eq. (B1) to transform the 180 values in the warm
and cold ensembles. In this way, the values in the neutral
ensemble were guaranteed to map into N(0, 1), and those
in the warm and cold distributions to have standardized
means and variances relative to N(0, 1).
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