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The Southern Ocean plays a critical role in regulating global climate as a major sink for

atmospheric carbon dioxide (CO2), and in global ocean biogeochemistry by supplying

nutrients to the global thermocline, thereby influencing global primary production and

carbon export. Biogeochemical processes within the Southern Ocean regulate regional

primary production and biological carbon uptake, primarily through iron supply, and

support ecosystem functioning over a range of spatial and temporal scales. Here, we

assimilate existing knowledge and present new data to examine the biogeochemical

cycles of iron, carbon and major nutrients, their key drivers and their responses to, and

roles in, contemporary climate and environmental change. Projected increases in iron

supply, coupled with increases in light availability to phytoplankton through increased

near-surface stratification and longer ice-free periods, are very likely to increase primary

production and carbon export around Antarctica. Biological carbon uptake is likely

to increase for the Southern Ocean as a whole, whilst there is greater uncertainty

around projections of primary production in the Sub-Antarctic and basin-wide changes

in phytoplankton species composition, as well as their biogeochemical consequences.

Phytoplankton, zooplankton, higher trophic level organisms and microbial communities

are strongly influenced by Southern Ocean biogeochemistry, in particular through

nutrient supply and ocean acidification. In turn, these organisms exert important

controls on biogeochemistry through carbon storage and export, nutrient recycling and

redistribution, and benthic-pelagic coupling. The key processes described in this paper

are summarised in the Graphical Abstract. Climate-mediated changes in Southern

Ocean biogeochemistry over the coming decades are very likely to impact primary

production, sea-air CO2 exchange and ecosystem functioning within and beyond this

vast and critically important ocean region.

Keywords: Southern Ocean, biogeochemistry, primary production, iron, nutrients, carbon, ecosystem, ocean

acidification
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GRAPHICAL ABSTRACT | Infographic summarising the key processes described in this paper. Drawn by Dr. Stacey McCormack, University of Tasmania.

INTRODUCTION

Biogeochemistry refers to the cycling of chemical elements
through living systems and their environments by physical,
chemical, biological and geological processes, and is a
fundamental component of the functioning of Planet
Earth. Biogeochemical cycling of carbon, micronutrients and
macronutrients in the Southern Ocean has strong implications
for regional ecosystem functioning and sea-air gas exchange.
The Southern Ocean plays a major role in modulating Earth’s
climate over seasonal-to-millennial timescales by taking up
atmospheric carbon dioxide (CO2) via biological and solubility
pump processes and by releasing CO2 from the deep ocean (e.g.,
Sarmiento and LeQuere, 1996; Gruber et al., 2009; Takahashi
et al., 2009; Sigman et al., 2010). Ocean biogeochemistry exerts
a critical control on primary production and phytoplankton
species composition (Pinkerton et al., to be published in
this research topic), which in turn have a strong impact on
ocean biogeochemistry. Storage, transfer and transformation
of carbon and nutrients in benthic (seafloor) and pelagic
(water column) food webs regulate the degree to which
these constituents are exported, sequestered or recycled and
redistributed throughout the Southern Ocean system. Mode

and intermediate water masses formed in the Sub-Antarctic
influence primary production and carbon export throughout
the world’s oceans by setting the biogeochemistry of the
global thermocline (subsurface layer characterised by a strong
temperature gradient), from which nutrients are supplied to
surface waters (Sarmiento et al., 2004; Marinov et al., 2006;
Moore et al., 2018).

Anthropogenic climate change is affecting Southern Ocean
biogeochemical cycling, directly through oceanic uptake of CO2

and the resultant ocean acidification, and indirectly via its effect
on sea ice dynamics, glacial meltwater inputs, winds and ocean
physics (e.g., Le Quere et al., 2007; Midorikawa et al., 2012;
Henley et al., 2017; Kerr et al., 2018; Gruber et al., 2019a;
St-Laurent et al., 2019). Documented and projected climate-
driven changes in biogeochemistry and primary production
will impact ecosystem functioning and the transfer of carbon,
energy and nutrients through benthic and pelagic food webs,
with complex feedbacks on ocean biogeochemistry and climate.
Biogeochemical and ecosystem responses to ongoing climate and
environmental change may differ substantially in time and space,
and in particular between shelf regions and the open Southern
Ocean as a result of fundamental differences in phytoplankton
dynamics, nutrient requirements and supply mechanisms, and
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carbon export (Arrigo et al., 2008a,b, 2015; Tagliabue et al., 2009a;
De Jong et al., 2015).

Within the framework of the Marine Ecosystem Assessment
for the Southern Ocean (MEASO), we examine the status of
and changes in Southern Ocean biogeochemistry in relation
to its biological and physical drivers and its consequences for
ecosystem functioning and sea-air CO2 exchange. We consider
the entire Southern Ocean south of 30◦S, and focus on specific
sectors, zones, regions and areas where appropriate. Zones are
defined by the major circumpolar fronts, with the Antarctic Zone
to the south of the Polar Front, the Polar Frontal Zone between
the Polar Front and the Sub-Antarctic Front, the Sub-Antarctic
Zone between the Sub-Antarctic Front and the Sub-Tropical
Front, and the Northern Zone to the north of the Sub-Tropical
Front (Deacon, 1982; Orsi et al., 1995).

We present new data and analyses to address outstanding
questions regarding macronutrient cycling and carbon sink
dynamics in the context of contemporary climate change.
These analyses deepen our regional understanding of Southern
Ocean biogeochemistry and reinforce its global-scale importance
through modulation of atmospheric CO2 concentrations and
control of nutrient transport to the major ocean basins to the
north. Finally, we highlight a number of current and future
research priorities that will improve our understanding further,
as well as a range of developments that are ongoing and
anticipated in support of achieving these ambitions (Box 1).
The biogeochemical phenomena and changes we describe
for the Southern Ocean have strong implications for the
marine organisms, food webs and ecosystem processes described
throughout this research topic.

CHANGES IN PRIMARY PRODUCTION
AND PHYTOPLANKTON SPECIES
COMPOSITION

Phytoplankton Dynamics and
Biogeochemistry
Southern Ocean biogeochemical cycles are influenced by
phytoplankton through community-level processes (such as
net primary production, NPP) and species composition. For
example, carbon, nitrogen, phosphorus and iron are required
to fuel primary production in euphotic (well-lit) surface waters,
and in turn primary producers influence the cycling of these
elements. In particular, the vertical export of organic matter
produced by phytoplankton to the deep ocean (Section “Changes
in the Biological Carbon Pump”) is a key driver of temporal
and spatial variability in Southern Ocean biogeochemistry,
and this biological carbon pump exerts a strong control on
oceanic CO2 uptake and global climate (Section “Changes in
the Southern Ocean Carbon Sink”). Different phytoplankton
groups play multifaceted roles across a range of biogeochemical
cycles (Boyd, 2019), with diatoms being major drivers of
the biological carbon pump (Tréguer et al., 2018), as well
as remineralisation and ecological stoichiometry (silicon and
nitrogen cycles in particular). In addition, the small haptophyte

Phaeocystis antarctica is important in the sulphur cycle (Kettle
et al., 1999; Goto-Azuma et al., 2019) and coccolithophores are
major modifiers of carbonate chemistry (Balch et al., 2011).

Current Status of Primary Production
and Phytoplankton Species Composition
The Southern Ocean comprises the largest high nutrient low
chlorophyll (HNLC) region globally, with primary production
limited by iron, as well as silicon (as silicic acid) in summer
north of the Polar Front and light during winter (e.g., de Baar
et al., 1995; Boyd et al., 1999; Franck et al., 2000). Phytoplankton
biomass and NPP are highest north of the Polar Front in the
Atlantic sector, around the Sub-Tropical Front in the west Pacific
sector, and over the Antarctic shelves in Prydz Bay and the
Ross, Amundsen and Bellingshausen Seas (Pinkerton et al., to
be published in this research topic). Biomass and NPP are
lowest between the Polar Front and Southern Boundary of the
Antarctic Circumpolar Current (ACC), particularly in the Indian
sector within and just north of the open ocean sea ice zone
(Pinkerton et al., to be published in this research topic). Despite
sparse coverage of species composition data, HNLC waters in
the Antarctic and Sub-Antarctic Zones where phytoplankton
growth is limited by iron (Section “Changes in Micronutrient
Biogeochemistry”) tend to have mixed and seasonally changing
assemblages of pico-, nano- andmicro-phytoplankton (Gall et al.,
2001; Eriksen et al., 2018). High-chlorophyll regions, such as
island wakes andmarginal ice zones (Boyd et al., 2012), tend to be
dominated by blooms of diatoms, Phaeocystis or nanoplankton
(Arrigo et al., 1999; Moreau et al., 2012; Quéguiner, 2013;
Rembauville et al., 2015; Mangoni et al., 2017). One such
region in the northern part of the west Antarctic Peninsula
(WAP) experienced an intense diatom-dominated bloom with
chlorophyll a concentrations >45 mg m−3 under favourable
water column conditions (Costa et al., 2020). Diatoms also tend
to dominate in silicic acid-rich waters south of the Polar Front
(Wright et al., 2010; Petrou et al., 2016; Rembauville et al.,
2017), whilst seasonally silicic acid-limited waters north of the
Polar Front favour smaller phytoplankton (Freeman et al., 2018;
Nissen et al., 2018; Trull et al., 2018). The Great Calcite Belt
provides strong evidence for high coccolithophore abundance in
the Sub-Antarctic (Balch et al., 2011).

Projected Changes in NPP and Drivers
Projected changes in primary production and phytoplankton
species composition have been explored using model simulations
(e.g., Bopp et al., 2013; Leung et al., 2015; Moore et al., 2018),
manipulation experiments in polar and subpolar waters (e.g.,
Boyd et al., 2000, 2016; Hernando et al., 2015, 2018; Zhu
et al., 2016; Petrou et al., 2019), and insights from paleoproxy
records (Goto-Azuma et al., 2019) and contemporary natural
variability such as the Southern Annular Mode (SAM) and
El Niño Southern Oscillation (ENSO) (e.g., Saba et al., 2014;
Schine et al., 2016). Projections of changes in NPP for the
entire Southern Ocean based on model simulations within
the coupled model intercomparison project 5 (CMIP5) show
a good degree of agreement across models (Bopp et al., 2013;
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Leung et al., 2015; Moore et al., 2018). Simulations point to
increases in NPP of 50% or more above present-day rates
across much of the Southern Ocean (Leung et al., 2015; Fu
et al., 2016), driven by changes in environmental forcings
including iron supply, surface mixed layer depth and its effect
on underwater light climate, declining sea ice, and poleward
shifts and increasing strength of westerly wind belts. Increases
in temperature are expected, with medium confidence, to
increase phytoplankton growth rates overall (Eppley, 1972;
Steinacher et al., 2010; Sherman et al., 2016; Moore et al.,
2018; Boyd, 2019), whilst changes in light attenuation by
clouds may complicate the response (Meskhidze and Nenes,
2006). Increases in the partial pressure of CO2 (pCO2) are
expected to have contrasting effects on different phytoplankton
species, with the overall effect on primary production being
uncertain (Section “Ocean Acidification and Its Effects on
the Ecosystem”).

Increasing NPP in the Southern Ocean is in contrast to the
global trend of declining NPP (Moore et al., 2018). The models
show that the dominant forcing of Southern Ocean NPP changes
across latitudinal bands, corresponding to different circumpolar
water masses separated by fronts (Leung et al., 2015). Increased
iron supply and shallowing mixed layers play a key role in
increasing NPP in the Northern Zone and sub-Antarctic waters
north of 50◦S, whilst factors controlling light availability are more
influential in reducing NPP between 50 and 65◦S. Increasing
iron supply and a reduction in seasonal sea ice cover drive
increases in NPP south of 65◦S. Moore et al. (2018) report that
the increase in wind-driven upwelling of nutrient-rich waters is
the key driver of projected increases in NPP until 2150, after
which increased surface stratification driven by ice melt becomes
the dominant forcing. A more productive Southern Ocean would
lead to greater nutrient uptake and potentially vertical export
fluxes, thus retention of nutrients in this region, which would
exacerbate declining NPP rates in low latitude waters to the north
(Moore et al., 2018).

Projected Changes in Phytoplankton
Species Composition and Drivers
Fewer model studies have provided projections of changes
in phytoplankton species distributions (Bopp et al., 2005).
Nevertheless, assessments of how species composition will be
altered by ocean global change are possible by combining
modelling, experimental and observational approaches. There is
evidence that phytoplankton distributions are shifting southward
as surface water temperatures increase, with sub-tropical waters
and their warmer-water species incurring into the Sub-Antarctic
Zone, and the poleward contraction of winter sea ice coverage
extending southward the range of open ocean communities at
the expense of sea ice zone communities (McLeod et al., 2012;
Constable et al., 2014; Deppeler and Davidson, 2017). These
southward shifts may increase the contribution of non-diatom
phytoplankton overall, and this could be compounded in the
Sub-Antarctic by the proposed favouring of small flagellates by
projected increases in stratification (e.g., Petrou et al., 2016).
Species shifts observed in response to sea ice changes at the WAP

also suggest that phytoplankton communities in the seasonal
ice zone may become less diatom-dominated as climate change
proceeds (Montes-Hugo et al., 2008, 2009; Mendes et al., 2012,
2018; Hernando et al., 2015; Schofield et al., 2017). In contrast,
it is well established from a range of in situ and laboratory
studies that increased iron supply and ocean temperature have
a beneficial effect on diatoms and other bloom-forming species,
such that the projected increases in NPP may also lead to
species shifts to diatoms, and in some regions P. antarctica
(Gall et al., 2001; Hutchins and Boyd, 2016; Zhu et al.,
2016; Boyd, 2019). Within diatom communities, species-specific
responses to ocean acidification and other environmental factors
are likely to alter species composition, primary productivity
and biogeochemical cycles (Section “Ocean Acidification and
Its Effects on the Ecosystem”). As such, the biogeographic
provinces of phytoplankton assemblages in the Southern Ocean
are likely to shift spatially or change fundamentally in the
coming decades (Deppeler and Davidson, 2017). On longer
timescales, a persistent new set of environmental conditions
may drive evolutionary adaptation of existing species (Denman,
2017). Changes in NPP and phytoplankton species composition
influence many biogeochemical processes, such as the magnitude
and stoichiometry of nutrient uptake and recycling (Arrigo
et al., 1999; Weber and Deutsch, 2010; Section “Changes
in Macronutrient Biogeochemistry”) and carbon transfer to
higher trophic levels (Section “Carbon Transfer and Storage
in Pelagic and Benthic Food Webs”). Changes in carbon
export to the deep ocean will reflect changes in NPP
to a varying extent, with important differences caused by
phytoplankton species composition and other factors (e.g., Fu
et al., 2016; Rembauville et al., 2017; Section “Changes in the
Biological Carbon Pump”).

CHANGES IN MICRONUTRIENT
BIOGEOCHEMISTRY

Changes to Iron Supply and Availability
in the Southern Ocean
The delivery and cycling of important trace elements that
underpin all Southern Ocean productivity are being altered by
shifts in physics, chemistry and biology in response to ongoing
changes in Earth’s climate (high confidence). Iron is required by
phytoplankton for photosynthesis and nitrate assimilation, and is
the primary limiting micronutrient in the HNLC region across
large parts of the Southern Ocean (e.g., de Baar et al., 1990;
Moore et al., 2013). Changes in the magnitude and pathways
of iron supply to surface waters are being imposed from both
the north and the south (Figure 1 and Table 1). For example,
the frequency and scale of iron-rich aerosol emissions from dust
and wildfires are predicted to increase with trends in regional
climate, such as drought and increased winds (IPCC, 2019).
Strengthening western boundary currents are very likely to lead
to greater eddy transport and thus advective inputs of iron-rich
waters from the sub-tropics to the Sub-Antarctic (Bowie et al.,
2009), whilst a weakening of the overturning circulation and
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FIGURE 1 | Map of Si∗ with schematic representations of iron sources overlain. Annual climatological Si∗ concentrations (=[Si(OH)4] – [NO3
−]) for Southern Ocean

surface waters (data source: WOA18, 1 degree grid resolution) are overlain by the measured Si∗ concentrations from A12 2019 and IO6 2017 winter cruises (open

black boxes; this study). Solid black contours represent climatological frontal positions based on sea surface temperature; STF = Sub-Tropical Front at 11.5◦C,

SAF = Sub-Antarctic Front at 4◦C, PF = Polar Front at 2◦C (Deacon, 1982; Orsi et al., 1995) (data source: WOA18, 1/4 degree resolution). Dashed and dot-dashed

black lines represent the mean climatological sea ice extent for summer (Dec/Jan/Feb) and winter (July/Aug/Sep), respectively, defined as 15% sea ice concentration

(data source: NSIDC, 12.5 km resolution, Stroeve and Meier, 2018). Iron sources are represented according to the legend, and summarised in Table 1. The exact

locations of some iron sources (e.g., hydrothermal vents, bathymetric interactions) are not well-defined, but are depicted schematically. The important processes of

deep winter mixing and vertical diffusion occur throughout the Southern Ocean, but are not depicted.

TABLE 1 | Mechanisms of iron supply to the Southern Ocean, with estimates of geographical extent and projected trends under anthropogenic climate change.

Mode Spatial scale Temporal scale Fe supply (µmol

m−2 year−1)

Geographical

extent (km2)

Future

change

References

Aerosol mineral dust Regional Seasonal 19 6.1 × 106 ? Gabric et al., 2010; Boyd et al., 2012

Anthropogenic aerosols Local Seasonal ? ? ? Sholkovitz et al., 2012

Wildfire emissions Local Seasonal ? ? Increase Ito et al., 2018

Deep winter mixing Basin Seasonal 100 4.2 × 107 ? Tagliabue et al., 2014

Vertical diffusion Basin Annual 3 4.2 × 107 Decrease Tagliabue et al., 2014

Upwelling Local Annual 10 <106 ? Boyd et al., 2012; Tagliabue et al., 2014

Hydrothermal Local Annual 3 ≪106 NC Boyd et al., 2012; Ardyna et al., 2019

Bathymetric interactions Local Annual 55 ≪106 NC Boyd et al., 2012

Island wake Local Annual 11 ≪106 NC Blain et al., 2007; Boyd et al., 2012

Sediments Regional Annual 270 9.4 × 106 NC Tagliabue et al., 2009a; Boyd et al., 2012

Western boundary

currents/eddy transport

Local Annual 15 <106 Increase Bowie et al., 2009; Boyd et al., 2012

Sea-ice melt Regional Seasonal 120 1.4 × 107 Increase Boyd et al., 2012; Lannuzel et al., 2016;

Meehl et al., 2016

Iceberg Local Seasonal 363 <106 Increase Lin et al., 2011; Boyd et al., 2012

Glacial Local Seasonal ? ≪106 Increase Boyd et al., 2012; Herraiz-Borreguero

et al., 2016

Biological internal recycling Basin Seasonal 10 4.2 × 107 ? Boyd et al., 2012

Table adapted and augmented from Hutchins and Boyd (2016). ? = unknown supply or extent; uncertain direction of change. NC = no change expected.

altered winds may result in changes in stratification patterns
impacting delivery of nutrients from below (Tagliabue et al.,
2009b; Rintoul, 2018). Warming waters surrounding Antarctica

are virtually certain to drive glacial melt and increased calving
of icebergs, releasing iron-rich terrigenous material (Lin et al.,
2011; Sherrell et al., 2015; Herraiz-Borreguero et al., 2016;
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Raiswell et al., 2016; Hopwood et al., 2017; Laufkötter et al., 2018;
van der Merwe et al., 2019). Increasing iceberg scour in shallow
coastal areas in response to ongoing glacial retreat and receding
ice shelves is also likely to enhance the important sedimentary
iron supply mechanisms to shelf surface waters (Marsay et al.,
2014; McGillicuddy et al., 2015), and dust input from Antarctica
itself may increase as ice loss exposes more glacial sediments to
wind-driven transport (Winton et al., 2016; Duprat et al., 2019;
Gao et al., 2020). Warming is very likely to reduce the extent
and thickness of Antarctic sea ice (Lannuzel et al., 2016), which
accumulates iron and other bioactive metals for subsequent
release to surface waters in spring and early summer (Noble et al.,
2013). Ocean acidification will alter the speciation (chemical
form) and solubility of essential trace elements and nutrients
in seawater, but it is unclear whether lowered pH will increase
or decrease iron availability to phytoplankton (Shi et al., 2010;
Hutchins and Boyd, 2016).

Predicting Ecosystem Responses to
Changes in Iron Sources and Their
Magnitude
Changes in environmental conditions can have complex and
sometimes counterintuitive effects on iron sources and cycling.
For instance, whilst increased dust input from Australasia,
Patagonia and South Africa would be expected to increase
surface iron concentrations and enhance productivity, a large
proportion of the dust may remain undissolved and act as
additional ballast for sinking particulate organic carbon (POC).
This would deepen the mean iron remineralisation depth, and
possibly supply new particle surfaces for adsorptive scavenging
(i.e., removal) of dissolved iron, reinforcing a possible reduction
in the subsurface iron pool (Ellwood et al., 2014; Bressac
et al., 2019). The vertical iron gradient and upward iron flux
would then be reduced, even in Southern Ocean regions that
experience reduced stratification associated with declining sea
ice and/or intensification of westerly winds (Rintoul, 2018).
With reduced stratification, autotrophic cells are mixed over
a greater depth range, thus spending more time under light
limitation, which can increase iron demand unless physiological
adaptation occurs (Strzepek et al., 2019). In contrast, closer
to the Antarctic continent, stratification may be enhanced
by increased atmospheric heat flux and freshwater delivery
from icebergs, glaciers and ice shelves (e.g., Morley et al., to
be published in this research topic). Shifts in phytoplankton
species composition could alter cellular iron uptake and
remineralisation, whilst changes in the chemical speciation of
iron in the upper ocean, in response to altered iron sources, as
well as changes in ocean pH, temperature and oxygen content,
further complicate an accurate prediction of ecosystem response
(Boyd, 2019).

Speciation, Internal Cycling and
Remineralisation of Iron in the Southern
Ocean
The relative availability of the myriad forms of dissolved (Blain
and Tagliabue, 2016) and particulate (Planquette et al., 2013) iron

in Southern Ocean surface waters is a key determinant of primary
productivity, but remains poorly understood.Major uncertainties
include the relative availability of iron bound to organic ligands
(Buck et al., 2018; Bundy et al., 2018; Zhang et al., 2019), the
interconversion of soluble and colloidal iron (Fitzsimmons et al.,
2015; Santschi, 2018), the recycling rate of organic matter-bound
iron in surface and subsurfacewaters (Bressac et al., 2019), and the
adsorptive scavenging of regenerated iron in intermediate water
masses (Tagliabue et al., 2019). There is a near-consensus that
the largest flux of bioavailable iron to surface waters of the open
SouthernOcean is currently delivered by wintertime deep vertical
mixing from iron-enriched layers below (Tagliabue et al., 2012,
2014; Schallenberg et al., 2018). Except in regions proximal to, or
downstream of, lateral sub-surface iron inputs from continental
shelves and slopes (De Jong et al., 2012; Hatta et al., 2013; Annett
et al., 2017; Sherrell et al., 2018), submerged plateaus (Blain
et al., 2007; Bowie et al., 2015) or hydrothermal vents (Ardyna
et al., 2019), the increase in iron below the surface mixed layer
is ascribed to remineralisation from sinking particulate organic
carbon, modulated by iron scavenging with depth (Sedwick et al.,
2008; Middag et al., 2011; Abadie et al., 2017).

Effect of Multiple Stressors on Iron
Availability and Phytoplankton
Physiological Responses
Changes in iron availability in the future Southern Ocean
will occur concurrent with, and as a function of, an array
of other physical and chemical changes forced by climate
change, that will impact the primary producers directly and
indirectly by influencing iron dynamics (e.g., Boyd et al., 2014;
Section “Changes in Primary Production and Phytoplankton
Species Composition”). Although there is reasonable consensus
among currentmodels that SouthernOcean primary productivity
will increase, largely as a function of increased iron supply,
light availability and warming (Bopp et al., 2013; Leung
et al., 2015; Moore et al., 2018; Boyd, 2019), no models
capture mechanistically the myriad interactions among changing
environmental variables and the physiological effects, adaptation
strategies and evolutionary responses of the phytoplankton
(Hutchins and Boyd, 2016; Strzepek et al., 2019). The magnitude
and in most cases even the sense of these interactions remain
insufficiently understood. Changes in phytoplankton species
composition may also alter iron availability in surface waters
by modifying the balance among biological uptake, chemical
speciation, adsorptive scavenging, vertical export and organic
matter recycling as controlling mechanisms. In addition, many
cell types are surprisingly plastic in their iron requirements,
and some have the ability, even in the short term, to
adjust their iron assimilation mechanisms and maintain similar
growth rates despite changes in iron availability (Andrew
et al., 2019). Phytoplankton in a cold-core eddy with very
low surface iron concentrations have been shown recently
to upregulate iron uptake and utilise iron from enhanced
microbially mediated recycling (Ellwood et al., 2020). Given the
widespread distribution of eddies in the iron-limited Southern
Ocean (Frenger et al., 2015), these mechanisms may have
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large-scale importance in influencing phytoplankton dynamics
under climate change.

Micronutrient-Limitation by Other Trace
Elements
In addition to iron, phytoplankton require manganese and can
be co-limited by manganese and iron in Southern Ocean regions
where supplies of both metals to surface waters are restricted
(Middag et al., 2011, 2013). Iron-manganese co-limitation of
phytoplankton growth has been shown for P. antarctica in
the Ross Sea in late summer (Wu et al., 2019) and in the
Antarctic diatom Chaetoceros debilis (Pausch et al., 2019). The
future status of iron-manganese co-limitation may depend in
part on the poorly understood effects of ocean acidification
on the availability of these metals (Koch et al., 2019). Cobalt
in the form of cobalamin (vitamin B12) can also co-limit,
with iron, some Southern Ocean phytoplankton species (Moore
et al., 2013; Bertrand et al., 2015). Because cobalamin can
only be produced by bacteria and archaea, as is the case
for some strong iron ligands, this points to a critical role
for complex phytoplankton−bacteria interactions in regulating
Southern Ocean primary productivity. Laboratory experiments
investigating the interactions among all of these factors and their
combined physiological and biogeochemical implications suggest
that a complex and seasonally varying mosaic of limitation
scenarios may apply in various subregions of the Southern Ocean
and Antarctic shelf waters (Koch and Trimborn, 2019).

Differences Between Open Southern
Ocean and Antarctic Shelf Regions
The open Southern Ocean and Antarctic shelves differ
substantially in micronutrient dynamics due to large differences
in circulation, bottom depth, productivity and biogeochemistry,
and interactions with the atmosphere and cryosphere. Whilst
vertical mixing and atmospheric dust inputs frommore northerly
continents are the main iron sources for much of the Southern
Ocean, surface waters of the shelf regions are proximal to both
continental and sedimentary iron sources. In regions bordered
by ice shelves, ice-shelf melting by warmer oceanic waters at
the ice-ocean interface can provide a glacial iron source to the
adjacent surface ocean from iron-rich particulates within the
ice shelf and from liquid water at the base of land-grounded
ice (Gerringa et al., 2012; Sherrell et al., 2015; Raiswell et al.,
2018). The buoyant plume transporting ice-derived iron also
entrains iron from shelf sediments via the ice-shelf meltwater
pump (St-Laurent et al., 2017, St-Laurent et al., 2019). Most
evidence for these phenomena is from West Antarctica, where
glacial meltwater input has been increasing for decades, adding
iron that is potentially bioavailable for phytoplankton growth
(Monien et al., 2017), but new evidence shows increased melting
in East Antarctica (Rignot et al., 2019) that may be driving
similar iron inputs. These glacial and sedimentary iron sources,
in addition to oceanic sources, mean that surface waters are
iron-replete in most shelf regions in spring (Marsay et al., 2014;
Arrigo et al., 2017) and in coastal inner shelf regions in summer
(Carvalho et al., 2019), although summertime iron limitation

has been indicated off the WAP (Annett et al., 2017) and in the
Amundsen and Ross Seas (Alderkamp et al., 2015, 2019). Whilst
there is evidence for off-shelf export of shelf sediment-derived
iron from the WAP and western Weddell Sea and transport to
downstream open ocean regions (De Jong et al., 2012), much
of the continental iron is retained within shelf systems by
along-shelf circulation patterns and fronts (Rintoul, 2018), and
by uptake in intense phytoplankton blooms that export iron to
depth over the shelves (Annett et al., 2017). Contrasting physical
and biogeochemical conditions between the shelf and open
ocean regions dictate that future changes in iron dynamics and
impacts on primary production are also likely to differ between
these provinces. Given the expected increases in shelf-proximal
glacial meltwater inputs and sedimentary iron delivery by the
ice-shelf meltwater pump, and the effects on shelf sediment redox
processes of enhanced carbon export from sea-ice-free surface
waters, it is reasonable to speculate that larger increases in iron
supply to primary producers will occur over the shelves than in
the open Southern Ocean as climate change proceeds (Tagliabue
et al., 2009a; Marsay et al., 2014; De Jong et al., 2015; St-Laurent
et al., 2019; Dinniman et al., 2020).

CHANGES IN MACRONUTRIENT
BIOGEOCHEMISTRY

Macronutrient Supply and Limitation of
Phytoplankton Growth
Whilst iron is the primary limiting nutrient for phytoplankton
growth in the Southern Ocean, macronutrients (nitrate,
phosphate, silicic acid) sourced mainly from the Circumpolar
Deep Water (CDW) mass in the ACC play an important
role in regulating primary production and carbon export
within and far beyond the Southern Ocean (Moore et al.,
2013, 2018). Here, we present three new datasets to explore
the seasonal changes in macronutrient concentrations and
ratios in the Atlantic and Indian sectors of the open Southern
Ocean south of South Africa (Figure 2) and in Marguerite
Bay in the coastal zone of the central WAP region (Figure 3).
Nitrogen and phosphorus do not limit Southern Ocean
primary production in general, although short periods of
nitrate limitation have been observed during peak-bloom
conditions in high-productivity coastal and shelf areas (Henley
et al., 2017, 2018; Figures 2, 3). Additionally, diatoms under
varying degrees of iron limitation deplete silicic acid in the
Antarctic and Polar Frontal Zones to a far greater extent than
nitrate (Pondaven et al., 2000; Smith et al., 2000), leading to
summertime instances of silicic acid-limitation (Pollard et al.,
2002). The preferential removal of silicic acid south of the
Sub-Antarctic Front also yields northward-flowing surface
waters that are silicic acid-deplete and nitrate- and phosphate-
rich (Figure 2; Sarmiento et al., 2004). This condition, which
favours the growth of non-siliceous phytoplankton (Balch et al.,
2011; Quéguiner, 2013; Deppeler and Davidson, 2017 and
references therein), could reduce carbon export since the dense
siliceous shells of diatoms cause them to sink more rapidly than
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FIGURE 2 | Nutrient concentration and stoichiometry data across the Indian (WOCE IO6 line; left-hand columns) and Atlantic (WOCE A12 line; right-hand columns)

sectors of the Southern Ocean in summer and winter (see Figure 1 and Supplementary Figure S1 for transect locations). Shown are the concentrations

(0–1000 m, except for ammonium) of (a) nitrate + nitrite, (b) phosphate, (c) silicic acid, (d) ammonium (0–500 m), (e) N* (=[NO3
− + NO2

−] – 16 × [PO4
3−]), and

(f) Si* (=[Si(OH)4] – [NO3
−]). Winter measurements, which extend to the edge of the marginal ice zone, are for samples collected in 2017 (IO6) and 2019 (A12) (see

Supplementary Information 1 for details). Summer samples were collected in 1996 (IO6; WOCE 2018) and 2008 (A12; Schlitzer et al., 2018). No summer

ammonium concentration data are available for IO6, whilst the summertime values shown for A12 are for samples collected at the surface along A12 in 2019. Where

ammonium data are available, N* is calculated as N*DIN = [NO3
− + NO2

− + NH4
+] – 16 × [PO4

3−]. The major water masses defined according to Whitworth and

Nowlin (1987), Park et al. (1993), Orsi et al. (1995), and Belkin and Gordon (1996) are labelled on panel a: SAMW, AAIW, Upper and Lower CDW (UCDW, LCDW).

The positions of the major fronts at the time of sampling (after Deacon, 1982 and Orsi et al., 1995) are shown in white to 400 m on panel (a): (from south to north)

the Polar Front, Sub-Antarctic Front and Sub-Tropical Front. The new winter data presented here are available at https://doi.org/10.5281/zenodo.3883618.
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FIGURE 3 | Nutrient concentration and stoichiometry data from the Rothera Time Series, November 2013 to March 2016 (see Supplementary Information 2 for

details). Measured concentrations for samples taken at 15 m water depth of (a) nitrate + nitrite, (b) phosphate, (c) N*, (d) ammonium, (e) nitrite, and (f) N*DIN.

Chlorophyll a concentrations (g) are included to indicate the timing and magnitude of summer phytoplankton blooms. Chlorophyll data courtesy of the British

Antarctic Survey. These data are available through the British Oceanographic Data Centre (BODC) at https://www.bodc.ac.uk/data/published_data_library/catalogue/

10.5285/98cc0722-e337-029c-e053-6c86abc02029/ (Henley and Venables, 2019).

other phytoplankton (Buesseler, 1998; Ducklow et al., 2001;
Armstrong et al., 2009).

Seasonal Nutrient Dynamics in the Open
Southern Ocean
The balance between wintertime nutrient supply and
summertime nutrient drawdown is central to the Southern
Ocean’s role in setting atmospheric CO2 (Sarmiento
and Toggweiler, 1984; Section “Changes in the Southern
Ocean Carbon Sink”). In general, Southern Ocean nutrient
measurements are biased towards the spring and summer due
in part to the challenges of sampling in winter. For the open
Southern Ocean, two new winter datasets from the IO6 and
A12 meridional transects (Figures 2a–c and Supplementary

Information 1) show that surface nutrient concentrations as
far south as the marginal ice zone, whilst higher in winter than
summer, are still lower than in the underlying source waters
despite vigorous mixing. This occurs because the seasonal
incorporation of the relatively low-nutrient summer surface
mixed layer into the winter mixed layer dilutes the nutrient
concentrations of the latter (Smart et al., 2015). Biological uptake
in summer thus affects mixed-layer nutrient concentrations
year-round. In addition, nitrification (the chemoautotrophic
oxidation of ammonium to nitrate via nitrite) occurs at high
rates in the winter mixed layer across the Southern Ocean

(Smart et al., 2015; Mdutyana et al., 2020), producing recycled
nitrate subsequently available for consumption in spring.
Nitrification is favoured in winter due to low light and reduced
competition for ammonium (Olson, 1981; Ward, 2005; Smith
et al., 2014). This effect may be augmented by enhanced iron
availability (Shafiee et al., 2019) and, south of the Polar Front,
by mixed-layer ammonium accumulation (Figure 2d) resulting
from an enhanced microbial loop in late summer/autumn
(Becquevort et al., 2000; Dennett et al., 2001; Lourey et al.,
2003). Currently, the implications of nutrient (re)cycling within
the seasonally varying mixed layer for Southern Ocean carbon
production and export remain poorly understood.

Seasonal and Spatial Variability in
Nutrient N:P Ratios
The ratios in which phytoplankton communities take up
macronutrients exert important controls on carbon export, and
are influenced by taxonomy, growth rate, resource allocation,
equilibrium cellular nutrient ratios relative to supply ratios, and
micronutrient limitation (Weber and Deutsch, 2010; Martiny
et al., 2013). The nitrogen-to-phosphorus (N:P) uptake ratio
varies broadly with latitude across the Southern Ocean, ranging
from ∼20:1 in the Sub-Antarctic to 11−16:1 in the Antarctic
Zone, corresponding with latitudinal gradients in phytoplankton
species composition, light and temperature (Arrigo et al., 1999;
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Finkel et al., 2006; Green and Sambrotto, 2006; Weber and
Deutsch, 2010; Martiny et al., 2013). This produces the
opposite trend in seawater nitrate-to-phosphate concentration
ratios, as described by the stoichiometric parameter N∗

([NO3
− + NO2

−]–16 × [PO4
3−]; Gruber and Sarmiento, 1997).

For the two new winter datasets (Figure 2 and Supplementary

Information 1), the previously observed summertime trend
persists, with lower mixed-layer N∗ in the Sub-Antarctic and
higher N∗ in the Antarctic Zone (Figure 2e). The meridional
gradients are weaker in winter (average N∗ of −3.7 ± 0.7 µmol
L−1 in the Sub-Antarctic and −2.3 ± 0.7 µmol L−1 in
the Antarctic Zone), probably because they largely reflect the
imprint of summertime uptake partially eroded by lateral and
vertical mixing. Similarly, the wintertime surface-subsurface N∗

gradients are weaker because the rate of upward nutrient supply
outpaces that of surface uptake and subsurface regeneration.
Nonetheless, the data confirm that summertime phytoplankton
N:P uptake ratios set surface and subsurface N∗ year-round in
this open ocean region.

New year-round data from Marguerite Bay, in the coastal
WAP, show distinct seasonal variations in upper ocean N∗

(Figure 3; Supplementary Information 2). Maximum N∗ in
summer is driven by diatom-dominated phytoplankton blooms
characterised by low N:P uptake ratios. Diatom-dominated
ice algal production may also contribute to increasing N∗ in
spring before sea ice retreats. Minimum N∗ in early winter
(April−June), similar to deep-water values (−4.8± 0.6µmol L−1

below 100 m), indicates a near-complete reset of surface nutrient
stoichiometry due to vertical mixing of nutrient-rich modified
CDW. This resupply, augmented by a minor contribution from
remineralisation, drives a steady increase in surface nitrate and
phosphate in a ratio close to the Redfield ratio (15.4 ± 0.9
in winter 2014; 16.2 ± 0.6 in winter 2015), although surface
concentrations do not reach high CDW values. In mid-late
winter, increases in N∗ coincident with decreasing ammonium
concentrations, high and variable nitrite concentrations, and
stable N∗

DIN ([NO3
− + NO2

−] + [NH4
+]–16 × [PO4

3−];
Gruber and Sarmiento, 1997) indicate in situ nitrification.
Nitrification within the sea-ice matrix and ice-ocean nutrient
exchangemay also contribute to the observed signals. By contrast,
phytoplankton nutrient uptake cannot account for the changes
over winter when light is absent at these latitudes.

Taken together, the three new datasets presented here show
that vertical mixing does not completely reset the surface
macronutrient inventory over the Antarctic shelves or in the
open Southern Ocean, at least in the regions examined here,
such that summertime uptake influences surface and subsurface
nutrient concentrations and stoichiometry year-round. We also
highlight the importance of wintertime nitrification in shelf and
open ocean settings.

Southern Ocean Nutrient Budgets and
Silicic Acid-to-Nitrate Ratios in Global
Biogeochemical Cycles
Southern Ocean macronutrient budgets are important for
global nutrient distributions and carbon export in addition

to regional processes and ecosystems (Sarmiento et al., 2004;
Moore et al., 2018). In particular, surface nutrient concentrations
and ratios in the formation regions of Sub-Antarctic Mode
Water (SAMW) and Antarctic Intermediate Water (AAIW)
are transported northward by these water masses and mixed
through the thermocline into macronutrient-limited surface
waters north of 30◦S (Marinov et al., 2006). This is the case
for low preformed silicic acid-to-nitrate ratios, quantified as Si∗

([Si(OH)4]–[NO3
−]; Sarmiento et al., 2004). Although the Si∗ of

upwelling CDW is high (∼10−55 µmol L−1; Figure 2f), diatoms
experiencing iron stress consume silicic acid and nitrate in a
ratio higher than the 1:1 ratio expected for iron-replete diatoms
(Hutchins and Bruland, 1998; Takeda, 1998). This decreases Si∗

south of the Polar Front and in northward-flowing surface waters,
such that SAMW and AAIW form in the near-absence of silicic
acid (i.e., Si∗ < −10 µmol L−1) (Figures 1, 2). The low Si∗ signal
is transferred to the low-latitude thermocline, favouring non-
silicifying phytoplankton species in the overlying surface waters.

Future Changes to Southern Ocean
Nutrient Budgets and Global
Consequences
Observed and anticipated changes in primary production and
phytoplankton species composition across the Southern Ocean
(Section “Changes in Primary Production and Phytoplankton
Species Composition”) influence the quantity and stoichiometry
of nutrients transported in northward-flowing water masses.
Increases in primary production would reduce total northward
nutrient transport, and therefore primary production and carbon
export throughout the lower latitudes (Moore et al., 2018).
Southward shifts of phytoplankton communities as warming
proceeds, and the resultant shift towards smaller species with
higher N:P uptake ratios in each latitudinal band (Arrigo et al.,
1999; Martiny et al., 2013), would increase the mean N:P
uptake ratio at the basin scale (Weber and Deutsch, 2010),
altering carbon export, which is more tightly coupled to nitrogen
than phosphorus. The subsequent decrease of N∗ in mode
and intermediate waters would lead to more intense nitrogen
limitation relative to phosphorus in the low-latitudes, reducing
carbon export and potentially influencing competition between
nitrogen fixers and other autotrophs (Weber and Deutsch, 2010;
Martiny et al., 2013). In contrast, a species shift to diatoms
in the Sub-Antarctic could increase N∗ supply to the low
latitudes, which could partially offset the reduction in low-
latitude carbon export. Whilst such a shift could further reduce
Si∗ in northward-transported water masses, the well-established
silicic acid leakage hypothesis (Nozaki and Yamamoto, 2001;
Brzezinski et al., 2002; Matsumoto et al., 2002) suggests that
the projected increase in iron supply (Sections “Changes in
Primary Production and Phytoplankton Species Composition”
and “Changes in Micronutrient Biogeochemistry”) would reduce
the diatom silicon-to-nitrogen (Si:N) uptake ratio and thus
increase Si∗ supply to the north. This increase in Si∗ could also
be exacerbated by a reduction in diatom silica production under
ocean acidification, which would further reduce the Si:N uptake
ratio (Petrou et al., 2019; Section “Ocean Acidification and Its
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Effects on the Ecosystem”). The extent to which changes in
the stoichiometry of northward-transported nutrients compound
or alleviate the impact of increased Southern Ocean nutrient
retention on global-scale primary production and carbon export
(Moore et al., 2018) requires further investigation.

CHANGES IN THE SOUTHERN OCEAN
CARBON SINK

The Solubility Pump, Biological Pump
and Upwelling
The Southern Ocean is a globally important region for
ocean ventilation and the sea-air exchange of CO2 and other
climate-active gases, due to a complex interaction (sometimes
counterintuitive) between physical-chemical and biological
processes (Marinov et al., 2006). The solubility pump, whereby
atmospheric CO2 is taken up by dissolution into surface waters
and subsequently subducted into the subsurface, exporting CO2

into the ocean interior, is particularly strong in the high southern
latitudes due to cold surface waters and deep and intermediate
water mass formation (e.g., Sabine et al., 2004; Van Heuven
et al., 2014; Gruber et al., 2019b). The Southern Ocean also has
regions of strong upwelling linked to oceanographic fronts, which
brings CO2-rich deep waters to the surface, increasing pCO2

in surface waters, altering the carbonate system equilibrium
and driving CO2 release to the atmosphere (e.g., Pardo et al.,
2017; Chapman et al., 2020). The biological pump is also
important in the Southern Ocean, particularly during spring
and summer (e.g., Ducklow et al., 2001; DeVries et al., 2012;
Cavan et al., 2019a). CO2 is converted into organic carbon during
photosynthesis by phytoplankton and other primary producers
(Section “Changes in Primary Production and Phytoplankton
Species Composition”), stored in plant and animal tissues
(Section “Carbon Transfer and Storage in Pelagic and Benthic
Food Webs”) and subsequently exported to the deep ocean and
seafloor when microalgae and other organisms die. The balance
between solubility and biological pump processes and upwelling
processes, and their combined effect on the difference between
seawater and atmospheric pCO2 (1pCO2), determine whether
the surface ocean behaves as a CO2 sink or source. Themagnitude
of CO2 fluxes depends mostly on wind speed, which strongly
affects the sea–air gas transfer velocity (e.g., Fay et al., 2014;
Wanninkhof, 2014).

Net CO2 Sink Behaviour of the Southern
Ocean
The Southern Ocean between 30◦S and 50◦S is currently a
major net annual sink for atmospheric CO2 since biological
uptake during summer and solubility pump processes exceed
CO2 outgassing driven by upwelling and vertical mixing
predominantly during winter (e.g., Takahashi et al., 2012;
Roobaert et al., 2019). The SouthernOcean CO2 sink has taken up
approximately 40% of the total oceanic uptake of anthropogenic
CO2 (Orr et al., 2001; Fletcher et al., 2006; DeVries, 2014),
increasing surface water pCO2 and causing ocean acidification

(Section “Ocean Acidification and Its Effects on the Ecosystem”).
Export of CO2 to the deep Southern Ocean occurs in specific
locations and depends on the interactions between physical
properties, such as mixed layer depth, ocean currents, fronts,
eddies and winds, all of which are potentially sensitive to climate
variability and change, and with bathymetric features (Sallee
et al., 2012; Chapman et al., 2020). In addition to intense
seasonality in sea–air CO2 fluxes driven by the solubility and
biological pumps, a high degree of interannual variability has
been reported for particular regions, such as the WAP (Ito et al.,
2018; Brown et al., 2019) and the Ross Sea (Dejong and Dunbar,
2017). Across the Southern Ocean, summertime conditions have
been shown to drive sub-decadal variability in 1pCO2 whilst
winter variability contributes to longer-term changes associated
with the SAM (Lenton and Matear, 2007; Gregor et al., 2018).

Trends and Changes in Carbon Sink
Strength
The strength of the Southern Ocean carbon sink declined
between the 1980s and early 2000s, largely due to an increase
in natural CO2 release associated with stronger winds, which
enhanced the advection and vertical mixing of dissolved
inorganic carbon (DIC) into surface waters (Le Quere et al.,
2007; Lovenduski et al., 2008; Lenton et al., 2013). Model
simulations have shown that this increase in CO2 outgassing
was sustained from the late 1950s (Lovenduski et al., 2013).
However, this trend reversed during the 2000s as the overturning
circulation weakened (DeVries et al., 2017). The strength of
the sink has increased again since around 2002, and by 2012
had recovered to its expected strength based on the increase in
atmospheric CO2 concentrations (Landschutzer et al., 2015). The
Southern Ocean sea–air CO2 flux was recently estimated to be
−0.75 ± 0.22 Pg C year−1 by combining estimates of seawater
pCO2 from biogeochemical floats with shipboard measurements
(Bushinsky et al., 2019). This estimate of CO2 sink strength is
reduced compared to that based on shipboard measurements
alone (–1.14 ± 0.19 Pg C year−1) because the use of floats
increases substantially the data availability during winter when
CO2 outgassing is maximal.

Spatial and Temporal Variability in
1pCO2 and Its Physical and Biological
Drivers
Here we use the Surface Ocean CO2 Atlas (SOCAT) version
2019 (Bakker et al., 2016; Figure 4) to elucidate how carbon
sink strength in the different sectors of the Southern Ocean
south of 30◦S has changed in recent decades (Figure 5). We
also attempt to compare the proportional contributions of the
solubility and biological pumps to the carbon sink (Figure 6).
Analysis of 1pCO2 by season for 2002−2007 and 2012−2017
confirms the expected net CO2 sink behaviour for both coastal
and open-ocean regions where data are available (Figure 5). Net
CO2 uptake (negative 1pCO2) is observed overall in all seasons,
with lower spatially-averaged 1pCO2 indicating higher CO2

uptake during the summer seasons and particularly in the coastal
regions (Figures 5a,e). However, variability is high within and
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FIGURE 4 | Distribution of seasonal pCO2 observational data used here from SOCAT version 2019 (Bakker et al., 2016) for (a) 2002–2007 and (b) 2012–2017. The

seasonal periods computed were austral summer (JFM; red trajectories), autumn (AMJ; orange trajectories), winter (JAS; blue trajectories) and spring (OND; green

trajectories).

FIGURE 5 | Difference between the pCO2 of the ocean and atmosphere (1pCO2, µatm) by season for two composited periods: (a–d) 2002–2007 and (e–h)

2012–2017. The maps were produced using Data-Interpolating Variational Analysis (DIVA; 10 × 10 per mille) in the Ocean Data View software (Schlitzer, 2018).

Seasonal 1pCO2 was computed using publicly available data from SOCAT version 2019 (Bakker et al., 2016). Atmospheric pCO2 was determined using monthly

averaged values obtained by Palmer, Halley, Syowa and South Pole meteorological stations on Antarctica (https://www.esrl.noaa.gov/gmd/dv/site/?stacode=

none). The white and black isolines depict the 1pCO2 values of –25 and +25 µatm, respectively. The mean and standard deviation of 1pCO2 for the entire area for

each season is shown in the centre of each map. The Southern Ocean sectors are named as: Weddell Sea, Indian Ocean, Western Pacific Ocean, Ross Sea, and

Bellingshausen and Amundsen Seas. The seasonal periods computed were austral summer (JFM), autumn (AMJ), winter (JAS), and spring (OND).
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FIGURE 6 | Effects of seasonal variation in DIC, total alkalinity (AT), temperature (SST) and salinity (SSS) on the seasonal variation in seawater pCO2 for each

latitudinal zone of the Southern Ocean for 2002–2007 and 2012–2017: (a) 30–45◦S, (b) 45–60◦S, and (c) >60◦S. The seasonal variation in each parameter is

calculated as the difference between the winter (JAS) mean value and the summer (JFM) mean value. The unit of all drivers is the same as the unit of pCO2 (µatm),

and their magnitudes represent their influence on seasonal pCO2 changes (1pCO2
seas), from summer to winter. Positive values indicate that an increase in the

parameter led to an increase in pCO2; negative values indicate that a decrease in the parameter led to a decrease in pCO2. The only exception to this is alkalinity

because an increase in alkalinity leads to a decrease in pCO2 and vice versa. The error bars (purple) show the difference in seasonal variation between the sum of all

drivers and pCO2, indicating the extent to which the decomposition of pCO2 into its drivers differs from the actual seasonal variation in pCO2 (1pCO2
seas).

between sectors across seasons and some sectors show net CO2

release (positive 1pCO2) during winter (Table 2). For example,
net CO2 release is identified along the WAP during the austral
winters of both time periods, and for distinct regions of the
Western Pacific sector in all seasons for 2012−2017 (Figure 5).
In addition, the 1pCO2 distribution appears to show a zone with
values close to zero at approximately 50−60◦S. Although this

zone has been described as circumpolar (Takahashi et al., 2012),
it is not clear in the Weddell Sea sector, especially considering
the increased data coverage for 2012−2017. Our analysis reveals
no clear trend in 1pCO2 overall between 2002−2007 and
2012−2017, consistent with equivalent increases in atmospheric
and surface water pCO2, and thus an increase in CO2 sink
strength, since the early 2000s (Landschutzer et al., 2015), as well
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TABLE 2 | Regional average ± standard deviation of the pCO2 difference between the surface ocean and atmosphere (1pCO2), by season for two composited time

periods: 2002−2007 and 2012−2017.

Season Time Period Southern Ocean sectors

Weddell Sea Indian Ocean Western Pacific Ocean Ross Sea Bellingshausen and Amundsen Seas

Summer 2002−2007 −56 ± 64 −32 ± 34 −24 ± 24 −55 ± 62 −64 ± 71

Autumn −7 ± 31 No data −40 ± 21 −35 ± 16 −10 ± 35

Winter 7 ± 28 −35 ± 16 −36 ± 20 −39 ± 20 15 ± 36

Spring −3 ± 34 −34 ± 22 −18 ± 36 −20 ± 44 −11 ± 40

Summer 2012−2017 −54 ± 38 −47 ± 42 −35 ± 37 −52 ± 45 −71 ± 81

Autumn −31 ± 42 −23 ± 13 −35 ± 21 −36 ± 19 −6 ± 25

Winter −16 ± 30 7 ± 16 −37 ± 28 −25 ± 29 5 ± 31

Spring −29 ± 29 −2 ± 32 −26 ± 27 −56 ± 23 −18 ± 45

Units are µatm; negative values indicate CO2 uptake, positive values indicate CO2 release.

as substantial variation in 1pCO2 changes between sectors and
seasons (Table 2).

Changes in surface water pCO2, and therefore 1pCO2 and
sea-air CO2 fluxes, are driven by biological and physical processes
acting simultaneously. Whilst it is difficult to separate the
biological and thermal effects, examining the seasonal changes
in DIC, total alkalinity and sea surface temperature and salinity
can inform our understanding of the biological and solubility
pump contributions to Southern Ocean CO2 uptake. Figure 6

shows the influence of seasonal changes in DIC, alkalinity,
temperature and salinity on seasonal changes in seawater pCO2

in three latitudinal bands in 2002−2007 and 2012−2017 (after
Takahashi et al., 2014; see Supplementary Information 3 for
details). Between 30 and 45◦S, DIC and temperature exert a
similar influence on pCO2, indicating that seasonal changes in
DIC driven by biological uptake in the summer and upwelling
in winter are approximately balanced by seasonal changes in
temperature and their control on the solubility pump. South of
45◦S, and particularly in the Antarctic Zone south of 60◦S, DIC
and alkalinity exert a much stronger influence on pCO2 than
temperature. As the influence of DIC is almost three times that of
alkalinity, this is most likely to reflect the role of biological activity
in spring and summer. Upwelling increases DIC around the Sub-
Antarctic Front especially in winter, but the effect of this on pCO2

is partially compensated by the reduction in pCO2 driven by
wintertime cooling and the increase in alkalinity. These results
suggest that the contributions of biological and solubility pump
processes to seasonal changes in pCO2 across the Southern Ocean
are similar in magnitude for the time periods examined. Whilst
it remains challenging to separate fully the effects of biological
and solubility pump processes on DIC, alkalinity, temperature
and salinity, and therefore pCO2, our findings are in agreement
with previous studies assessing the magnitude of the two sinks.
Estimates of net community production (NCP) over a large
area of the Southern Ocean (38−55◦S, 60◦W−60◦E) based on
observations andmodelling suggest that biological carbon uptake
accounts for a sink of 0.2 Pg C year−1 (Merlivat et al., 2015).
Compared to a total Southern Ocean (south of 35◦S) sea-air CO2

flux of –0.75 ± 0.22 Pg C year−1 (Bushinsky et al., 2019), this
suggests that the biological and solubility pumps account for
a similar proportion of circumpolar CO2 uptake. A modelling

study comparing outputs from different marine ecosystem and
general circulationmodels also shows that biological and physical
forcings of pCO2 are of the same order of magnitude for the
Southern Ocean south of 44◦S (Hauck et al., 2015).

CHANGES IN THE BIOLOGICAL
CARBON PUMP

Key Controls on Biological Carbon
Uptake and Export
The important contribution of biological carbon uptake, export
and storage in organisms to the Southern Ocean carbon sink
is strongly influenced by primary and secondary production.
Although primary production is limited by iron availability
over much of the Southern Ocean (Sections “Changes in
Primary Production and Phytoplankton Species Composition”
and “Changes in Micronutrient Biogeochemistry”), hotspots of
productivity around and downstream of sub-Antarctic islands
and submerged plateaus (e.g., South Georgia, Kerguelen, Crozet),
and in upwelling and mixing zones, coastal/shelf areas and the
sea ice zone where iron is not limiting can lead to substantial
export of organic carbon to deep waters and/or sediments.
Primary production and carbon export are particularly high in
the Atlantic sector (Figure 7a) due to enhanced iron supply from
upstream land masses (Patagonia, Falkland/Malvinas Islands,
South Georgia and the WAP).

Phytoplankton species composition exerts an important
control on the biological pump, with diatoms being exported
quickly and promoting export compared to smaller non-
diatom phytoplankton, due to their large size and ballasting
by biogenic silica (Buesseler, 1998; Ducklow et al., 2001;
Armstrong et al., 2009). As such, sinking diatoms are important
vectors transporting organic carbon to the deep Southern Ocean
(e.g., Cavan et al., 2015), with burial of whole diatoms in
sediments emphasising their importance (Armand et al., 2008)
and showing that they were exported directly rather than being
consumed. Diatoms can escape predation after a spring bloom
by transforming into resting spores that sink rapidly to the deep
before returning to the surface as viable cells after winter, but
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FIGURE 7 | Mean annual POC export at 100 m across the Southern Ocean; (a) present day (2003–2016) from LIDAR data using the Britten et al. (2017) algorithm

as in Arteaga et al. (2018) and (b) mean change by the year 2100 according to eight CMIP5 models following methods used in Cavan et al. (2019b). Data are

interpolated using the DIVA method in Ocean Data View software (Schlitzer, 2018), with scale-length for Y and X of 2 per mille. The Southern Ocean sectors are

named as: Weddell Sea, Indian Ocean, Western Pacific Ocean, Ross Sea, and Bellingshausen and Amundsen Seas.

many do not return and instead remain at depth contributing to
longer-term carbon storage (Rembauville et al., 2018).

Zooplankton faecal pellets also often dominate the biological
carbon sink in the Southern Ocean (Cavan et al., 2015).
Euphausia superba (Antarctic krill) are particularly prevalent
in the Atlantic sector, where their swarms can release huge
numbers of faecal pellets of up to 0.04 Gt C year−1 (Belcher
et al., 2019). Whilst a large contribution of faecal pellets to
sinking material can result in a large carbon flux to depth,
flux efficiency varies substantially because pellets can be broken
up easily before they reach the deep sea (Iversen and Poulsen,
2007). For instance, at one site near the Kerguelen Islands,
in the Indian sector, only 17% of the exported material sank
below 400 m even though copepod faecal pellets dominated
the flux at this depth (72%) (Laurenceau-Cornec et al., 2015).
Conversely at a nearby site, 58% of export reached 400 m with
a more even distribution between phytoplankton and faecal
pellet components (48% pellets), because primary production
was dominated by large fast-sinking diatoms, which escaped
grazing by copepods (Cavan et al., 2019b). This emphasises
the importance of both phytoplankton and zooplankton species
composition in Southern Ocean carbon export and its complex
variability in time and space.

Organic matter recycling via the microbial loop reduces
substantially the amount of carbon available for export and
consumption by higher trophic levels (Azam et al., 1991;
Azam, 1998; Sailley et al., 2013). Interactions between bacteria
and viruses have been shown to contribute to these recycling
processes and the resultant regeneration of nutrients including
iron (Evans et al., 2009; Evans and Brussaard, 2012), as well as

producing refractory dissolved organic matter, which is largely
inaccessible to biological uptake by organisms (Weinbauer et al.,
2011;Weitz andWilhelm, 2012).Whilst these interactions reduce
the export of particulate organic carbon, as well as carbon storage
within the food web (Section “Carbon Transfer and Storage in
Pelagic and Benthic Food Webs”), the large pool of refractory
dissolved organic matter in the deep ocean derived from this
microbial carbon pump constitutes an important carbon sink
(Jiao et al., 2010; Jiao et al., 2011) that is poorly quantified and
warrants further investigation.

Future Changes in Biological Carbon
Uptake and Export
Changes in primary production have a direct and significant
impact on biological carbon uptake. As such, changes in carbon
export across the Southern Ocean are likely to follow trends
in primary production, with an overall increase over the 21st
century, in contrast to reductions at the global scale (Cabré
et al., 2015; Moore et al., 2018). Consistent with projections of
primary production (Section “Changes in Primary Production
and Phytoplankton Species Composition;” Pinkerton et al., to
be published in this research topic), CMIP5 model simulations
project, on average, increases in carbon export in the Sub-
Antarctic north of 50◦S, particularly in the Atlantic sector,
and south of ∼60◦S in the Antarctic Zone, particularly in the
Indian sector, whilst decreases are projected between 50 and
∼60◦S in the open Southern Ocean (Figure 7b). Documented
and projected increases in primary production and export for
the Southern Ocean as a whole, and particularly in regions
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where mode, intermediate and deep waters form and where
net CO2 uptake is already observed, suggest an increase in
its capacity for biological CO2 uptake (Del Castillo et al.,
2019). This would be compounded by a projected increase
in the Revelle factor over the 21st century, which increases
CO2 uptake for a given amount of export production, strongly
increasing the importance of the biological carbon pump across
the Southern Ocean (Hauck and Völker, 2015; Hauck et al.,
2015). Increases in export are driven primarily by phytoplankton
responses to increased iron inputs, shallowing mixed layers
and ocean warming, both in terms of community growth rates
and thus total primary production, and species composition
(Cabré et al., 2015; Leung et al., 2015; Fu et al., 2016; Boyd,
2019). Some models predict that diatoms will be favoured by
increased nutrient availability in Southern Ocean surface waters
driven by increasing wind stress, further enhancing export, whilst
others suggest equivalent increases across phytoplankton groups
because warming-induced growth rate increases become the
dominant effect (e.g., Laufkötter et al., 2013, 2015).

In the coastal and shelf areas, which are known to be strong
local/regional CO2 sinks (Arrigo et al., 2008b; Mu et al., 2014;
Brown et al., 2019; Monteiro et al., 2020), carbon uptake may be
further enhanced by increasing glacial meltwater inputs (Cook
et al., 2016), because surface water cooling and freshening can
augment the solubility pump, in addition to increased iron supply
and primary production (Gerringa et al., 2012; Sherrell et al.,
2015; Annett et al., 2017; Monteiro et al., 2020). Changes in sea
ice dynamics are also likely to influence carbon uptake, because
longer ice-free growing seasons and/or more stratified upper
ocean conditions promote the development of phytoplankton
blooms that drive the biological pump (Montes-Hugo et al., 2009;
Venables et al., 2013; Moreau et al., 2015; Costa et al., 2020).

Changes in phytoplankton species composition and size
distribution may reduce the efficiency of the biological pump,
and thus complicate our understanding of future changes to
the Southern Ocean CO2 sink (e.g., Passow and Carlson, 2012;
Laufkötter et al., 2013). At the WAP, some local increases in
primary production and changes in phytoplankton development
are linked to sea ice declines, increasing glacial meltwater inputs,
ocean warming and freshening (Schloss et al., 2014; Hernando
et al., 2015; Moreau et al., 2015; Rogers et al., 2020), and have
led to a fivefold increase in summertime CO2 uptake along
the shelf in recent decades (Brown et al., 2019). However,
interannual variability is pronounced, and ongoing and projected
species shifts towards smaller non-diatom phytoplankton could
reduce export substantially by lowering the export efficiency as
well as primary production (Montes-Hugo et al., 2008, 2009;
Mendes et al., 2012, 2018; Rozema et al., 2017; Schofield et al.,
2017). An overall decline in biological carbon uptake has thus
been hypothesised for the coming decades, in response to the
continued warming and sea ice declines expected throughout the
WAP region (e.g., Laufkötter et al., 2013; Brown et al., 2019).
Even in regions where diatom communities thrive, reductions in
diatom silica production and shifts toward smaller species with
thinner shells in response to ocean acidification could reduce
diatom sinking rates and diminish carbon export efficiency
in the coming decades (Petrou et al., 2019). In the ACC,

projected increases in iron supply could increase the amount
of carbon exported with the sinking diatom flux (Assmy et al.,
2013), partially offsetting the reduction in export efficiency
associated with acidification, although the relative strength of
these effects is unknown.

Amongst CMIP5 models, there is an order of magnitude
difference in projected phytoplankton growth rates as well as
spatial differences in carbon export, with some models projecting
increases across the entire Southern Ocean and others suggesting
increases in the marginal and seasonal ice zones but declines in
the HNLC Sub-Antarctic (Bopp et al., 2013; Hauck et al., 2015;
Laufkötter et al., 2016). Major uncertainties arise from future
changes in the efficiency of the microbial loop, in particular
the role of bacteria−virus interactions, and the impact of
environmental changes on the coupling of phytoplankton and
zooplankton dynamics and consequences for export. Although
there is greater disparity among climate models in biological
projections than in projections of nutrient distributions globally,
increases in Southern Ocean primary production and carbon
export are expected overall, with the potential to increase the
relative importance of the biological carbon pump (Cabré et al.,
2015; Hauck et al., 2015; Laufkötter et al., 2016).

CARBON TRANSFER AND STORAGE IN
PELAGIC AND BENTHIC FOOD WEBS

Carbon Fixation by Primary Producers
Carbon uptake and storage by organisms in the Southern
Ocean are dominated by coastal and shelf ecosystems, the
marginal ice zone and downstream of Sub-Antarctic islands
(e.g., Bakker et al., 2007; Blain et al., 2007; Arrigo et al.,
2008a,b; Jones et al., 2012; Hoppe et al., 2017). Most carbon
uptake is by phytoplankton through primary production when
light and nutrients are sufficient, and carbon is stored by
animal components of the food web. The major contribution
of large diatoms to primary production and phytoplankton
biomass, and the regional, seasonal and interannual variability
in phytoplankton species composition (Section “Changes in
Primary Production and Phytoplankton Species Composition”),
influence the degree and duration of carbon uptake and storage
within the ecosystem. Macroalgae are also important primary
producers in coastal areas, and new evidence shows that
macroalgal organic matter reaches the open ocean and the deep
sea in several ocean basins, including the SouthernOcean (Ortega
et al., 2019). Whilst carbon uptake by primary production is
similar in magnitude to the direct uptake of CO2 by solubility
pump processes across the Southern Ocean (Section “Changes
in the Southern Ocean Carbon Sink”), transfer of carbon fixed
during primary production into heterotrophic organisms can
lead to rapid sequestration, adding to the complete removal of
carbon from cycling, through burial in sediments or storage
as refractory carbon in the deep ocean. The immediate fate of
primary production is an important food web step in determining
the ultimate fate of carbon (sequestration or recycling), transfer
efficiency and pathway, yet the relative proportions of these fate
paths are poorly constrained.
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Fate Pathways of Primary Production
Phytoplankton carbon can either be sequestered directly, broken
down by microbes or eaten by pelagic animals, whose faecal
pellets may eventually reach the seafloor, or by benthic
consumers. Estimates of the proportion of primary production
following each of these fate paths vary considerably between
studies, depending on region, timescale and the number of these
paths examined. Figure 8 presents a broad overview of the
approximate mean percentages across large spatial and temporal
scales. Approximately 1% is sequestered directly by sinking to and
burial in the seabed, avoiding complete microbial breakdown in
the water column and oxygenated seafloor (Ducklow et al., 2007).
This is hugely variable; for example, there is more than an order
of magnitude variation between years in estimates of how much
primary production reaches the WAP shelf floor (from <0.2 to
4 g C m−2 year−1; Ducklow et al., 2007). Approximately half of
global primary production is broken down bymicrobial processes
in the water column or on the seabed (Azam, 1998). In the
cold Southern Ocean, microbial cycling and bacterial production
may be slower than elsewhere, but can account for a large
proportion of primary production and contribute significantly to
food web dynamics by cycling organic matter and regenerating
nutrients (Azam et al., 1991; Sailley et al., 2013). Enhancement
of the microbial loop by bacteria-virus interactions has also been
observed in the Southern Ocean (Evans et al., 2009; Evans and
Brussaard, 2012).

The second largest carbon fate is grazing by zooplankton
(micro-, meso- and macrozooplankton), of which annual
production can account for up to 80% of primary production
(Hill et al., 2012; Garzio et al., 2013; Sailley et al., 2013;

FIGURE 8 | Schematic representation of carbon flows through pelagic and

benthic food webs in the Southern Ocean. The percentages given represent

approximate mean proportions of total primary production sequestered in the

sea floor, broken down via the microbial loop and consumed by zooplankton

and benthic consumers, based on several studies from high-productivity shelf

environments and the wider literature (Azam, 1998; Ducklow et al., 2007; Hill

et al., 2012; Garzio et al., 2013; Sailley et al., 2013; Ballerini et al., 2014;

Murphy et al., 2016; Barnes, 2017).

Murphy et al., 2016; Moreau et al., 2020). Consumption by
benthic animals is the carbon fate characterised by the highest
diversity (many animal phyla) and richness (tens of thousands
of species), and has been estimated to account for up to 18%
of primary production (Barnes, 2017). The nature of animal
production in the water column and seabed, and therefore
carbon pathways, is strongly influenced by the timing, duration
and composition of the phytoplankton bloom (as well as by
other factors such as sea ice). For example, E. superba typically
prefer larger diatoms over small phytoplankton (Quetin and
Ross, 1985; Haberman et al., 2003; Bernard et al., 2012), and
have also been shown to graze on copepods, microzooplankton
and even salps (Price et al., 1988; Atkinson and Snyder, 1997;
Schmidt et al., 2006; Dubischar et al., 2012). Microzooplankton
can consume almost the full range of phytoplankton size
classes (Klaas, 1997; Calbet and Landry, 2004), whilst salps
are non-selective filter feeders on phytoplankton as well as
microzooplankton and small copepods (Bernard et al., 2012). In
contrast, nanophytoplankton are preferred by benthic suspension
feeders (Barnes and Clarke, 1995).

Strong regional and onshore-offshore differences in grazing
and retention of organic carbon in euphotic surface waters show
that the location of consumption also affects carbon fate (Gleiber,
2015). The type of animal consuming phytoplankton has
important consequences for faecal and carcass sinking rates, and
hence likelihood of reaching the seabed (carbon sequestration),
support for higher trophic levels (food web carbon storage),
growth rates and longevity (storage and sequestration). Larval
krill are abundant at the WAP and near sea ice because
sea ice provides protection from predators and an important
overwintering food source of ice-derived organic material (Meyer
et al., 2017). Faecal pellets of larval krill are smaller and
contain less carbon than those of adults, but deeper diel vertical
migrations by larvae (∼400 m) than adults (∼200 m) (Tarling
et al., 2018) mean their faeces has a higher chance of reaching
the sea floor (Cavan et al., 2019a). On the sea floor, the quantity
and quality of the food supply from overlying waters varies
considerably between the shallow coastal areas and the deep
shelf, with annual accumulation of carbon by benthos at 500 m
being only 10% of that at 25 m along the WAP (Barnes, 2017).
Animals at slope, abyssal and deep-shelf depths are not in direct
contact with the phytoplankton bloom, so are more likely to be
dominated by deposit feeders and their predators.

Carbon Storage in Pelagic and Benthic
Consumers
The animal pathway beyond primary consumption is typically
short, but still supports considerable abundances of up to four
trophic levels (Gillies et al., 2013), much of which hinges around
E. superba as a key consumer. The number of trophic levels has
a direct effect on the amount of carbon (or energy) stored in a
food chain (Dickman et al., 2008), whilst the duration of carbon
storage depends on the life spans of consumers. In the Atlantic
sector, a highly efficient pelagic food chain consists of only three
trophic levels: diatoms, krill and baleen whales (Tranter, 1982;
Smetacek, 2008). Baleen whales found in the Southern Ocean are
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slow-growing and can have long life spans of up to 90 years. In
the Atlantic sector, blue and fin whales feed predominantly on
krill, and withmean weights of∼90 and∼50 tonnes, respectively,
store a huge amount of carbon as organic mass for almost a
century (Laws, 1977). After death, most whales’ carcasses sink to
the sea floor, providing a rich food source for many benthic and
deep-sea organisms. Microbes also decompose organic material
from the whale fall, releasing large amounts of nutrients, and
respired CO2 and potentially refractory dissolved organic carbon
are locked in the deep ocean for decades or even centuries (Jiao
et al., 2010; Cavan et al., 2019a). Elsewhere in the SouthernOcean,
such as in the central Indian sector, E. superba are important
but do not dominate the ecosystem as they do in the Atlantic
(Everson, 2000;McCormack et al., to be published in this research
topic). Near Prydz Bay, cephalopods dominate the food web, with
most carbon cycling through them to sperm whales and leopard
seals (McCormack et al., 2019). This constitutes a longer food
chain of at least five trophic levels: phytoplankton, copepods, krill,
cephalopods and sperm whales or seals. Less carbon is stored in
this pathway due to multiple trophic transfers and because the
top predators are smaller (sperm whales weigh ∼30 tonnes and
seals weigh∼0.3 tonnes) and die younger than blue or fin whales,
such that carbon may only be stored for a few decades (Laws,
1977). Smaller mammals may also sink more slowly and be less
likely to reach the deep ocean, although more research into this
topic is required.

Climate Change Impacts on Food Webs
and Carbon Uptake and Storage
There is emerging evidence of climate forcing on Southern
Ocean food webs, with complex effects on species and trophic
interactions (e.g., Henley et al., 2019). Projected increases in
primary production (Section “Changes in Primary Production
and Phytoplankton Species Composition”) are likely to be
beneficial for pelagic and benthic consumers, with shifts in
phytoplankton species composition favouring certain consumers
and disadvantaging others. At the WAP, pronounced interannual
variability in primary production, with some local increases,
and changes in phytoplankton species composition (e.g., Schloss
et al., 2014; Moreau et al., 2015; Kim et al., 2018) have strong
implications for krill and other zooplankton (e.g., Steinberg et al.,
2015). For example, summers characterised by large diatom-
dominated phytoplankton blooms, associated with long-lived
winter sea ice cover and stratified surface waters in spring and
summer, lead to strong krill recruitment the following summer
(Saba et al., 2014). Long-term sea ice declines and ongoing
shifts toward smaller phytoplankton could thus drive reductions
in krill populations (Saba et al., 2014). At the larger scale,
there is significant debate in the scientific literature regarding
decadal trends in the distribution and density of krill populations
and their drivers (Johnston et al., to be published in this
research topic, and references therein). There is evidence for krill
populations in the southwest Atlantic sector declining and/or
shifting their distribution southward, related to wintertime sea
ice cover particularly in the important spawning and nursery
areas around the WAP and Southern Scotia Arc, with potential

linked increases in salp abundance (Atkinson et al., 2004, 2019;
Hill et al., 2019). However, other studies suggest important
spatial differences in observed patterns of krill variability and
change, and potentially a more stable trajectory overall (Cox
et al., 2018; Johnston et al., to be published in this research topic,
and references therein). If krill declines are real and sustained,
there could be significant disruption to higher predators as
well as ecosystem functions such as ocean fertilisation and
carbon cycling and storage (Dubischar et al., 2012; Alcaraz
et al., 2014; Atkinson et al., 2019; Cavan et al., 2019a). Amongst
benthos, both sea ice losses and ice shelf disintegration have
had pronounced effects on production and carbon storage over
the last two decades. New and longer phytoplankton blooms
(Schloss et al., 2014; Moreau et al., 2015; Kim et al., 2018) have
increased benthos growth overall despite decreased growth in
the shallows due to increased iceberg scour (Barnes et al., 2018).
More than a doubling of carbon storage with recent sea ice
losses suggests a rare and powerful short-term negative feedback
on climate by Southern Ocean biota (Peck et al., 2010; Barnes
et al., 2018), although the persistence of this trend is in doubt
(Brown et al., 2019).

EXCHANGE AND REDISTRIBUTION OF
CARBON AND NUTRIENTS BY ANIMALS

Benthic-Pelagic Coupling and Water
Column Transports
Coupling of benthic and pelagic ecosystems through a range
of biological and physical processes plays a key role in
modulating biogeochemistry and ecological function in the
Southern Ocean. Nutrient recycling within and release from
sediments, particularly of iron, and subsequent delivery to
euphotic surface waters via lateral and vertical transport, is a
key benthic-pelagic coupling mechanism sustaining food webs.
Benthic iron fluxes are largest in continental shelf and slope
regions, but can also be important in the deep Southern Ocean,
and are regulated by organic carbon oxidation rates in sediments
and bottom water oxygen concentrations (Tagliabue et al., 2009a;
De Jong et al., 2012; Dale et al., 2015). Nutrient transport within
the pelagic realm between the deeper waters, enriched with
macro- and micronutrients (i.e., iron) as a result of water column
remineralisation of organic matter, and the surface waters is also
critical for ocean productivity and ecosystem function (Sections
“Changes in Primary Production and Phytoplankton Species
Composition,” “Changes in Micronutrient Biogeochemistry,”
and “Changes in Macronutrient Biogeochemistry”). There is a
growing body of evidence for krill, whales and other higher
organisms enhancing the transport of these nutrients regenerated
in the subsurface, deep waters and sediments into surface waters
(e.g., Schmidt et al., 2011; Ratnarajah et al., 2014).

Nutrient Recycling and Redistribution by
Animals
Krill have been shown to release dissolved iron, ammonium
and phosphate through grazing and excretion processes
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(Tovar-Sanchez et al., 2007; Ratnarajah et al., 2014; Schmidt
et al., 2016), each providing a nutrient source to phytoplankton
blooms (Atkinson and Whitehouse, 2000; Ariśtegui et al., 2014).
Copepods also play an important role in regenerating and
retaining iron in the surface ocean through grazing and rapid
recycling of faecal pellets (Sarthou et al., 2008; Laglera et al.,
2017). Whales produce iron-rich faeces, which constitute a
highly concentrated, albeit highly localised, iron source (Nicol
et al., 2010; Lavery et al., 2014). Recycling of iron is particularly
important in the iron-limited regions of the Southern Ocean,
and release by krill, other zooplankton, marine mammals and
seabirds in the upper layers could stimulate phytoplankton
productivity (Nicol et al., 2010; Ratnarajah et al., 2018; Cavan
et al., 2019a). For instance, sperm whales have been shown
to increase carbon export in the Southern Ocean, as primary
production and carbon export stimulated by their faecal iron
supply to surface waters exceeds their respiration by an estimated
200,000 t C year−1 (Lavery et al., 2010).

Southern Ocean organisms are also important as transporters
and redistributors of the nutrients that they recycle, depending
on their migration and feeding behaviours (Ratnarajah et al.,
2018). Krill and other zooplankton species that undergo daily
(diel) vertical migrations between surface waters where they feed
and deeper waters where they avoid predation (Hernández-León
et al., 2001; Tarling et al., 2018) can transfer significant quantities
of carbon and nutrients to the deep ocean, via defecation of
organic matter as faecal pellets and release of CO2 at their
deep resting depths (Cavan et al., 2015; Belcher et al., 2017).
Similarly, zooplankton species such as copepods that migrate
seasonally between food-rich surface waters in spring/summer
and deeper waters below the permanent thermocline in winter
also transport carbon and nutrients to depth via net consumption
in surface waters and net respiration at depth (Lee and Hagen,
2006; Jónasdóttir et al., 2015). Conversely, krill that live and feed
at the seafloor may transfer nutrients, particularly iron, to the
surface from benthic environments (Schmidt et al., 2011). Marine
mammals, seabirds and squid that feed at depth can transport
iron and other nutrients into the euphotic zone, where their
release can stimulate phytoplankton growth (Ratnarajah et al.,
2018 and references therein). Nutrient recycling through krill
and other organisms in water masses that are transported north
from the Southern Oceanmay also impact organisms in the lower
latitudes (Cavan et al., 2019a).

Land-Ocean Nutrient Transfer
Seals, penguins and other seabirds play an important role
in transporting carbon, nitrogen and phosphorus from the
ocean into terrestrial environments of the sub-Antarctic islands
and Antarctica (Moss, 2017 and references therein). There is
also evidence for nutrient supply, including iron, to coastal
marine environments from seals and seabirds and their colonies
in the Sub-Antarctic via faecal material and run-off from
guano deposits (Wing et al., 2014; Treasure et al., 2015).
Whilst these nutrient fluxes are small in the context of
Southern Ocean biogeochemistry, they can be important locally
for fertilising coastal phytoplankton blooms and macroalgal
production, thus supporting nearshore ecosystems and benthic
food webs in particular.

Turbulent Mixing by Animals
In addition to biological recycling and redistribution of nutrients
by animals, large planktonic migrations consisting of many
thousands of individuals have the potential to bring nutrient-rich
waters from depth towards the surface by stimulating physical
mixing of the water column. This has been shown in jellyfish
swarms (Katija and Dabiri, 2009) but is yet to be studied in
krill or other zooplankton, although mixing between density
layers has been shown by brine shrimp in laboratory experiments
(Houghton et al., 2018). The high abundance of E. superba,
their relatively large size (up to 6 cm) and large migrations
suggest that they could promote physical mixing and vertical
nutrient transport in the Southern Ocean (Tarling and Thorpe,
2017; Cavan et al., 2019a). The contribution of these migratory
behaviours to total nutrient transfer is not well constrained, and
should be prioritised for future research in order to assess its role
now and in the future under climate change.

OCEAN ACIDIFICATION AND ITS
EFFECTS ON THE ECOSYSTEM

Ocean Carbonate Chemistry and
Acidification
Uptake of CO2 into the Southern Ocean by biological
and solubility pump processes is modifying ocean chemistry
and driving ocean acidification. Ocean acidification is a
climate change issue impacting marine biota, marine ecosystem
functioning (Fabry et al., 2008; Guinotte and Fabry, 2008),
and potentially marine ecosystem services at the global scale
(Cooley et al., 2009). Increasing oceanic CO2 concentrations
in response to increasing atmospheric CO2 are altering the
equilibrium between the carbonate system parameters (pCO2,
DIC, total alkalinity and pH), leading to reductions in the pH
and carbonate ion concentration of seawater (Doney et al., 2009;
Feely et al., 2009). Carbonate ion availability is essential for
marine organisms that build their shells and skeletons out of
aragonite, a metastable form of calcium carbonate, such that
lowering the seawater carbonate ion concentration has adverse
effects on vital processes and survival of a large number of
organisms. The aragonite saturation state (�) is a measure of
the seawater carbonate ion concentration relative to aragonite
at equilibrium, with a critical threshold of � = 1 below
which seawater is undersaturated with respect to aragonite and
can become corrosive to the shells and skeletons of marine
organisms. The Southern Ocean is expected to experience
aragonite undersaturation earlier than most other oceans (except
the Arctic), particularly during winter, due to its large uptake of
atmospheric CO2 and because its carbonate ion concentration
is already low due to low temperatures and upwelling of CO2-
rich deep waters (Orr et al., 2005; McNeil and Matear, 2008;
Feely et al., 2009).

Observed and Expected Southern Ocean
Acidification
Decadal trends of increasing DIC, decreasing pH and/or
decreasing � have been documented in surface and deeper
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waters in a number of Southern Ocean regions, including
Drake Passage (Takahashi et al., 2014; Munro et al., 2015),
the coastal northern WAP (Lencina-Avila et al., 2018), the
Weddell Sea (Hauck et al., 2010; Van Heuven et al., 2014),
and the Pacific sector (Midorikawa et al., 2012; Williams
et al., 2015). Aragonite undersaturation has been observed
in the Southern Ocean, and is caused by upwelling of
deeper waters, advection of waters enriched with anthropogenic
carbon and/or in situ uptake of atmospheric CO2 (Bednarsek
et al., 2012; Jones et al., 2017; Kerr et al., 2018). Model
simulations project a rapid spread and increased duration of
aragonite undersaturation events around 2030, affecting ∼30%
of Southern Ocean surface waters by 2060 (Hauri et al.,
2016). However, the combined effects of multiple natural and
anthropogenic drivers (e.g., warming, freshening, meltwater
inputs, oceanic water intrusions, sea-air CO2 exchange) on
the carbonate equilibrium may partially offset the trends in
acidification and aragonite undersaturation and their effects in
Antarctic coastal and oceanic regimes (McNeil et al., 2010;
Lencina-Avila et al., 2018).

Effects of Ocean Acidification on
Organisms and Ecosystem Functioning
Direct and indirect effects of ocean acidification on the
Southern Ocean food web are increasingly well-documented,
with benefits for some organisms and disadvantages for others.
Ross Sea phytoplankton communities have been observed to
shift their species composition from P. antarctica or pennate
diatoms at low CO2 to large centric chain-forming Chaetoceros
diatoms at higher CO2 (Tortell et al., 2008; Feng et al.,
2010). This is consistent with increased growth rates of
C. debilis in experiments with high pCO2 (Trimborn et al.,
2013). In contrast, high CO2 in coastal East Antarctica has
been shown to reduce primary production and favour small
diatoms (≤20 µm) over large diatoms and P. antarctica,
indicating regional variation in the phytoplankton response to
acidification (Hancock et al., 2018; Westwood et al., 2018).
Primary production, biomass accumulation and nutrient uptake
rates declined significantly above a threshold of pCO2 three
times higher than ambient levels, although photosynthetic
performance showed evidence of acclimation to high CO2

over time (Deppeler et al., 2018). Ocean acidification has also
been shown to reduce diatom silica production directly at a
lower threshold than diatom growth, by reducing both the cell-
specific rates of silica precipitation and the relative abundance
of larger species with thicker denser shells (Petrou et al.,
2019). Further, iron uptake by diatoms has shown sensitivity to
carbonate ion availability, such that reductions in carbonate ion
concentration may also have deleterious indirect consequences
for diatom growth (McQuaid et al., 2018). These studies
highlight the importance of species-specific CO2 sensitivity,
species interactions and physiological processes in modifying
the phytoplankton response to increasing CO2, with a high
degree of complexity over a range of spatial and temporal
scales leading to changes in primary production and species
composition that may act synergistically or antagonistically

with the effects of changes in iron, light and temperature
(Section “Changes in Primary Production and Phytoplankton
Species Composition”).

Changes in phytoplankton dynamics associated with
ocean acidification will have indirect impacts on zooplankton
communities, in addition to the direct effects of acidification
on a number of zooplankton species. Limacina helicina
pteropods from the Scotia Sea have shown shell dissolution
under aragonite-undersaturated in situ conditions (Bednarsek
et al., 2012) and reduced larval survival due to decreased shell
growth and increased fragility in aragonite-undersaturated
experiments (Gardner et al., 2018). In contrast, E. superba
have shown resilience to ocean acidification in laboratory
simulations by maintaining the acid-base balance of their body
fluids in near-future pCO2 (Ericson et al., 2018). However,
E. superba in the WAP region are known to increase feeding and
excretion rates under high CO2 conditions, especially pregnant
females, indicating metabolic shifts consistent with increased
physiological costs of maintaining their acid-base balance (Saba
et al., 2012). Combined experimental and modelling approaches
suggest that important E. superba habitats in the Weddell Sea
are likely to suffer from reduced recruitment within a century,
due to the sensitivity of egg hatch rates to increased CO2

(Kawaguchi et al., 2013).
For Antarctic benthos, there is evidence for higher tolerance

to ocean acidification than expected (Catarino et al., 2012;
Kapsenberg and Hofmann, 2014), with increasing temperature
being a more important factor (Byrne et al., 2013). Most
organisms that have been studied in shallow coastal areas can
acclimate to lowered pH to at least end-century conditions
given sufficient acclimation periods (Cross et al., 2015; Suckling
et al., 2015; Morley et al., 2016). However, shoaling of the
aragonite saturation horizon (the depth above which � is
>1 and below which waters are aragonite-undersaturated)
from its current depth of ∼700 m towards the surface over
the coming decades is likely to drive threshold responses
in deep-shelf benthic communities, as the waters in which
they reside shift from aragonite-saturated to aragonite-
undersaturated (Orr et al., 2005; McNeil and Matear, 2008;
Gutt et al., 2015).

The pelagic microbial community has shown sensitivity
to ocean acidification, with increases in bacterial production
and/or abundance observed in high-CO2 experiments in
coastal East Antarctica (Deppeler et al., 2018; Westwood
et al., 2018). In Ross Sea communities, lower seawater pH
reduced bacterial diversity, but increased bacterial activity
and rates of carbohydrate and lipid hydrolysis and nutrient
regeneration (Maas et al., 2013). These increased rates of
carbon and nutrient recycling could accelerate the microbial
loop and reduce the amount of organic matter available
for export or consumption. Combined with the acidification-
induced reduction in diatom silica production and the likely
reduction in sinking rates as a result (Petrou et al., 2019),
a more efficient microbial loop has the potential to partially
offset the projected increases in carbon export under climate
change (Cabré et al., 2015; Laufkötter et al., 2016). There
remains a significant degree of uncertainty regarding the

Frontiers in Marine Science | www.frontiersin.org 20 July 2020 | Volume 7 | Article 581

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


Henley et al. Southern Ocean Biogeochemistry and Ecosystems

impacts of ocean acidification on Southern Ocean food webs
and biogeochemical cycling at present. Nevertheless, aragonite
undersaturation is expected, with medium confidence, to play an
influential role in the Southern Ocean under multiple stressors
associated with anthropogenic climate change in the near future
(Gutt et al., 2015).

BOX 1 | Research gaps, progress and opportunities.

Scientific understanding of the key biogeochemical processes at work across

the Southern Ocean throughout the seasonal cycle is limited by inconsistent

data coverage between regions and over different timescales. Coverage is

particularly poor in autumn and winter, biasing our understanding towards

spring/summer processes. We lack year-round quantification of CO2 sink

dynamics in both coastal and open-ocean regions, as well as an adequate

understanding of the micro- and macronutrient cycling – and particularly the

supply and bioavailability of iron – that regulates biological carbon uptake.

Strong spatial and temporal variability in carbon and nutrient uptake and

cycling, as well as the range of atmospheric, oceanic and cryospheric forcings

and ongoing changes, complicate our estimates of the strength of the

Southern Ocean CO2 sink (Lovenduski et al., 2015; Ritter et al., 2017; Woolf

et al., 2019) and our projections of future changes in productivity and

biogeochemical cycles. Moreover, the relative biogeochemical influence of

changes in phytoplankton community rates versus species shifts remains

poorly understood. Current model parameterisations cannot capture the

complexity associated with the phytoplankton community response to

concurrent shifts in at least five influential ocean properties, including light,

iron, CO2, nutrients and temperature (Boyd et al., 2016). As such, model

outcomes may change in the coming decade as mechanistic understanding

and parameterisations improve.

In order to address these challenges, innovative measurement approaches

must be integrated with traditional ship-based methods and satellite-based

measurements to provide efficient long-term observational programmes. For

example, autonomous biogeochemical floats are driving a substantial increase

in spatial and temporal coverage of pCO2, nitrate and dissolved oxygen data

(Johnson et al., 2017; Bushinsky et al., 2019). A range of autonomous

platforms (e.g., gliders, powered autonomous underwater vehicles, moorings)

and instrumented marine mammals equipped with a growing suite of

biological and biogeochemical sensors (e.g., pH, iron, nutrients, fluorescence,

bio-optics, acoustics) are increasingly supporting observational programmes

across Southern Ocean regions (e.g., Henley et al., 2019). Focused

experiments, process studies and increased use of novel tracers (e.g.,

isotopes of nitrate, silicic acid and iron), alongside and complementary to

long-term observations, are augmenting our mechanistic understanding of the

key processes, feedbacks and changes underway. Further investigations into

species and physiological shifts in phytoplankton, zooplankton, bacterial and

archaeal communities, and the importance of viruses, including molecular and

other omics techniques will be critical to reducing uncertainties around

projected changes in productivity, ecosystem function and biogeochemical

cycling. Financial and logistical challenges associated with long-term

monitoring in the Southern Ocean necessitate enhanced coordination of

projects and national programmes, integration, intercalibration and, where

possible, standardisation of analytical techniques, and improved access to

biogeochemical data (Newman et al., 2019); for example through the

Southern Ocean Observing System (SOOS) data portal SOOSmap

(http://www.soosmap.aq/). Assimilation of expanding observational datasets

into increasingly sophisticated models will lead to substantial improvements in

our understanding of decadal changes and trends. In particular, models of iron

biogeochemical cycling are enhancing our ability to project change in primary

production, nutrient cycling and the Southern Ocean carbon sink (Tagliabue

et al., 2016; St-Laurent et al., 2019). Only by taking an end-to-end approach

to examining the ecosystem and accounting for the multiple stressors acting

across a range of climate change scenarios will we achieve an integrated

analysis of the entire Southern Ocean, and its central role in modulating

changes in global biogeochemical cycles now and into the future (Murphy and

Hofmann, 2012; Constable et al., 2014).

SUMMARY AND CONCLUSIONS

This assessment of Southern Ocean biogeochemistry has
assimilated existing knowledge and presented new data that show
the integral role of biogeochemical cycling – of iron, carbon and
major nutrients in particular – in supporting marine ecosystem
functioning and regulating sea-air CO2 fluxes at regional and
global scales. Strong variability in the key processes, controls and
responses exists spatially, especially between shelf and open ocean
regions, and over seasonal-to-decadal timescales.

Iron supply is extremely likely to increase in polar waters
proximal to the Antarctic continent and also north of 50◦S.
Coupled with increasing light availability, this is very likely
to increase primary production and carbon export in polar
waters. Production, export and total biological carbon uptake
are likely to increase for the Southern Ocean as a whole,
whilst there is only medium confidence in projected increases
in the Sub-Antarctic due to disparity among CMIP5 models.
Changes in phytoplankton species composition are associated
with higher uncertainty than changes in primary production.
Three new datasets show that macronutrient uptake during
summer influences nutrient availability and stoichiometry year-
round in the coastal Antarctic and open Southern Ocean, despite
vertical mixing and nutrient regeneration. Nutrient dynamics in
the Sub-Antarctic are virtually certain to regulate the nutrient
supply to the global thermocline and nutrient-limited surface
waters to the north, thus modulating the global biological
carbon pump. New analyses of 1pCO2 changes show, on
average, net CO2 sink behaviour for the entire Southern Ocean
across all seasons, with similar contributions from biological
and solubility pump processes and stronger CO2 uptake during
summer. Ocean acidification has already been observed in some
regions, with impacts on phytoplankton, microbial communities,
zooplankton and other calcifying organisms, and is likely to
become an important driver of Southern Ocean ecosystems in
the coming decades.

Climate-driven changes in the productivity, biomass
and distribution of phytoplankton, zooplankton, higher
trophic level organisms and microbial communities are
virtually certain to impact Southern Ocean biogeochemistry
by modifying food web carbon transfer and storage,
carbon export, nutrient recycling and redistribution, and
benthic-pelagic coupling. In turn, changes in Southern
Ocean biogeochemistry – in particular iron supply and
ocean acidification – are very likely to alter productivity
and function across marine ecosystem components, with
important feedbacks on carbon and nutrient cycling at regional
and global scales.
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The biogeochemical data from the Rothera Time Series
programme in northern Marguerite Bay (2013−2016) presented
in Section “Changes in Macronutrient Biogeochemistry”
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data_library/catalogue/10.5285/98cc0722-e337-029c-e053-
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