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Abstract

A progressive global increase in the burden of allergic diseases has affected the industrialized world over the last half
century and has been reported in the literature. The clinical evidence reveals a general increase in both incidence and
prevalence of respiratory diseases, such as allergic rhinitis (common hay fever) and asthma. Such phenomena may be
related not only to air pollution and changes in lifestyle, but also to an actual increase in airborne quantities of allergenic
pollen. Experimental enhancements of carbon dioxide (CO2) have demonstrated changes in pollen amount and
allergenicity, but this has rarely been shown in the wider environment. The present analysis of a continental-scale pollen
data set reveals an increasing trend in the yearly amount of airborne pollen for many taxa in Europe, which is more
pronounced in urban than semi-rural/rural areas. Climate change may contribute to these changes, however increased
temperatures do not appear to be a major influencing factor. Instead, we suggest the anthropogenic rise of atmospheric
CO2 levels may be influential.
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Introduction

Many factors have been proposed to explain the 20th century

increase [1–4] in the burden of allergic respiratory diseases,

although the causes are still not fully understood [5]. For example,

air pollution can influence both allergens and allergic subjects in

many ways, making the former more potent and increasing the

immune reaction of the latter [6]. However, these phenomena are

insufficient to explain completely the increased rate of allergic

diseases in humans [6].

Plant phenology, the timing of life cycle events in vegetation

(e.g. budburst, flowering), is generally sensitive to temperature

[7,8]. If not water-limited, it has responded strongly to global

warming [7,9]. Hence, it can be reasonably supposed that global

change also affects pollen timing and production [10,11]. These

may contribute to the increasing trend in allergic diseases.

However, single studies on pollen quantities in recent years have

been inconclusive, e.g. inconsistent trends for five pollen types at

five sites in Western Europe [12], or a more consistent increase for

many taxa in Thessaloniki, Greece [13].

Current aeropalynological research uses a number of different

indicators to describe the pollen season (e.g., start and end dates,

daily concentrations, timing of peak production). Past study results

may have been influenced by the choice of indicator used [14]. In the

PLoS ONE | www.plosone.org 1 April 2012 | Volume 7 | Issue 4 | e34076



present analysis of 1221 European pollen time series at 97 stations

(see Fig. 1), we focus on yearly trends of the annual pollen index

(API), a quantity universally defined as the sum of average daily

pollen concentrations over the year. The trends of API at each

monitored location were normalized by the respective mean API.

This normalized index allows a comparison across different

provenances and microclimates within the large geographic range

of species in Europe. Moreover, using this normalization, the

different methodologies used to measure daily pollen concentrations

are less likely to influence calculation or detection of temporal trends.

Results and Discussion

Trends in pollen counts
Analyses showed that 724 (59%) APIs increased and 497 (41%)

decreased. 271 (22% of the total) were statistically significant

(pv0:05), among which 171 (14% of the total) increased and 100

(8% of the total) decreased. In Fig. 2, annual changes in API are

summarized for 23 families or genera chosen amongst important

allergenic pollen types according to the sensitization and allergic

symptoms of people living in specific regions, (e.g., Alnus, Ambrosia,

Artemisia, Betula, Corylus, Cupressaceae, Olea, Poaceae), or from

constantly important land-uses (e.g., Fraxinus, Platanus, Carpinus,

Castanea, Pinaceae, Plantago, Quercus, Rumex). For nine taxa, all with

highly allergenic pollen, the indices increased significantly (Mann-

Whitney test, pv0:05), while only two taxa decreased significant-

ly. API trends from tree species were, in general, larger than those

from herbs and shrubs. In recent years, some tree taxa (e.g.,

Cupressaceae) have been extensively used as ornamental plants in

cities, and hence their pollen trends could have been positively

affected by urban planning. However, land-use changes in general

(e.g., afforestation) may be too slow to explain increasing API in

Figure 1. Locations of pollen sites. Each station has been indicated by a red circle. Symbol sizes are proportional to the temporal length of the
local longest pollen record.
doi:10.1371/journal.pone.0034076.g001
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trees. The significant decreases for Chenopodiaceae and Artemisia

could be possibly explained by intensification of weed control and

less agricultural land set-aside in the context of increasing

bioenergy demand. Analysis by countries (Fig. 3) also reveals a

general increase in API, with 11 of 13 countries having median

changes greater than zero, significant for five countries. The

significant decrease for Spain, although the median trend is close

to zero, is somewhat surprising, especially in light of a recent study

reporting an increase in grass pollen in southern Spain [15]. Our

result for Spain is unlikely to be biased by a small sample size (215

series analyzed). Furthermore, our Spanish data cover a wider

geographic range with varied water availability which may be

more influential on API, particularly of grasses, in Spain compared

to more northern countries.

A large variability in the API trends is evident, shown by the

presence of large outliers in the boxplots of Fig. 2 and Fig. 3.

Outliers may be caused by rainy weather during the pollen season

reducing annual totals, favourable (warm and dry) weather,

episodes of long-range transport, inherent inter-annual variation of

pollen production (years of massive and synchronized pollen

production by plants, the so-called masting behaviour), re-

suspension phenomena (winds raising deposited pollen in the

lower atmosphere), and abrupt changes in species density by local

land management. Further research is needed to identify the

relative importance of each of these factors.

Considered drivers
In an attempt to identify the causes of pollen increases, we tested

the correlation between trends in API and trends of local mean

temperature. As shown in Fig. 4, there was little evidence of

correlation. This could be due to not matching exactly the lengths

(10 to 28 years) and gaps of the pollen series with lengths of the

temperature series (33 years). Only trends in Betula and Carpinus

pollen amounts showed a significant but weak correlation, which

was negative. Betula predominantly grows in mid to high latitudes

at lower temperatures, and it has been hypothesized that an

increase in temperature could limit its physiological performance

[16], including the production of pollen [17]. The significant

negative correlation between Betula pollen and temperature trends

seems to support such a hypothesis.

Figure 2. Trends of annual pollen index (API) by species. Boxplots show the proportional annual change of yearly pollen sums for the 23
pollen taxa analyzed (reasons for selection given in the main text). Medians are significantly different from zero (Mann-Whitney test, * : pv0:05, ** :
pv0:01, *** : pv0:001, n.s.: pw0:05) for 11 taxa. On the right, the percentages of significant trends are indicated for each taxon (of which the
percentages of positive trends are given in parentheses). The height of the boxplot is related to sample size, taxa are arranged in decreasing order of
their medians.
doi:10.1371/journal.pone.0034076.g002
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Because consistent correlations between API trends and local

temperature trends could not be demonstrated, we tested instead

general relationships between mean API and mean local

temperature. These are shown in Fig. 5. For many species

regression lines were statistically significant. Except for three tree

species this relationship was positive (i.e., more pollen at higher

temperatures, indicating warmer southern sites or urban sites). In

contrast, Alnus, Betula, and Corylus are tree genera more associated

with high latitudes and low temperatures, thus their negative

correlation of API with temperature could reflect the limited

presence of these species at warmer sites. However, variation in

the density of species will influence any API-temperature

relationship. Therefore, we used the European Forest Data Centre

(EFDAC) data set, which includes density information. These

maps, the only ones available for Europe, display the species

distribution in ha of tree cover per species at a 1 km resolution.

For each taxa the respective tree species covers were determined

by GIS within a radius of 10 km around each pollen station.

Unfortunately, according to this data set, the majority of pollen

sites was characterized by a complete absence of trees, due to the

forest/non-forest GIS layer used that excluded human settlements

and agricultural land. Thus, no hypothesis of linking API trends

with temperature and density could be tested.

The environment in which the pollen was measured may

influence results. In Fig. 6, boxplots of observed pollen trends in

urban and in semi-rural/rural areas indicate a significant

difference between these environments as well as an overall

increase in pollen at urban sites (Mann-Whitney tests, pv0:05).

Urban environments are characterized not only by the ‘‘heat

island’’ effect, but also by high levels of pollutants, such as NOx,

VOCs or particulates. Furthermore, higher atmospheric CO2

concentrations are known to cause a general increase in vegetation

biomass (at least temporarily), an increase in pollen production

[18–22], also shown in Free-Air CO2 Enrichment (FACE)

experiments [23] and, probably, pollen allergenicity [24].

Therefore, it can be inferred that higher levels of CO2, typical

of urban areas, may cause a greater presence of airborne pollen in

this environment. Lower tropospheric ozone (O3) levels also

characterize urban environments, due to higher concentration of

nitrogen oxide (NO), which is involved in the breakdown of O3.

Figure 3. API trends by country. Boxplots show the proportional annual change of yearly pollen sums for 13 countries. Medians are significantly
different from zero (Mann-Whitney test, * : pv0:05, ** : pv0:01, *** : pv0:001, n.s.: pw0:05) for six countries. On the right, the percentages of
significant trends are indicated for each country (of which the percentages of positive trends are given in parentheses). The height of the boxplot is
related to sample size, countries are arranged in decreasing order of their medians.
doi:10.1371/journal.pone.0034076.g003
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Because the effect of O3 is to inhibit plant development [23],

enhanced plant growth in urban areas has already been reported

[25].

In addition, we tested the correlation of API and API trends (also

by taxa) with latitude, longitude and altitude a.s.l. of the pollen

stations, attempting to find geographical patterns in the observed

changes in pollen amounts. However, no specific pattern could be

detected, suggesting that regional differences in behaviour were

small relative to background variability. Thus, possible biogeo-

graphical differences in behaviour are unlikely to have masked the

overall reported trends here. We also tested for differences in API

and its trends associated with specific plant traits, such as late-

successional (e.g., Fagus) against early-successional taxa (e.g., Betula).

Also in this case, no significant result could be found.

A delayed or missing fulfillment of the chilling requirement of

plants for bud burst and thus flowering could play a key role under

future scenarios of increasing winter temperatures. Even if not

directly connected to the production of pollen, which is more

sensitive to water availability, pre-flowering weather conditions

(especially for herbs and grasses) [26], or weather conditions in the

year preceding flowering (for some trees, such as birch) [27],

chilling temperatures may influence the timing of flowering in

trees [28,29]. A late or missing fulfillment of such a requirement

may delay or, in the worst case, prevent flowering events, as

hypothesized for fruit and nut trees [30,31]. As a consequence,

length and intensity of the pollen season could be notably reduced,

especially for species native to the Mediterranean area, where

the greatest changes in winter temperature are expected for

Europe [32].

Conclusions
Despite the lack of unequivocally identified drivers, it is evident

that there is currently a clear tendency towards an increase in

atmospheric pollen, including highly allergenic taxa. These trends

could not be attributed to rising temperatures, but may be

influenced by the anthropogenic increase of the greenhouse gas

CO2 as (experimental) studies suggest [18–24]. More research is

needed in this area because a further worldwide increase in

atmospheric CO2 is projected, e.g. by IPCC [32]. These changes

may result in further increases in pollen amounts leading, in turn,

to a greater exposure of humans to pollen allergens, with

potentially serious consequences for public health.

Figure 4. API trends against temperature trends by species. Proportional annual change of yearly pollen sums was plotted against local
temperature trends for 23 pollen taxa. Temperature trends were calculated for each location for the mean temperature of two seasons, January to
April (associated with the flowering of Alnus, Betula, Carpinus, Corylus, Cupressaceae, Fagus, Fraxinus, Olea, Pinaceae, Platanus, Populus, Quercus, Salix,
and Ulmus) or April to August (related to Ambrosia, Artemisia, Castanea, Chenopodiaceae, Plantago, Poaceae, Rumex, Tilia, and Urtica), over the years
1977–2009. A regression line has been superimposed for Betula and Carpinus, the only statistically significant relationships.
doi:10.1371/journal.pone.0034076.g004

Changes to Airborne Pollen Counts across Europe

PLoS ONE | www.plosone.org 5 April 2012 | Volume 7 | Issue 4 | e34076



Figure 5. Mean API against mean local temperature. Log-scaled mean annual sum of airborne pollen was plotted against local mean
temperature for 23 pollen taxa. Mean temperatures were calculated for two periods, January to April (associated with the flowering of Alnus, Betula,
Carpinus, Corylus, Cupressaceae, Fagus, Fraxinus, Olea, Pinaceae, Platanus, Populus, Quercus, Salix, and Ulmus) or April to August (related to Ambrosia,
Artemisia, Castanea, Chenopodiaceae, Plantago, Poaceae, Rumex, Tilia, and Urtica), over the period 1977–2009. Only significant regression lines are
shown.
doi:10.1371/journal.pone.0034076.g005

Figure 6. API trends by environment type. Boxplots show the proportional annual change of yearly pollen sums for different environments.
Mann-Whitney tests show a significant increase (median different from zero, pv0:05) of airborne pollen in urban environments. The notches are
calculated as +1:58IQR|

ffiffiffi

n
p

{1
and the height of each boxplot is related to sample size. On the right, the percentages of significant trends are

indicated for each type of environment (of which the percentages of positive trends are given in parentheses).
doi:10.1371/journal.pone.0034076.g006
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Materials and Methods

The analyzed data set consists of 1221 pollen time series at 97

locations in 13 European countries from 23 pollen taxa (see Fig. 1).

Not every species was present in every location. Series length

ranged from 10 to 28 years in the period 1977 to 2009. In Fig. 7,

the longest local monitored periods are reported (short time gaps,

occurring for few locations, have been omitted for clarity).

Temporal trends of API were calculated as slopes from linear

regression on time (years) and were normalized (i.e., converted to

proportional change per year) by dividing by the mean local API.

Trends in temperature were calculated over the years 1977–
2009 for two seasons, January to April or April to August,
associated with different species according to their flowering
period. For each pollen station, temperature data of the
respective grid cell of the ENSEMBLE project data were used
[33]. The temperature data from the ENSEMBLE data set,
available at www.ensembles-eu.org, are based on a geograph-
ical grid of resolution 0.5 degrees latitude |0.5 degrees

longitude.

The statistical software R version 2.11.1 was used for both

statistical analyses and to generate figures [34].

Figure 7. Maximum duration of pollen series by location. The local longest monitored period is shown as a red bar for each of the 97 locations
considered. Missing years, occurring in few cases, have been omitted for clarity.
doi:10.1371/journal.pone.0034076.g007
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