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Liver transplantation is a well-established treatment for many with end-stage liver
disease. Unfortunately, the increasing organ demand has surpassed the donor
supply, and approximately 30% of patients die while waiting for a suitable liver.
Clinicians are often forced to consider livers of inferior quality to increase organ
donation rates, but ultimately, many of those organs end up being discarded.
Extensive testing in experimental animals and humans has shown that ex-vivo
machine preservation allows for a more objective characterization of the graft
outside the body, with particular benefit for suboptimal organs. This review focuses
on the history of the implementation of ex-vivo liver machine preservation and how
its enactment may modify our current concept of organ acceptability. We provide a
brief overview of the major drivers of organ discard (age, ischemia time, steatosis,
etc.) and how this technology may ultimately revert such a trend. We also discuss
future directions for this technology, including the identification of new markers of
injury and repair and the opportunity for other ex-vivo regenerative therapies.
Finally, we discuss the value of this technology, considering current and future
donor characteristics in the North American population that may result in a
significant organ discard.
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Introduction

More than 10,000 liver transplants (LT) are performed every year worldwide (1, 2). Despite

the extensive use of live donation, the gap between listed recipients and available organs has

widened over the years. Currently, the LT waitlist has increased by 8% annually in the UK,

and the percentage of recipients on the waitlist in the United States will also rise over the

coming years (3). To broaden the pool of available organs, grafts are increasingly used from
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extended criteria donors (ECD) and donors after circulatory deaths

(DCD). Initially known as suboptimal or marginal livers, these

organs usually come from donors of advanced age with significant

steatosis, prolonged warm or cold ischemia, or major associated

comorbidities (4). Ischemia-reperfusion injury (IRI) is inevitable

during the transplantation of even healthy livers. Still, it is especially

problematic when using organs from ECD because they are more

vulnerable to ischemic insults (5, 6). As a result, they are often

associated with poor graft function and reduced graft survival (1, 2).

ECD organs have also been associated with increasing discard rates

(7). Given their poorer reported outcomes and the inability to safely

predict their immediate function, many of these organs are discarded

based on subjective analysis. Discards may occur early during the

initial offer based on the donor’s clinical history or later during the

retrieval surgery upon macroscopic inspection due to hepatic or

extrahepatic findings. Liver steatosis is by far the most frequent

reason for discard, accounting for approximately 40%–60% of all

non-used livers. This is particularly prevalent in western countries

where non-alcoholic fatty liver disease (NAFLD) is becoming an

epidemic as the population ages and diabetes and obesity are more

prevalent (8). Previous studies have demonstrated that a high

percentage of macrosteatosis is correlated with primary non-function

(PNF), early allograft dysfunction (EAD) and even acute rejection (9).

Refined organ-recipient selection and new surgical strategies have

allowed the safe use of ECD organs, with outcomes comparable to

those of standard criteria donors (SCD) (4). One of the most

significant advances came from ex vivo machine preservation (MP)

of organs before transplantation. An old technology recently

implemented into clinical settings (10). MP has proven to be safe

in transplantation, with clear advantages for ECD grafts by

allowing real-time assessment of the organ and by improving its

primary function (10). This technology has been clinically

validated in its two major modalities: hypothermic and

normothermic preservation. It has provided a novel benchmark to

objectively evaluate graft function using evolving metrics and

markers that predict the success of an eventual transplant (11).

Studies are now focused on finding ways to safely treat those

organs while on MP using targeted strategies to ameliorate the

ischemic injury, reduce pre-existing damage, and promote

engraftment. MP has also been used to deliver high-dose

therapeutics in the case of grafts with Hepatitis C Virus infection

and to defat steatotic livers to allow transplantation, which would

be otherwise toxic for recipients (1).

Our motivation to perform this literature search was the

changing scenario for liver discard in times when MP is

increasingly becoming available at various transplant centers. This

paper was not intended to be a systematic review. We based our

analysis on the assumption that ex vivo machine perfusion may be

the key to improving ECD livers, expanding the donor pool and

decreasing the discard rate of liver grafts (5, 12, 13). Here, we

review the features of current and nascent methods of liver

preservation during transplantation. We review the impacts of

preservation methods on recipient outcomes and markers of liver

health. Focusing on MP, we explore the effects of modalities on

outcomes and discuss how this technology has contributed to

modifying our acceptance and organ allocation criteria and their

role in decreasing the discard of grafts.
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Current donor landscape and discard
rates

ECD/SCD/DCD

The discard rate of liver grafts in the United States has

considerably increased from less than 1% in 1998 to approximately

6% in 2012, with a peak of roughly 6.5% between 2006 and 2009

(14). A similar analysis was performed in the United Kingdom for

a 16-month period between 2016 and 2018, which revealed a total

of 185 discarded liver grafts from causes including steatosis, warm

ischemia time, cancer, fibrosis, poor machine perfusion and severe

organ damage (15). Traditionally, the SCD for liver transplantation

or the “ideal donor” must be of neurological determination of

death (NDD), less than 60 years of age, with no history of viral or

alcoholic hepatitis, no fat infiltration or tumours, no significant

comorbidities including hypertension, and donating a whole good

quality graft (16). Between 2003 and 2016, there was a total of

65,316 liver grafts procured from NDD in the United States who

had died from head trauma, anoxia, stroke, and other non-

specified reasons, 6,454 (9.88%) of the grafts were discarded (17).

On the other hand, ECD includes donors with advanced age,

steatosis, prolonged ischemia time, viral hepatitis, and hypertension

(16). As expected, due to the lower quality of ECD livers, the

percentage of discarded livers is approximately threefold higher

than that of SCD livers in the United States (18). A unique subset

includes those livers from DCD, with the critical feature of the

added primary warm ischemia that can result in unfavourable graft

function, increased risk of ischemic cholangiopathy and re-

transplant (4). The discard rate in this group has been observed to

have increased by 24% since inception, which is significantly

higher when compared to the SCD group, which has remained

relatively stable at around 10% (17, 19).
Advanced age

The average donor age for liver grafts has been increasing over

the years because of the expansion of life expectancy and to

combat the urgent unmet gap of available livers and recipients in

need of transplantation (20, 21). However, grafts from older

donors are still seen with reserve as these are often associated with

increased biliary complications and graft failure, especially in

recipients with hepatitis C (22). A concern from the use of older

grafts is that with aging comes a decrease in liver regenerating

capabilities resulting from decreased cell cycle and increased

apoptosis and autophagy (22). Furthermore, hepatocytes tend to

fall in numbers with older grafts, leading to the risk of early

allograft dysfunction and primary non-function (23). When

advanced donor age is combined with a DCD modality, ischemic

damage negatively impacts post-transplant outcomes. Therefore,

older donors should be carefully selected, and cold ischemia time

(CIT) should be reduced whenever possible (20, 24).

Using donors 60 years and older has become more common,

although they were once considered marginal (23). A study

conducted on patient survival rates from donors 60 years of age or
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older at 1, 3 and 5 years post-transplant (86.8%, 72.6% and 67.6%,

respectively) vs. donors younger than 60 years old (87.1%, 81.8%,

and 75.5% respectively), revealed comparable results, indicating that

donor age alone does not dictate post-transplant outcomes (25).

Schlegel and collaborators reported that between 2005 and 2015,

the median donor age at the University Hospitals Birmingham went

from 28 to 68 years and that advanced age alone did not decrease

recipient survival (26). This group also reported that grafts over 60

did not risk graft loss despite being DCD (26).

Although graft loss has decreased and patient survival from

advanced donor age has increased over the years, the initial liver

discard rate for these grafts has not (27). A study conducted

between 2003 and 2016 included 4,127 grafts from donors over 70,

where 747 were discarded, increasing from 11.6% to 15.4% (27).

These findings suggest that older grafts should be utilized more

often as age alone is not a predictor for adverse outcomes (25, 28).

However, new strategies will be needed to decrease organ discard

in countries where population aging is a reality and a challenge for

the immediate future.
Steatosis

Liver steatosis is the accumulation of lipids within hepatocytes

and can occur due to metabolic disorders, obesity, old age, and

alcoholism (6). There are two types of hepatic steatosis:

macrovesicular and microvesicular steatosis. In macrovesicular

steatosis, the nucleus is placed peripherally in the hepatocyte, and

large fat vacuoles occupy most of the cytoplasm. In microvesicular

steatosis the fat vacuoles are smaller (6). The most common liver

disease affecting 17%–46% of the population is NAFLD, which

causes insulin resistance, hypertension and dyslipidemia (29, 30).

NAFLD is also accompanied by ceramide, a cytotoxic

accumulation of lipids which promotes insulin resistance,

apoptosis, and inflammation (29). It has also been found that

patients suffering from NAFLD are also likely to have non-

alcoholic steatohepatitis (NASH), leading to liver fibrosis and

cirrhosis (30).

Steatosis is known for affecting liver regenerative responses and

reducing tolerance to ischemic insult. Livers with macrovesicular

steatosis are more susceptible to the damage resulting from the

donation and cold preservation process, with mounting injury as

preservation time increases (31). Primary non-function was the

main negative post-transplant effect when using moderately and

severely steatotic donor grafts, and these patients also experienced

higher short-term mortality (32). As such, livers with steatosis are

frequently discarded during the first organ offer or at the time of

procurement, accounting for more than half of all discarded livers

(8). Nonetheless, when livers are adequately selected, properly

preserved, and paired with reasonable recipients, outcomes may be

comparable to non-steatotic grafts (33).
Donor risk index

The Donor Risk Index (DRI) was first published in 2006 to

predict the survival of transplanted grafts after liver transplantation
Frontiers in Medical Technology 03
using seven donor characteristics that increase the risk of graft

failure (14). These seven variables include age greater than 40

years, DCD donation, split grafts, race, height, cerebrovascular

accident, and other causes of brain death (34). However, over the

years, DRI has been considered a poor predictor and of little

clinical benefit since the subjective assessments completed by

surgeons are still the most powerful driver for organ acceptance or

discard (35). In 2018, a new index called the discard risk index

(DSRI) was introduced to grade grafts accurately solely based on

the risk factors present when the graft is being offered to decide

whether the graft was going to be discarded (36). This new index

uses 15 predictors, including donor age, donor race, donor height,

cause of death, DCD, chronic liver disease, gender, hepatitis B,

hepatitis C, history of diabetes, history of hypertension, AST, ALT,

total bilirubin, serum sodium and BMI (36). This is a validated

scoring system, and its implementation can help in removing

subjectivity from the organ assessment and combat the discard

rate, especially in the more sub-optimal grafts (36).
Preserving suboptimal organs

Ischemia reperfusion injury (IRI)

Traditionally, there is an interval between organ removal from

the donor and its implantation in the recipient. During this time,

the liver experiences two stages of injury: ischemia (the stopping of

blood flow), followed by reperfusion, when the blood flow is

restored in the recipient. Damage resulting from these two events

has been defined as ischemia-reperfusion injury (IRI), characterized

by multiple cell signals leading to inflammatory response and

ultimately associated with various degrees of graft dysfunction (5,

6). IRI is triggered by a fall in blood flow to the liver, decreasing

oxygen availability, and depletion of ATP. This affects both

endothelial cells and the extracellular matrix and can lead to

apoptosis of hepatocytes resulting in liver necrosis (6, 37). Reactive

oxygen species are generated upon reperfusion, which triggers an

inflammatory response proportional to the preservation time and

the quality of the underlying liver parenchyma (6). IRI is more

significant in ECD livers, including DCD, as these organs are less

suited to tolerate the resulting damage and are more associated

with unfavourable immediate and long-term outcomes. The

severity of IRI injury on the transplanted graft accounts for

approximately 10% of early graft failure and 83% of re-

transplantations, causing systemic inflammatory response

syndrome or multi-organ failure in some cases (37, 38). Therefore,

most efforts are aimed at decreasing the deleterious effect of IRI,

but approximately 60% of DCD livers are still discarded due to

IRI-related damage (39).
Preservation solutions

The decline in donated liver health can be slowed by cooling the

organ and reducing metabolic activity (40). Belzer and Southard

pioneered the clinical implementation of a successful method of

static cold storage (SCS) that is still used in most transplant
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centers. They demonstrated that livers could be better preserved by

combining anaerobic hypothermic ischemia with a solution to

ameliorate cell swelling and acidosis (41). Organ preservation

solutions are used to minimize liver injury during anaerobic

hypothermic ischemia by stabilizing temperature, hepatic structure,

vasculature, osmolarity and pH while providing an opportunity to

flush the organ from blood containing mediators of inflammation.

During SCS with preservation solutions, the metabolic activity is

reduced 10-fold, resulting in the arrest of the mitochondrial energy

cycle (40, 41). Belzer and Southard developed the first preservation

solution to be successful in clinical liver transplantation in the late

1980 s. The University of Wisconsin (UW) Solution was

implemented through many challenges but ultimately

demonstrated that solid organs could be safely preserved cold for a

limited time, minimizing the impact of IRI (42, 43). Other

formulations of preservation solutions have been validated in the

last decades with similar performance, such as histidine-

tryptophan-ketoglutarate (HTK), Celsior (CS), and Institut George

Lopez (IGL-1).

HTK, a histidine buffer with tryptophan and ketoglutarate, has a

very low viscosity that allows for faster cooling and is postulated to

protect against biliary complications compared to UW (42, 44). CS is

similar to UW and HTK but differs in that CS’s buffer systems and

substrate have high sodium and low potassium content, which limits

calcium overload in the liver graft (42). Since CS also has a low

viscosity in addition to its high sodium, low potassium, and

antioxidant properties, so it seems ideal for preserving liver grafts

(42). Finally, IGL-1 combines a cationic inversion and replacement of

hydroxyethyl starch with polyethylene glycol, which could decrease

IRI due to the improvement of hepatic microcirculatory changes (42).

There is no consensus on which preservation fluid is most

effective in liver transplant, and their advantages may be context

specific. UW and CS seem superior to HTK for primary non-

function and biliary complications, respectively (42). But all

alternate solutions to UW (HTK, CS. And IGL-1) demonstrated

safety and efficacy for the preservation of deceased donor livers

(42) and no significant differences in patient or graft survival (45).

A subsequent study, however, demonstrated that HTK had the best

efficacy for decreasing the primary dysfunction rate, biliary

complications, and ICU stay time (46). CS was also associated with

reducing rejection and early transplantation failure rates while

increasing patient and graft survival rates (46). The preservation

solution, IGL-1, in static cold storage is advantageous for

suboptimal livers in transplantation (29).
Prolonged ischemia time

Although SCS is the gold-standard method for preserving liver

grafts before transplantation, it is limited by time, as organs can

only be safely kept for up to 12 h (47). Prolonged cold ischemia

amplifies IRI resulting in tissue damage that may be irreversible.

Cold ischemia time is an essential factor in transplantation success,

as prolonged times cause allograft damage, decreased ATP levels,

increased free radical production, the release of cytokines, cellular

dysfunction and apoptosis of the graft (Figure 2) (48). This mainly

affects vulnerable organs such as those with steatosis, advanced
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donor age and DCD modality, where there is an increased risk of

graft dysfunction, biliary strictures, and graft rejection after

transplantation (6, 37). Typically, a CIT of over 12 h is predictive

of a higher risk of graft loss, as it is the second most frequent

cause of organ failure (12, 49). Prolonged CIT is also associated

with higher posttransplant hospitalization and elevated serum

bilirubin levels (49). Although there is no official time frame for

CIT to stay within, most studies point to 12 h as a safe threshold.

Still, this safety limit can be heavily influenced by patient risk and

other factors that may arise during surgery (48). A study on the

effects of CIT on hepatic allograft function concluded that

although CIT did not cause any significant differences in histology

or transfusional demand, it did cause elevation of serum

transaminases and bilirubin, suggesting ischemic injury (48). For

every hour CIT is prolonged, there is, on average, a 3.4% increase

in the risk of graft loss (50). Even though all transplant centers

strive to minimize CIT, geography and sometimes logistic obstacles

prolonging the preservation times are often a cause for discard (50,

51). In countries like Canada and the United States with vast land

extensions, CIT becomes the sole reason for declining perfectly

usable organs when the donor and recipient centers are on

opposite sides of the country, with long flight times involved.

Warm ischemia time (WIT) is defined as the ischemic insult of

cells and tissue under normothermic conditions (i.e., body

temperature or room temperature) (52). An hour of warm

ischemia has been reported to result in reversible liver cell injury;

however, 120–180 min of warm ischemia will provoke irreversible

cell damage (6). WIT has been divided as primary (WIT1),

referring to the period from the cessation of circulation in the

donor until the organ is flushed with cold preservation solution

and cooled topically until they reach a core temperature around 4°

C. The secondary warm ischemia time (WIT2) is the period from

removing the organ from the cold storage until it is reconnected to

the recipient’s circulation. Acceptable WIT2 in liver transplant

ranges from 30 to 45 min, and longer times have been associated

with increased graft loss at a 1.04 hazard ratio for every 10-minute

increase (53). Prolonged WIT1 is a more impactful variable in

deciding whether to accept or discard organs. WIT1 is particularly

relevant in DCD settings where there is a waiting period from the

withdrawal of life support to the actual cold flush of organs.

Several studies have demonstrated a significant risk of PNF for

periods longer than 30 min in DCD donors, with increasing

interest in the functional WIT1 when there is a substantial

deterioration of organ flow and oxygenation in the absence of

asystole (54, 55). Prolonged WIT is hence the most crucial reason

to discard livers from DCD donors.
Machine preservation

Ex vivo preservation techniques were initiated at the beginning of

the 20th century when Dr. Alexis Carrel and Charles Lindbergh

employed perfusions in animal organs. This concept was later

revisited by Belzer, who first successfully preserved a human kidney

(56). However, the development of preservation solutions occurred

in parallel, and when SCS became clinically feasible, it diminished

enthusiasm for further developments in the machine perfusion (MP)
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field (56). Recent technological advances and a better understanding of

liver physiology have allowed a resurgence of ex vivo MP in the last

decade, with rapid worldwide clinical implementation (57, 58).

MP aims to maintain circulation through the liver before

transplantation. Continuous circulation of preservation solutions

allows for better diffusion into the microcirculation and hence,

more homogenous graft protection (10). It also provides for the

modification of the organ temperature depending on the

preservation strategy and the administration of nutrient- and

oxygen-rich fluids through the organ. Since this is a dynamic form

of preservation, multiple parameters can be measured in real-time

to monitor the organ’s performance over time. Together with

different markers of liver function, these factors provide a more

accurate assessment of the organ’s viability and its predicted

function post-transplant, which permits a decision to accept or

discard the organ based on more scientific evidence (59). Several

approaches to MP are in use or development, and a key point of

research is determining the temperature approach to maintain

organ vitality ex vivo. Hypothermic, sub-normothermic, and

normothermic preservation are the temperature modalities, and all

seem to be beneficial in preserving SCD and ECD livers alike (60).

Combining approaches, such as MP, with temperature variations

also seem to provide advantages (6), with new experimental works

aimed to extend preservation for several days (47).
Hypothermic machine perfusion

Hypothermic machine perfusion (HMP) preserves livers between

4° and 12°C using the benefits of the anaerobic hypothermic

ischemia concept paired with continuous perfusion throughout the

microcirculation of the organ (61). HMP has been used clinically

without oxygen supplementation, much like machine perfusion

used for kidneys today and was found to be feasible in terms of

their acceptability rate (43). Studies conducted by Guarrera et al.

(62) and Dutkowski et al. (63) both demonstrated that the use of

HMP on liver grafts before transplantation yielded exceptional

acceptance rates (Table 1).

This is the most accessible modality to clinically implement as it

maintains a concept like the widely accepted SCS with minimal

requirements in terms of training, supervision, and cost. It also

demonstrated to be an effective method to preserve initially

discarded livers with superior outcomes regarding EAD, biliary

complications, and patient survival compared to traditional SCS

(67). HMP also allows CIT extension for up to 20 h safely, without

significant complications after transplant (12).

New evidence is now supporting better preservation during

HMP when combined with oxygenation. Hypothermic

oxygenated machine perfusion (HOPE) (77). HOPE provides

energy to the hypoxic liver by removing metabolic waste while

preventing the exhaustion of ATP and mitochondrial edema (78).

It also reduces secondary damage during reperfusion by

inhibiting the activation of endothelial cells and leukocytes,

further increasing the success of the graft (78). HOPE can be

conducted by exclusive perfusion of the portal vein or by

perfusion of both the portal vein and hepatic artery, also known

as dual-hypothermic oxygenated machine perfusion (DHOPE)
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(60). Studies conducted on HOPE have shown that this

technology is safe and feasible and can improve post-transplant

outcomes, especially in liver grafts from DCD donors (77, 79).

This technology also seems to reduce the incidence of EAD (79),

and it improves the 1-year graft survival rate when compared to

SCS (79). Even though HMP is not widely used clinically, new

trials are underway to make this technology available to more

transplant physicians, with the potential to significantly

contribute to reducing discard rates.
Sub-normothermic machine perfusion

Sub-normothermic machine perfusion (SNMP) is another

alternative in liver transplantation where organs are dynamically

preserved between 20° and 34°C (80, 81). SNMP remains

considerably unexplored, but it has equally demonstrated significant

benefits in liver preservation, mainly in experimental settings (82). In

addition to the protection of hepatocellular mitochondria,

microcirculation was also found to be spared from damage in SNMP,

compared to cold ischemia, where tissues swell, leading to a higher

risk of reperfusion failure (82). One of the most hazardous damage-

associated molecular patterns known as HMGB-1, a known marker of

tissue injury, was significantly suppressed in SNMP compared to SCS

(82). Interestingly, SNMP seems particularly beneficial for steatotic

livers as these grafts generate higher levels of ATP and maintain more

integrity during SNMP, compared to normothermic preservation (83).

Hence, there is a theoretical opportunity to reduce the discard of

severely steatotic livers through SNMP. Still, the actual clinical

implementation of this modality is to be seen.
Normothermic machine perfusion

Normothermic machine perfusion (NMP) is the most popular

and widely used form of MP because it mimics the physiological

characteristics of the liver. NMP maintains the graft by providing

oxygen, nutrients and other vasoactive drugs at a temperature of

37° (84). This results in a better energetic balance for liver cells

resulting in fewer mediators of IRI (85). Since the first clinical

report came out of Oxford University in 2016 (71), multiple

clinical studies have demonstrated that NMP is also feasible, safe,

and able to improve liver preservation, resulting in less EAD and

shorter hospital stays (59, 73). These studies also demonstrated

that NMP could be used to safely expand preservation time in

ECD and DCD livers for up to 24 h to allow for a more detailed

characterization of the graft without compromising outcomes (59).

Furthermore, seminal large multi-center confirmed the initial

findings and demonstrated the reproducibility of results in two

different NMP systems in European centers (70) and, more

recently, in various centers in the United States (86).

New studies now report that NMP can increase the acceptance rate

of liver grafts, including those traditionally discarded (15, 59, 64, 68, 71,

72, 87) (Table 1). The first human liver transplantation using a marginal

allograft resuscitated with NMP (Figure 1) demonstrated that after

422 min of cold ischemia, NMP could establish hepatic arterial flow,

portal venous flow, perfusate blood gases, and bile production (88). A
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FIGURE 1

Important landmarks of MP throughout history.
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recent paper further supported this observation by Mergental and

collaborators, reporting the successful transplantation of 22 out of 31

livers previously discarded by all programs in the United Kingdom

after being tested and perfused with NMP (15).
Markers for graft functions

Ideally, a biomarker for graft health in liver transplantation

should predict how much injury the organ has sustained before

transplantation and predict the risk of EAD and PNF. Currently,

there is no single biomarker with such characteristics, and instead,

clinicians and scientists use a combination of indicators before

donation and during preservation (11). Today, the most studied

biomarkers for graft function during MP are those traditionally

used in the clinical assessment of liver function (89). Early work in

clinical MP found that the injury detected after transplantation

could also be seen during preservation, as aspartate

aminotransferase (AST) and alanine aminotransferase (ALT) serum

levels on MP correlated with the AST and ALT levels in the

recipient after transplantation (62). Transaminase levels in machine

perfusate are associated with the organ’s quality and have been

used to help decide the acceptance of the graft (90, 91).

Although liver transaminases are widely used in the

posttransplant evaluation of the graft, the interpretation of its

values during all types of MP may be challenging, as AST and

ALT seem to accumulate during the perfusion period without

necessarily indicating graft dysfunction (92). Instead, other

indicators of liver health, such as lactate clearance, pH of the

perfusate, bile production, vascular flows, and pressures, have been

used along transaminase levels to accurately assess the viability of

the organ and the quality of preservation (85). Multiple efforts are

made to identify more accurate molecular indicators of organ
Frontiers in Medical Technology 06
health, and various candidates in the field of proteomics,

metabolomics and genomics are now under study. MicroRNAs

(miRNA) are small noncoding RNAs present in many biological

processes. miRNA have also been identified during liver IRI,

miRNA-122 being the most highly expressed in hepatocytes,

particularly during ischemic injury (11). miRNA-122 has been

extensively studied during clinical liver injury and is now being

tested in MP settings, with preliminary association to injury and

subsequent EAD (93). Inflammatory cytokines and chemokines are

also targeted as liver health/injury/recovery markers. These are

well-known markers during liver transplant, and their value has

also been explored during MP. Guarrera and collaborators observed

a significant increase of ICAM-1, IL-8 and TNF-α during HMP,

associated with liver IRI (94). More recent data focuses on the role

of mitochondria during liver preservation. Since this microorganelle

actively participates in IRI and recovery from it, multiple potential

biomarkers are under study. ATP production has been reported as

a direct indicator of liver health during MP (95, 96). Our group is

currently investigating the value of circulating mitochondrial DNA

in MP perfusate as an indicator of organ health and a predictor of

post-transplant graft function. Despite the exciting discoveries in

biomarkers during ex vivo machine preservation, many of these are

usually hampered by the low clinical uptake, given the prolonged

processing time to measure them, the accessibility across transplant

centers, and their cost (97).
MP flattening the discard curve

Because machine perfusion is known to reduce IRI and allow the

option to deliver targeted therapeutics directly to the graft, it is

theoretically our best option to reduce the liver discard rate (13).

Several studies have demonstrated that MP is associated with a
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lower discard rate of liver grafts compared to the gold standard SCS.

Most notably, a randomized trial conducted by Nasralla and

collaborators revealed the discard rate in SCS to be significantly

higher (24.1%) compared to that of NMP which (11.7%) (70)

(Table 1). Another recent controlled study evaluating NMP has

also shown that organ discard decreases with access to NMP

technology, as physicians are willing to assess grafts in real time

before declining the organ (86). Other studies frequently report

adequate liver viability when using NMP for organs that all active

centers in a region have discarded. In most of these studies, organs

show adequate function ex-vivo, and some have been transplanted

into recipients without detrimental consequences (13, 15, 59, 64,

68, 71, 72, 87, 98). Our own group is currently performing a pan-

Canadian study to evaluate the impact of this technology on

waitlist mortality as an indirect indicator of graft acceptance.

Donation after cardiocirculatory death rapidly expands in all

regions as an alternative to widen the donor pool. Despite the

intrinsic risk of EAD and ischemic cholangiopathy, DCD is a

sizable worldwide source for transplantation (54). A reason for the

success of using these organs is the strict acceptance criteria built

around these donors. However, these criteria may become

restrictive in today’s changing donor landscape, especially those

referring to the WIT1 and the expected preservation time. Many

centers are evaluating MP as a tool to expand these criteria based

on existing observations that longer WIT1 is not necessarily
TABLE 1 Published discard and acceptance rates of liver grafts on MP vs. SCS.

Discard rate of liver grafts on
MP

Acceptance rate of liver grafts
on MP

Source Modality Source Modality

Bral et al., (59) NMP:
1/10

Bral et al., (59) NMP:
9/10

Bral et al., (64) NMP:
3/46

Bral et al., (64) NMP:
43/46

Dutkowski et al., (66) HMP:
0/8

Dutkowski et al., (66) HMP:
8/8

Guarrera et al., (62) HMP:
2/20

Guarrera et al., (62) HMP:
18/20

Mergental et al., (15) NMP:
9/31

Mergental et al., (15) NMP:
22/31

Mergental et al., (68) NMP:
1/6

Mergental et al., (68) NMP:
5/6

Nasralla et al., (70) NMP:
16/137

Nasralla et al., (70) NMP:
121/137

Ravikumar et al., (71) NMP:
0/20

Ravikumar et al., (71) NMP:
20/20

Reiling et al., (72) NMP:
0/10

Reiling et al., (72) NMP:
10/10

Van Rijn et al., (74) DHOPE:
0/10

Van Rijn et al., (74) DHOPE: 10/10

Vogel et al., (75) NMP:
11/11

Vogel et al., (75) NMP:
0/11
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associated with graft loss (12, 49). New research is now using

NMP to avoid ischemia altogether, connecting the MP system

directly to the donor and later to the recipient, transitioning the

organ from one stage to another without any ischemic insult (99,

100). The first case of “ischemia-free” liver transplant (IFLT) was

reported in 2017 (101), followed by a non-randomized trial

including 38 patients receiving IFLT, compared to 130 patients

receiving conventional transplantation. Only two recipients (5.3%)

in the IFLT experienced EAD compared to 50% in the traditional

group, with added benefits when using an ECD graft (102).

In liver steatosis, MP is also seen as a potential tool for defatting

livers and decreasing discard (1). MP reduces intracellular lipids by

improving liver metabolism and increasing the movement of

intracellular triglycerides, which helps lower cellular injury and

enhances microcirculation in the liver (1). Specifically, when NMP

is used on steatotic livers for up to 6 h, the concentration of

triglycerides decreases in addition to improved intracellular lipid

metabolism (103). It is believed that hepatocyte triglyceride may

drop as much as 38% after NMP (103). Further studies are looking

to perform active defatting strategies (104, 105) and ultimately

combine these interventions with longer perfusion times to allow

for more efficient fat removal (85). Our group is currently working

on novel technology to monitor hepatocyte triglyceride in real-time

in a non-invasive fashion (106). The study was validated in animal

models and is now advancing into clinical trials.
Discard rate of liver grafts on
SCS

Acceptance rate of liver grafts
on SCS

Source Modality Source Modality

Bral et al., (59) SCS:
0/30

Bral et al., (59) SCS:
30/30

Dutkowski et al., (65) SCS:
0/50

Dutkowski et al., (65) SCS:
50/50

Dutkowski et al., (66) SCS:
0/8

Dutkowski et al., (66) SCS:
8/8

Guarrera et al., (62) SCS:
2/20

Guarrera et al., (62) SCS:
18/20

Guarrera et al., (67) SCS:
0/30

Guarrera et al., (67) SCS:
30/30

Henry et al., (69) SCS:
0/15

Henry et al., (69) SCS:
15/15

Nasralla et al., (70) SCS:
32/133

Nasralla et al., (70) SCS:
99/133

Ravikumar et al., (71) SCS:
0/40

Ravikumar et al., (71) SCS:
40/40

Selzner et al., (73) SCS:
0/30

Selzner et al., (73) SCS:
30/30

Van Rijn et al., (74) SCS:
0/20

Van Rijn et al., (74) SCS:
20/20

Van Rijn et al., (76) SCS:
4/78

Van Rijn et al., (76) SCS:
74/78
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FIGURE 2

Statistical estimates provided by Orman E. et al., 2015 illustrating the decrease of LT in the United States by the year 2030 due to an increase of discarded grafts
because of the increased incidence obesity, diabetes, and DCD. Reproduced with permission (8).
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Future criteria for acceptance/discard

After many years of clinical transplantation, SCS seems sufficient

for low-risk organs with short ischemia because normal livers are

somewhat resilient against IRI and show adequate post-transplant

outcomes (27, 28). However, the donor landscape is increasingly

shifting towards using ECD to incorporate an older population,

steatotic livers, DCD grafts, donors from medical assistance in

dying, and more. This will inevitably lead to a high discard of

livers if we continue using traditional techniques. Orman and

collaborators conducted a population study based on United States

data forecasting donor characteristics by 2030, revealing shocking

numbers. The study stated that if the current donor utilization and

practices do not change, there would be 2,230 fewer grafts for

transplantation in the year 2030 due to the declining quality of

donors, resulting in a discard rate close to 60% of all donated

livers (Figure 2) (8). However, the authors also pointed out that

through the increasing use of ex-vivo MP techniques, the discard

curve could be bent as this technology can turn many unusable

organs into safe alternatives for many patients on the wait list (8).

It will be paramount to adequately understand the real impact of

these unfavourable donor variables once NMP is widely available

for use.

Future directions should focus on new research to identify more

accurate biomarkers and predictors of liver health during

preservation and regenerative therapies that can be applied during

MP to rescue marginal livers. Another avenue for development is

related to optimizing the technology to safely preserve livers for

days, as recently demonstrated by the group at the University of

Zurich (85, 107). This will permit more realistic rescue strategies

and, eventually, organ exchange through more extensive networks.
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Only a comprehensive plan will maintain or even increase our

current transplant rates.
Conclusions

With an ever-increasing organ demand and limited supply of

adequate donors, further improvements in the transplantation

process, including strategies to minimize IRI, will be necessary to

avail less-ideal organs for transplant. The expansion of the donor

pool relies mainly on increasing the usability of ECD organs by

bringing forward strategies to ameliorate ischemic injury or to

improve those grafts deemed unusable safely. Machine preservation

seems to be the ideal tool for this purpose by combining old

concepts with new technology and discovery. Research rapidly

shows its value by allowing comprehensive clinical implementation

and innovation, quickly transferred from bench to bedside. The

future of liver transplantation is inspiring, and traditional organ

acceptability criteria will necessarily change in light of such

disruptive technology.
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