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Abstract

Background: The potential for reduced pollination ecosystem service due to global declines of bees and other pollinators is
cause for considerable concern. Habitat degradation, destruction and fragmentation due to agricultural intensification have
historically been the main causes of this pollinator decline. However, despite increasing and accelerating levels of global
urbanization, very little research has investigated the effects of urbanization on pollinator assemblages. We assessed
changes in the diversity, abundance and species composition of bee and hoverfly pollinator assemblages in urban,
suburban, and rural sites across a UK city.

Methodology/Principal Findings: Bees and hoverflies were trapped and netted at 24 sites of similar habitat character
(churchyards and cemeteries) that varied in position along a gradient of urbanization. Local habitat quality (altitude, shelter
from wind, diversity and abundance of flowers), and the broader-scale degree of urbanization (e.g. percentage of built
landscape and gardens within 100 m, 250 m, 500 m, 1 km, and 2.5 km of the site) were assessed for each study site. The
diversity and abundance of pollinators were both significantly negatively associated with higher levels of urbanization.
Assemblage composition changed along the urbanization gradient with some species positively associated with urban and
suburban land-use, but more species negatively so. Pollinator assemblages were positively affected by good site habitat
quality, in particular the availability of flowering plants.

Conclusions/Significance: Our results show that urban areas can support diverse pollinator assemblages, but that this
capacity is strongly affected by local habitat quality. Nonetheless, in both urban and suburban areas of the city the
assemblages had fewer individuals and lower diversity than similar rural habitats. The unique development histories of
different urban areas, and the difficulty of assessing mobile pollinator assemblages in just part of their range, mean that
complementary studies in different cities and urban habitats are required to discover if these findings are more widely
applicable.
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Introduction

Insects, especially bees, are thought to be the most important

group of pollinators globally [1,2,3,4,5]. The recent well-

documented declines in North America and Europe of the

European Honeybee (Apis melifera) and other insect pollinators,

sometimes termed the ‘pollination crisis’, has been the subject of

considerable media, public, political, and academic interest

[2,3,4,6,7]. Whether these declines will cause significant declines

in crop and wild plant populations is the subject of some debate

however. Most flowering plants are generalists in terms of their

pollination requirements; so the decline or disappearance of one

species will usually still leave other species available for the

provision of pollination services [2,8,9,10,11]. In addition, many

flowering plants are not directly reliant on pollinators for

reproduction, as they are able to self-pollinate [1,8]; although

inbreeding depression and lower crop quality can result [2].

Nevertheless, an estimated 70% of the different types of world

crop that are directly used for human consumption are dependent

on animal-mediated pollination to some extent [1], and a

conservative estimate of the value of this pollination service was

J153 billion for 2005 [12]. There is also growing empirical

evidence to support the proposition that the diversity of insect

pollinator assemblages influences the reproduction and diversity of

wild flowering plants [6,13], of which 87.5% are estimated to be

animal pollinated worldwide [14]. Although the significance of

pollinator loss is debated in the literature, most authorities agree

that this is an issue of global concern that warrants further research

[2,4,8,11,15].

There has been a considerable amount of research on the

response of insect pollinators to anthropogenic disturbances

caused by agricultural intensification including, but not limited

to; loss and fragmentation of natural habitat, loss of nesting

resource, reduced floral diversity, and agro-chemical effects
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[2,7,16,17]. There are some distinct differences between the

nature of urbanized and agricultural landscapes such as the more

heavily modified climate [18], and more spatial habitat diversity at

smaller scales in urban, compared to agricultural areas. However,

for the most part, urbanization is associated with similar

anthropogenic disturbances [19,20,21,22] characteristic of agri-

cultural areas, which result in a loss of resources for insects and

increased stress on populations.

As yet, relatively few studies have looked at the effect of

urbanization on pollinator assemblages. This is perhaps unsur-

prising as the most direct ecosystem service delivered by

pollinators is pollination of crops, and urban areas are traditionally

considered of limited importance in this respect. There are,

however, three distinct reasons why understanding the effects of

urbanization on pollinator assemblages is important: (1) the

intrinsic conservation value of urban pollinators, (2) the utilitarian

ecosystem service value of urban pollinators, and (3) the use of

urbanization gradients as space for time proxies of the future

effects of continuing urbanization; each is briefly described. (1)

Urban landscapes can support many species of significant local,

and sometimes national, intrinsic conservation value [23,24,25].

There is little information on the conservation value of bees and

hoverflies in urban areas, but pollinators will likely affect the

prospects of flowering plants of conservation importance through

their reciprocal dependence. (2) Through their influence on

flowering plants, urban pollinators can influence a wide range of

ecosystem services; including (sensu [26]): provisioning (e.g. food,

materials), regulating (e.g. climate regulation, hydrology), support-

ing (e.g. primary production, soil formation), and cultural (e.g.

aesthetic, education) ecosystem services. Their most apparent

ecosystem service is the support of urban food production through

pollination. The importance of garden and allotment food

production in the developed world is poorly known. However,

studies in the developing world, where urban food production is

much more extensive, suggest that urban agriculture can provide

extra nutrition and food security for households [27,28]. (3)

Landscapes are becoming increasingly urbanized. Currently

around half the world’s population live in urban areas and this

is set to increase dramatically during the next 50 years [29]. The

potentially far-reaching effects of urbanization on landscape

pollination service are difficult to predict, especially when

empirical data are limited.

Research on pollinators in urban areas has focused on various

environments and assemblages and used a variety of study

methods (see [30] for summary for bees). Few studies have

sampled bees in comparable habitats across the whole urban-rural

gradient (but see [31]), and no study to our knowledge has yet

examined hoverflies. Pervasive patterns are the strong importance

of local habitat quality and a shift in assemblage structure with

urbanization [7,31,32,33], but the effects of urbanization on

pollinator abundance and diversity have varied.

Here, we use a gradient approach [34] to investigate the

diversity, abundance and species assemblage composition of bees

and hoverflies in urban, suburban and rural sites in and around

the City of Birmingham in the UK. In particular it focuses on how

these assemblages respond to local site quality and landscape

measures of urbanization intensity. Unlike other studies we used

detailed environmental data from a GIS to create an a priori

gradient [35], which was then used as a tool for site selection.

Further site based and landscape variables were then derived from

the GIS and used to model the environment-pollinator assemblage

variability across the pool of sites. The aim was to characterize

changes in pollinator assemblages along an urbanization gradient.

We addressed four specific objectives: (i) to characterize changes in

pollinator diversity; (ii) to characterize changes in pollinator

abundance, (iii) to characterize compositional changes of pollina-

tor assemblages, and (iv) to investigate how objectives i–iii respond

to changes in site quality and landscape indicators of urbanization

intensity. We achieved our aims and objectives, but explore in the

Discussion section why the findings of this investigation cannot be

extrapolated to a general theory of pollinator response to

urbanization until further studies investigate changes in pollinator

assemblage in different cities in multiple habitat types.

Results

A total of 1292 individuals of 58 species of bees and 714

individuals of 50 species of hoverfly were recorded in the study.

The European Honeybee (Apis melifera) made up less than 5% of

the total catch, and no more than 23% at any one site. The total

abundance of bees, and total pollinators (bees plus hoverflies) were

found to significantly differ between the urban, suburban, and

rural treatments (Table 1). There was a significantly greater total

abundance of bees at rural sites than at suburban sites, and

significantly more total pollinators at rural sites than urban and

suburban sites (Figure 1). The total species richness of bees,

hoverflies and total pollinators were also significantly different

between site types (Table 1), with a higher species richness of bees

in rural sites than suburban sites; of hoverflies in rural sites than

urban and suburban sites; and of total pollinators in rural sites

than urban and suburban sites (Figure 2).

Table 2 illustrates the method used for selecting the best GLM

for each abundance and richness metric (in this case, for total

abundance of bees). The best model (with the lowest AIC score) in

this case was at the 2.5km scale and included the landscape

variable percentage built space. Table 3 shows the best GLMs for

Table 1. Means tests for differences between Urban, Suburban, and Rural treatments.

Degrees of freedom Test statistics Significance

Bee abundance 2 H=6.90* 0.03180

Hoverfly abundance 2 F= 2.61 0.09754

Total abundance 2 H=7.75* 0.02081

Bee species richness 2 F=6.26** 0.00738

Hoverfly species richness 2 F=6.64** 0.00582

Total species richness 2 F=9.84*** 0.00097

H= Kruskal-Wallace non-parametric test statistic, F=ANOVA test statistic, significant values at P= 0.05 are highlighted in bold. Statistical significance at P= 0.05, 0.01,
and 0.001 shown with *, **, and *** respectively.
doi:10.1371/journal.pone.0023459.t001

Urbanization Effects on Bees and Hoverflies
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each of the seven richness and abundance metrics. Altitude,

exposure, forb flower abundance, flowering tree abundance,

percentage built space, and percentage gardens were all included

in some of the best models, although not all of these variables were

significant. The models highlighted the following significant

patterns: (i) altitude showed a negative relationship with total

pollinator richness, (ii) exposure was negatively associated with

total pollinator abundance and total richness, (iii) forb flower

abundance was positively associated with the richness and

abundance metrics, and (iv) percentage built space was negatively

associated with the richness and abundance metrics (Table 3). The

most consistent pollinator-environment relationships were found

for forb flower abundance and percentage built space. The

geographical scale of the best model varied with different richness

and abundance metrics, but there was some tendency for the bees

to be best described at a larger scale (2.5 km) than hoverflies

(250 m abundance, 1 km richness). It is worth noting at this point

that along an urban-rural gradient many variables co-vary, so the

best explanatory variables can potentially act as a proxy for the

underlying environmental variable(s) that a species or assemblage

is responding to, whether included in the analysis or not. This

point is illustrated by Figure 3, which shows co-variability in forb

flower abundance and flowering forb species richness, and

percentage gardens (at 500 m) and forb flower abundance, for

example.

Table 4 shows the ordination statistics for the RDA, which

explained 15.3% of the cumulative variance of the species data,

and was statistically significant for the first canonical axis. Figure 4

illustrates the results of this RDA in ordination space and shows

that percentage built space and forb flower abundance were

selected as the variables best describing the total pollinator

assemblage at the 2.5 km scale. Some individual species responses

are illustrated in Figure 5. Only a few individual species were

found to be positively associated with the percentage of built space,

and only one species, Lasioglossum smaethmanellum was significantly

associated with the more urban environment. Several species were

found to be negatively associated with percentage built space, with

a few of these (e.g. Andrena semilaevis and Melanostoma scalare)

significantly so. Some species were positively associated with forb

flower abundance, but often only at sites with low percentage built

space (e.g. Melanostoma mellinum and Helophilus pendulus). Other

species (e.g. Apis mellifera) did not show significant patterns, but

showed a slight preference for more rural sites, with more flower

availability. Figure 6 shows a decline in the percentage species

incidence at urban and suburban, compared with rural sites.

There were few species present at rural sites that were not also

present at urban and suburban sites. A few species were more

prevalent in urban and suburban sites, including Bombus terrestris,

Hylaeus hyalinatus, Bombus hypnorum and Lasioglossum smaethmanellum;

but many more species were less prevalent at urban and suburban

sites such as Andrena scotica, Platycherius albimanus, Andrena minutula,

Andrena semilaevis, Helophilus pendulus and Rhingia campestris. Mean

abundances of each species at urban, suburban and rural sites are

shown in Table S1.

Discussion

This study standardized habitat quality as far as possible by

sampling the same type of habitat across the urban-rural gradient.

However, to some extent habitat quality, in terms of the

availability and diversity of flower forage, co-varied along this

gradient, with rural sites often characterized by a greater

availability and diversity of flower forage than urban and suburban

sites. This multicolinearity is inherent in studies of urban-rural

gradients, and makes interpretation of results more difficult [36].

Nonetheless, our results show that pollinator assemblages were

more diverse and had more individuals in sites with lower levels of

urbanization and with the best habitat quality. A negative effect of

urbanization was also found in the species data, with more species

showing negative relationships with urbanization intensity than

positive. We found little difference between assemblages at urban

and suburban sites, suggesting that bee and hoverfly assemblages

have a threshold response to urbanization, with negative effects

established at urbanization levels below that of the ‘suburban’

classification [35] used in this study. Nevertheless, we still sampled

diverse pollinator assemblages in urban and suburban areas

despite the urbanization effect, particularly where site quality, in

terms of the availability of flower forage and more favorable

microclimate (lower altitude, less exposure to wind), was good.

The responses of bees to urbanization have varied in other

studies, probably in part because of the varied methods,

environments and assemblages studied. Nonetheless, some of the

findings support the general trends found in our research in

Birmingham. Several authors conclude that bee abundance

[31,37,38] and diversity [37] are most strongly affected by the

availability and diversity of flower forage and nesting sites rather

than urbanization intensity. Some have also found evidence for a

Figure 2. Relationships between site treatment and total
species richness of bees, hoverflies, and total pollinators. Error
bars = +/2 1SE. Bars that do not share a letter showed significant
differences (P,0.05) between treatments.
doi:10.1371/journal.pone.0023459.g002

Figure 1. Relationships between site treatment and total
abundance of bees, hoverflies and total pollinators. Error bars
= +/2 1SE. Bars that do not share a letter showed significant differences
(P,0.05) between treatments. Ns = no significant difference.
doi:10.1371/journal.pone.0023459.g001

Urbanization Effects on Bees and Hoverflies
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reduction of diversity with urbanization intensity [31,37,39]. Some

have been encouraged by relatively intact bee assemblages in

urban areas [40,41]. In a study across three cities [42] however, no

site quality or landscape variables were found to be consistent

predictors of bee assemblage (although flower forage availability

was only measured using a management intensity proxy). Other

studies have also struggled to find significant overall trends in

diversity and abundance [32,33], and our own Birmingham-based

study only explained 15.3% of the variation in the species data in

the RDA. Given the potentially wide habitat (sensu [43]) area of

many species of bees [44] and hoverflies, and the difficulty of

adequately assessing habitat quality, especially nesting/overwin-

tering availability [5], in heterogeneous urban landscapes, it is not

surprising that some studies have failed to identify consistent

environmental determiners of pollinator assemblage structure.

The landscape distribution of a pollinator species is controlled

by the distribution of its food, natal, and overwintering resources

mediated by its behavior, ecomorphology, and inter-specific

interactions [5]. Important factors include: (i) flight ability, which

limits dispersal and foraging range in bees and hoverflies,

influencing vulnerability to habitat fragmentation [44,45,46], (ii)

dietary specialization, especially for the larval stage [6,47,48], and

(iii) nest and overwintering site limitation [38,49]. These factors

are all, to some extent species specific, so pollinator species should

differ in their response to urbanization [33,50], as found for other

groups of species [51,52,53]. A full analysis of the relationships

between species traits and urbanization intensity is outside the

scope of this paper, but some initial trends in the species data can

be highlighted. Generalist, strong flying, species (e.g. Apis melifera

and Bombus lapidarius) usually demonstrated no negative response

to urbanization, whereas more specialist species (e.g. Helophilus

pendulus larvae require water bodies or damp habitats [54] and

Andrena semilaevis associated with un-mown/grazed areas of flower

rich grassland) are more likely to show a negative response to

urbanization. Highly specialized and rare species were infrequent,

possibly as a result of the relatively intensive anthropogenic

landscape alteration present even in the rural areas. The few

species that showed a positive response to urbanization require

specialist habitat elements that are more abundant in urbanized

areas. For example, Lasioglossum smaethmanellum often nests in soft

mortar in building walls, and Bombus hypnorum tends to specialize

on flowers of shrub species usually found in gardens and frequently

nests in bird boxes. This was similar to the finding of [33,50],

where cavity nesting specialists were favored by urbanization,

presumably because of a greater availability of their nesting

resource.

This replacement of some of the pollinator species that decline

with urbanization, with species that favor urban habitat elements

helps support relatively diverse pollinator assemblages in urban

areas. Many bee species and assemblages have been shown to be

remarkably resistant to changes in land use, except in cases of

extreme habitat loss [8,16,55]. Urban areas comprise a highly

fragmented mosaic of buildings, built space, parks, gardens, and

remnant semi-natural features, which are often small in spatial

extent. Each of these elements can potentially provide nesting,

overwintering, ovipositing, and foraging partial habitats for bee

and hoverfly pollinators, whose flight ability allows the use of

multiple habitat elements in their wider habitat (sensu [43]).

Urban habitat elements are also subject to a range of disturbance

intensities that can support a wide diversity of, often novel,

Table 2. Generalized linear models for total bee abundance.

Scale Altitude Exposure Forb flower abundance Built Gardens AIC

Site only 0.0561ns 0.0212* 227.4

100m 0.0429* 0.0851ns 0.0105* 0.0249* 225.51

250m 0.0561ns 0.0212* 227.4

500m 0.1061ns 0.0204* 226.87

1km 0.1209ns 0.0111* 225.94

2.5km 0.00426** 225.00

All models at each geographical scale are shown as an example of the selection process. The 2.5km model was selected as the best model (in bold) based on its lowest
akaike information criterion (AIC) value. Probability values of each selected environmental variable are shown (* = P,0.05, ** = P,0.01, ns = not significant).
doi:10.1371/journal.pone.0023459.t002

Table 3. Summary of the selected generalized linear models (GLM) for total bee abundance, total hoverfly abundance, total
pollinator abundance, bee species richness, hoverfly species richness, and total pollinator species richness.

Response variable Scale GLM model Altitude Exposure Flower ab. Tree ab. Built Gardens

Bee abundance 2.5km N. binomial 0.0043**

Hoverfly abundance 250m N. binomial 0.0007*** 0.1138ns

Total abundance 1km N. binomial 0.0189* 0.0020** 0.0261*

Bee richness 2.5km Poisson 0.0522ns 0.1195ns 0.0500*

Hoverfly richness 1km Poisson 0.0954ns 0.0111* 0.0069**

Total richness 2.5km Poisson 0.0260* 0.0188* 0.0093** 0.0782ns 0.0371*

The best model for each response variable, according to akaike information criterion values, are shown. Probability values of each selected environmental variable are
shown (* = P,0.05, ** = P,0.01, *** = P,0.001, ns = not significant). Abbreviations used in the table: N. binomial = negative binomial, Flower ab. = forb flower
abundance, Tree ab. = flowering tree abundance.
doi:10.1371/journal.pone.0023459.t003

Urbanization Effects on Bees and Hoverflies
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foraging opportunities over long time periods at the wider, whole

habitat, scale [3]. Gardens, in particular, have been cited as

important habitat elements supporting biodiversity in urban areas

[56,57,58]. Given the impoverished nature of much agricultural

land [7,59], gardens in urban areas could actually represent

increased forage levels for some species, that could help increase

pollination levels in surrounding agroecosystems [41,60,61].

However, modern gardens are often characterized by a high

proportion of horticulturally modified variants of plants and exotic

species that can provide poorer quality forage for many pollinators

[7,41,62]. Gardens have also been shown to provide important

nesting opportunities for some species of pollinator [63]. However,

we did not detect any positive correlations with percentage area of

gardens and any pollinator richness or abundance metric in our

study. Furthermore, the treatment with the largest percentage of

gardens, suburban, generally had the poorest pollinator faunas.

Sampling in one habitat element does not necessarily give a

good indication of highly mobile pollinator assemblage gradient

responses across their wider habitat. The landscape context of

sampling sites can influence the pollinator assemblage sampled

there [5,64]. In the data-set reported in this paper for example,

there may have conceivably been a greater abundance and

diversity of pollinators in urban and suburban, than rural

treatments (characterized by smaller areas of surrounding garden

habitat elements), if most species of pollinator along this gradient

use gardens as their main habitat element. Therefore further work

on the response of pollinators to urbanization needs to include

several types of partial habitat along any urban-rural gradient

before definitive findings about the effect of urbanization can be

made.

Urbanization effects on insect pollinators may also be expected

to vary for different urban areas. Every urban area has a unique

geography and development history; therefore it cannot be

assumed that the patterns in pollinator assemblages along an

urban-rural gradient found for one urban area will necessarily

hold for other urban areas. For example, the GLOBENET project

[65] sampled carabid beetles along an urban-rural gradient using a

Figure 3. Co-plot showing relationships between explanatory variables used in the generalized linear models. Pairwise scatterplots
are shown with locally weighted loess smoothing to aid visual interpretation and panels with a Pearson correlation .0.3 highlighted. Variable codes
are abbreviated for clarity (exp. =% exposure, alt. = altitude in metres, flowR = flowering forb species richness, flowA = flowering forb flower
abundance, tree = number of flowering trees, % gard. =% gardens within 500m, and% built =% built space within 500m). Percentage gardens and
built space at 500m scale was used as an example because this was most representative of these variables at all wider landscape scales.
doi:10.1371/journal.pone.0023459.g003

Table 4. Eigenvalues, species-environment correlations,
cumulative percentage variance in species data explained,
and significance of first and all canonical axes in the best
redundancy analysis RDA (2.5km scale) for the pollinator
species data.

Axis 1 Axis 2

Eigenvalues 0.127 0.026

Species-environment correlations 0.723 0.379

Cumulative% variance of species data 12.7 15.3

Significance of first canonical axis F ratio = 3.055 P= 0.0418

Significance of all canonical axes F ratio = 1.893 P= 0.0520

doi:10.1371/journal.pone.0023459.t004

Urbanization Effects on Bees and Hoverflies
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common sampling framework across several cities in different

countries. It showed that richness and abundance patterns varied

widely, with some cities demonstrating a clear decrease in richness

and abundance with increasing urbanization, while others did the

opposite [20,51]. Future work on the response of pollinators to

urbanization would greatly benefit from a similar standardized

approach.

We are not yet at the point where we can draw firm conclusions

about the existence, or character, of any universal effects of

urbanization on pollinator assemblages. Urban-rural gradients in

multiple habitat elements need to be studied in other cities of

differing character before this will be possible. Further work will

then be needed to carefully document changes in pollinator

ecosystem service along these gradients. Nonetheless, results from

this and other research suggests that diverse pollinator assemblages

can be supported in urban landscapes, particularly in areas of

good habitat quality, which is encouraging evidence for the

presence of substantial pollination ecosystem services in urban

areas.

Materials and Methods

Ethics statement
Permission of landowners was obtained for the fieldwork.

Permits were not required specifically for the collection of

pollinators at the survey sites. However, all efforts were made to

engage in ‘collection parsimony’ [66], by only removing

pollinators that could not be identified in the field, and using a

relatively low intensity of sampling that only removed a sub-set of

pollinators at each site.

Site description and selection
Birmingham (population ,1 million) is part of the wider West

Midlands conurbation (population ,2.3 million) that includes

Solihull, Walsall, Wolverhampton, West Bromwich, Dudley and

other parts of the Black Country, that are mainly distributed to the

west of The City of Birmingham itself (Figure 6). The conurbation

grew rapidly during the industrial revolution, encompassing many

surrounding villages and areas of semi-natural habitat, some of

which are known to support remnant populations of some species

that usually favor more rural habitats around the city [20].

Intensive management since World War II has meant that the UK

rural landscape has few areas of semi-natural habitat and

unimproved farmland remaining, which has greatly reduced the

availability and diversity of pollinator forage and nesting resources

[7]. The rural area surrounding Birmingham has fared better than

many parts of the UK in terms of the retention of semi-natural and

un-cropped areas (e.g. hedgerows) [67].

Sites were selected using the classification of [35], which used

principal component and cluster analyses to reduce the dimen-

sionality of data derived from the UK 2000 Land Cover Map, and

Ordnance Survey data-sets for the West Midlands conurbation to

eight urban classes at a 1 km2 scale. Urban sites were selected from

within 1 km2 squares classified as ‘urban’ or ‘urban transport’;

suburban sites were selected from squares with the ‘suburban’

classification, rather than the ‘light suburban’ or ‘dense suburban’

categories; and rural sites were selected from squares with the

‘villages/farms’ category, or from squares outside the classification

coverage that had shared characteristics [35]. Few habitat types

are both accessible to a rapid sampling regime and consistently

encountered at a high enough density throughout urban, suburban

and rural land types. Churchyards and cemeteries are one notable

exception, which we found could provide reasonably constant

habitat character all along the urban-rural gradient and were

therefore used for all our sites (Figure 7).

Pollinator sampling methods
The most efficient and best method for sampling bees over a

wide range of geographical regions and habitats is pan trapping

[68]. However, some species of bee are poorly sampled using pan

trapping [69], and the method performed relatively poorly for

hoverflies, so pan trapping was supplemented with sweep netting/

hand searching. Three sets (three of each color) of pan traps were

used at each sampling site on each sampling occasion. Sets were

placed in lightly dappled shade or full sunlight and in a variety of

microhabitats across each site to as far as possible maximise the

diversity and abundance of catch. Pan traps were made of spray

painted (plasti-koteH Projekt Paint TM Gloss Super) plastic

takeaway containers (length 16 cm, width10 cm, depth 5 cm)

painted white (code 1109), pacific blue (code 1132) and yellow

(code 1115), which were half-filled with 3 cm of water that

contained a dash of unscented surfactant. Color strongly influences

the array of bees and hoverflies caught in pan traps, but yellow,

white and blue traps are thought to capture as full a range of

species as possible [68,70,71,72]. Traps were used during periods

of good weather for bee and hoverfly activity, deemed to be

daytime temperatures of 15–25uC with sunny or scattered clouds

for spring sampling and 18–25uC with sunny or scattered clouds

for summer sampling, and wind speeds ,15 km/h.

Traps were installed at half the sites on one day, at the

remainder the next day and then retrieved in the same order over

the following two days. Hence traps were active for 48 hours,

which reduced between site temporal sampling bias (see Table S2).

There were five trapping sessions beginning on the following dates:

5/5/09, 23/6/09, 21/7/09, 19/4/10 and 18/5/10. Pan traps are

often interfered with by birds (eating invertebrates or soaking

bread), ground maintenance staff (strimmed or mown), or

members of the public (traps tipped over to rescue invertebrates),

Figure 4. Redundancy analysis (RDA) showing species abun-
dance responses to Built 2500m and Forb flower abundance.
The position of bee and hoverfly species in the ordination space are
shown with filled circles and triangles respectively. For clarity, only
species with the best model fit are illustrated.
doi:10.1371/journal.pone.0023459.g004
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and it is not possible to avoid this completely, especially when sites

are open access. To account for possible losses we sampled extra

sites to begin with so that the sampling design would not be ruined

by heavy trap interference. Sites that had a high rate of overall

trap interference, or had complete sample interference on any one

sampling occasion were removed from the study. In this way the

number of sample sites was reduced from 34 to the 24 sites

reported here. Average trap returns for urban, suburban and rural

sites were 92.4%, 93.8% and 99.3% respectively.

It was not possible to sweep net/hand search simultaneously at

each site, so standard samples were taken between 11:00 and

16:00 on days with good weather (see above), to reduce variation

due to weather conditions [31,38]. Low-growing vegetation and

trees were swept with a long-handled sweep-net for 30-minutes in

each sample. In addition, all bumblebees and Apis mellifera that

could be identified on the wing were counted during the sweep

netting. All distinct microhabitats were investigated at each site.

The first sample was taken in late spring 24/5/10 to 7/6/10 and

the second in summer 6/7/10 to 30/7/10. Sites were sampled in

varying order along the urban to rural gradient in order to limit

temporal sampling bias as far as practically possible (see Table S2).

Local habitat characteristics
Churchyards and cemeteries tend to be highly spatially and

temporally heterogeneous in terms of their pollinator forage

availability and other habitat characteristics. This makes represen-

tative sampling of their local habitat character difficult. Forb

flowering plant (forage) species diversity and flower abundance were

assessed at each site in May (12/5/10–26/5/10) and July (14/7/10–

20/7/10) in approximately 25 m (radius) circles around the centre of

sample sites. Forb flower abundance was estimated on a logarithmic

scale (10+, 100+ and 1000+) [38], with flower ‘units’ comprising a

single flower; or in the case of multi-flowered stems, a single umbel,

head, spike or capitulum [73]. The abundance of flowers on insect

pollinated tree and woody shrub species is difficult to assess directly

because of their height and often short flowering period, but they

provide important forage for pollinators. Individual tree and woody

shrubs that were able to flower (i.e. not plants in over-cut hedgerows),

and at least in part rely on insect pollination for their propagation,

were counted in the 25 m radii to provide an index of their forage

resource. The exposure of the site to wind was assessed by estimating

the total percentage of the horizon within a 50 m (radius) circle not

occupied by tall hedgerows, trees or buildings.

Landscape scale environmental characteristics
Broader scale environmental variation was captured using data

in a geographical information system (GIS) in ArcGIS (v.9.3,

ESRI Redlands, USA) for Birmingham and the surrounds based

on digital layers from the OS Mastermap [74]. Attributes from

several polygon fields were grouped to represent broad landcover

types and used as the basis for creating a thematic raster with a

resolution of 2 m. The following variables were extracted from the

Figure 5. Output from the ordination generalized linear models for six pollinator species. Contours on the plots refer to the predicted
abundance values of each species. Vectors are related to the significant explanatory variables.
doi:10.1371/journal.pone.0023459.g005
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GIS: site altitude (m); and the total percentage of: mixed trees,

buildings/structures, natural (vegetated) open space, gardens,

rivers/canals, stillwater, land under development, roads/paths,

manmade open space and rail. The variables buildings/structures,

roads/paths, manmade open space, and rail were combined to

create a metric of urbanization that was termed ‘built’. Data were

extracted using Hawth’s Tools [75] at a range of nested spatial

scales (100 m, 250 m, 500 m, 1 km and 2.5 km) using concentric

circles centered on the sample sites.

Data analysis
Bee, hoverfly, and total pollinator species richness and

abundance metrics were calculated for each site by totalling the

different pan trap and sweep netting/hand searching sample

counts. Catches of bees and hoverflies are influenced by weather

conditions, time of day, date and sampling method. It is important

to either minimise this unwanted sampling related variation

through careful investigative design, or to include these factors as

co-variables in the data analysis. Due to the relatively small

number of individuals captured in each sampling event, the use of

co-variables was not possible. Instead, temporal variations in

sampling efficacy were minimised by sampling in standardised

weather conditions and varying the order of sampling (see

Pollinator sampling methods above).

Some of the study sites were close enough for the study species

to potentially fly between the sites (e.g. [44]), so the data were

checked for spatial autocorrelation. Bray-Curtis similarity (some-

times called Sorensen Quantitative Index) values (recommended

by [76]) were calculated for pollinator assemblages in all site pairs

in EstimateS [77], and the geographical distance between all site

pairs were measured. The similarity distance matrix produced was

tested for spatial autocorrelation using a Mantel test (1000

permutations in R version 2.12 [78]). No significant spatial

autocorrelation was found (P=0.528).

The total abundance and richness metrics were compared using

one-way ANOVA when test assumptions of normality and

homogeneity of variance were not violated. Frequency histograms

and results of Kolmogorov-Smirnoff tests gave no cause for

concern regarding the normality of the abundance and richness

metrics. However, the between treatment variance for total bee

abundance and total abundance were found to be significantly

heterogeneous using Levene tests and therefore non-parametric

Kruskal-Wallace tests were preferred for these metrics. Tukey and

Nemenyi multiple comparison tests were used to identify

Figure 6. Species incidences of all species at rural, and urban and suburban combined. Data for urban and suburban sites were combined
for clarity as they were very similar. Certain species are highlighted, but patterns for all species can be found using the species number in Table S1.
doi:10.1371/journal.pone.0023459.g006
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significant between-treatment differences for ANOVA and

Kruskal-Wallace tests respectively [79]. These statistics were

calculated using SPSS 15.0.

The relationships between the environmental measures and

species richness and abundance metrics were modelled using

generalized linear modelling (GLM) in Brodgar v2.6.4 [80] at each

of the study scales. Local scale site variables were entered into

every model. Many of the GIS-derived environmental variables

were found to co-vary at different scales after initial exploration of

data using visualisation tools and Pearson’s correlations. Colin-

earity was examined using the variance inflation factors (VIFs) of

each explanatory variable entered into the models. Variables with

the highest VIF were removed in an iterative process until all VIFs

were below 3 [81]. Model validation was done using visualisation

tools to check for normality, homogeneity and independence [81].

The deviance/degrees of freedom ratio was used to assess possible

over-dispersion in the models [81]. Poisson distributions were most

appropriate for species richness metrics, and negative binomial

distributions were used for abundance metrics, which were over-

dispersed [82]. Models were selected using akaike information

criterion (AIC) [83] for all study spatial scales.

Individual species responses to environmental explanatory

environmental gradients were assessed using ordination in Canoco

for Windows version 4.51 [84]. The gradient lengths from initial

indirect ordinations using detrended correspondence analysis

(DCA) were all short (,3) so redundancy analysis (RDA) was

selected as the most appropriate ordination method [85]. Scaling

focused on inter-species correlations and species scores divided by

their standard deviation were used for RDAs. Model significance

values were generated using Monte Carlo analyses (9999

permutations, with a random seed). Models were constructed for

each geographical scale, with only individually significant

environmental variables used in the final model. The final selected

model explained the highest cumulative percentage of species data.

Individual species responses to environmental gradients in the

ordination space were assessed using GLM species data attribute

plots with Poisson distributions and the best linear or quadratic fit

depending on AIC score.
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65. Niemelä J, Kotze J, Ashworth A, Brandmayr P, Desender K, et al. (2000) The
search for common anthropogenic impacts on biodiversity: a global network.
Journal of Insect Conservation 4: 3–9.

66. Samways MJ, McGeoch MA, New TR (2010) Insect conservation: A handbook
of approaches and methods; Sutherland WJ, editor. Oxford: Oxford University
Press.

67. Falk SJ (2009) Warwickshire’s wildflowers: The wildflowers, shrubs & trees of
historic Warwickshire. Warwickshire: Brewin Books. 344 p.

Urbanization Effects on Bees and Hoverflies

PLoS ONE | www.plosone.org 10 August 2011 | Volume 6 | Issue 8 | e23459



68. Westphal C, Bommarco R, Carre G, Lamborn E, Morison N, et al. (2008)
Measuring Bee Diversity in Different European Habitats and Biogeographical
Regions. Ecological Monographs 78: 653–671.

69. Wilson JS, Griswold T, Messinger OL (2008) Sampling bee communities
(Hymenoptera: Apiformes) in a desert landscape: are pan traps sufficient?
Journal of the Kansas Entomological Society 81: 288–300.
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