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Sea surface temperature (SST), salinity, and chlorophyll concentration (CHL) have

changed in the US Northeast Shelf ecosystem over recent decades. The changes

in these parameters were distinctly marked by change points around the year 2012

resulting in a 0.83◦C increase in SST, a 0.3 PSU increase in salinity, and decrease in

CHL in excess of 0.4 mg m−3. Where temperature and salinity shifted in mean level

around their respective change points, CHL declined in a more monotonic fashion.

Modeled data suggest that the shift in CHL resulted in a greater contribution of pico-

and nanophytoplankton and a decreased contribution of microphytoplankton to overall

CHL. Complementary estimates of the contribution of different phytoplankton functional

types suggest a diminished contribution of diatoms to the phytoplankton community.

Hence, not only is there evidence of a decline in the overall primary production capacity

of the ecosystem, but also evidence of a fundamental change in the size and quality

of phytoplankton supporting food webs. Two ecosystem responses to the observed

changes in SST, salinity, and CHL were analyzed. Both length and weight at age

have declined for a number of species, and both measures of growth appear to be

negatively associated with temperature and positively associated with CHL. Biomass of

fish and macroinvertebrates has declined in recent years, with a decrease in pelagic

species associated with a decrease in CHL, while the decline in demersal species

was associated with an increase in temperature. Collectively, these ecosystem changes

appear to be the result of the complex interactions of both thermal effects and changes

at the base of the food web.

Keywords: temperature, chlorophyll, biomass, growth, production, regimes

INTRODUCTION

Changing climate conditions are expected to impact the base of marine food webs by changing
the seasonal timing and intensity of phytoplankton blooms (Lotze et al., 2019). The main
mechanism governing this anticipated change is the shoaling of mixed layer depths due to
increasing temperature, which in turn restricts vertical mixing (Somavilla et al., 2017) and inhibits
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the redistribution of dissolved nutrients leading to lower overall
chlorophyll biomass (Henson et al., 2013). However, projections
that incorporate physical mechanisms such as stratification and
biogeochemical interactions require validation. Examination of
changes in phytoplankton production in marine ecosystems
subject to recent, rapid warming can provide the context
to improve the modeled response of lower trophic levels to
projected change in climate. Rapid climate change is already
occurring and the associated warming is arguably the most
evident change observed thus far (Cheng et al., 2019). Therefore,
it is prudent to examine the response of both lower and
upper trophic levels as proxies for the impacts of longer-term
climate change effects.

Remote sensing data sources make it possible to consider
contemporary change in the upper water column thermal
dynamics and phytoplankton biomass in marine ecosystems.
These data sources have matured to time series in excess
of two decades (Groom et al., 2019) and now provide the
ability to evaluate trends and shifts in ecosystem conditions
(Friedland et al., 2018). Temperature can influence marine
ecosystem function at both the system and individual levels.
Increasing temperature can cause the metabolism in individuals
to increase (Dantas et al., 2019), alter the population structure
and phenology of phytoplankton communities (Moisan et al.,
2002; Conversi et al., 2010), and result in changes in trait variation
within populations (Salo et al., 2020). Consequently, marine
ecosystems are reorganizing as temperature influences both
range size and species richness (Batt et al., 2017). Increasingly,
we see that where once fishing had the greatest influence on
marine ecosystem structure and productivity (Shackell et al.,
2012), climate effects are exacerbating forcing factors (Mérillet
et al., 2020). The observational and remote sensing time series
of temperature data predates estimates of chlorophyll biomass;
hence, our thinking and investigations have tended to be skewed
toward long-standing hypotheses of thermal control of marine
ecosystem function. However, the base of the food web has not
been static in response to climate factors resulting in changes
in productivity (Roxy et al., 2016), phytoplankton community
structure (Dutkiewicz et al., 2019), and bloom phenology
(Friedland et al., 2018).While it is anticipated that climate change
will alter the vertical structure of the water column, it is worth
emphasizing that stratification has already undergone substantial
change (Yamaguchi and Suga, 2019).

Change in the productivity of lower trophic levels can affect
the stability and function of ecosystems and the production of
surplus biomass to support fisheries. Ecosystem stability has been
described as a function of energy flow (Huxel and McCann,
1998). For example, Ullah et al. (2018) described scenarios where
trophic transfer is inhibited by thermally related factors and
new equilibrium among phytoplankton functional groups are
established. This can be particularly problematic when groups
like cyanobacteria begin to dominate since they often tend to be
refractory foods (Friedland et al., 2005) and some species pose
a toxicity threat (Paerl, 2018). Perhaps of greater fundamental
importance is how food web function changes if energy flow is
modified in magnitude, timing, or becomes highly event driven.
Terrestrial and aquatic species time their reproductive cycles to

benefit from relatively constant seasonal production cycles. For
example, cohort recruitment of fish species is affected by the
timing and/or size of blooms (Asch et al., 2019). In much the
same vein, subsequent growth and reproduction of cohorts will
be impacted by the changing energy content and availability
of forage species (Durant et al., 2019). The consequences of a
loss of system stability and diversity all too often results in a
concentration of fishing on lower trophic level target species,
which tends to exacerbate the problem (Howarth et al., 2014).
These perturbed ecosystems are often continental shelf large
marine ecosystems, which play the dominant role in providing
national and global food security compared to the relatively
negligible role of high seas fisheries (Schiller et al., 2018). Hence,
instability in production in marine systems can translate to
instability in economic systems.

Climate change is expected to increase the frequency of
extreme events, both transient and transformative in nature, that
affect multiple aspects of marine ecosystems. Heatwaves have
occurred worldwide and they are characterized as anomalously
warm temperatures that persist and produce a myriad of follow-
on effects (Holbrook et al., 2019; Pershing et al., 2019). Heatwaves
can actuate change in community structure by stimulating
emigration and causing regionalized mortality (Sanford et al.,
2019). They have been associated with phytoplankton blooms and
the development of hazardous blooms species that can cause fish
mortality in other species (Roberts et al., 2019). Heatwaves can
also impact fishery populations as they have been observed to
play a role in the recruitment of both invertebrate (Chandrapavan
et al., 2019) and vertebrate species (Smith et al., 2019).

The US Northeast Continental Shelf is a well-studied
ecosystem that is already displaying warming induced changes in
physical forcing and ecosystem response. It is a system that has
experienced rapid temperature change (Pershing et al., 2015), has
seen two prominent heatwaves in as many decades (Mills et al.,
2013; Gawarkiewicz et al., 2019), and has experienced progressive
warming in large measure due to change in basin scale circulation
(Chen et al., 2020). Fish and macroinvertebrate species have
undergone significant shifts in their distribution (Friedland et al.,
2019), which is already impacting human populations (Rogers
et al., 2019). Rising temperatures appears to have increased the
available occupancy habitat for most species and concomitant
with this expansion of habitat, there has been an increase in
upper trophic level biomass across a range of functional groups
(Friedland et al., 2020). The principal multi-species fisheries in
the region were greatly reduced by over-fishing in the 1990s, and
much of the economic space is now occupied by single species
fisheries on invertebrate taxa (Goode et al., 2019; Wiedenmann
and Jensen, 2019).

The aim of this study was to examine contemporary trends
in sea surface temperature and chlorophyll concentration from
remote sensing data sources, and salinity from observational
data for the US Continental Shelf ecosystem. Furthermore,
these trends are scrutinized for time series change points as
an indication of potential regime change. The phytoplankton
community was characterized by its size fraction composition,
functional type contributions, and seasonal bloom patterns.
Ecosystem response to both trend and events in the physical
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FIGURE 1 | US Northeast Shelf study area (NES) highlighted with shading and

delimited to five subareas including: Georges Bank (GBK); Gulf of Maine east

and west (GOMe and GOMw, respectively); and, Middle Atlantic Bight north

and south (MABn and MABs, respectively), dashed line is the 100 m depth

contour.

forcing and phytoplankton change was evaluated using growth
and abundance data for fish and macroinvertebrates from a
concomitant fisheries independent trawl survey.

MATERIALS AND METHODS

Study Site
We studied physical and biological changes occurring in the
Northeast US Continental Shelf ecosystem (NES). The shaded
portion of the continental shelf shown in Figure 1 denotes the
study area. We characterized conditions and responses of the
ecosystem based on five subdivisions as described in Friedland
et al. (2015a). The five subareas were Georges Bank (GBK),
Gulf of Maine east and west (GOMe and GOMw, respectively),
and Middle Atlantic Bight north and south (MABn and MABs,
respectively). These five areas capture much of the variability of
the system, especially as related to the distribution and dynamics
of primary producers and the fish populations that rely on them.

Sea Surface Temperature
High resolution sea surface temperature (SST) data for the
ecosystem and subdivisions were sourced from the NOAA
Optimum Interpolation (OISTT) 0.25 Degree Daily Sea Surface
Temperature Analysis dataset (Reynolds et al., 2007). For the
purposes of this study, we calculated monthly means from
the daily data while retaining its spatial resolution (see “Data
Availability Statement”).

Salinity
Salinity in practical salinity units (PSU) for the NES was sourced
from shipboard data and estimated using an interpolation
method described in Friedland et al. (2019). The main source
of the data was ongoing resource and ecosystem surveys of
the NES conducted by the Northeast Fisheries Science Center
(NEFSC) of the National Marine Fisheries Service (see “Data
Availability Statement”). Water column temperature and salinity
have been collected contemporaneously with tows associated
with the fall seasonal bottom trawl survey beginning in 1963 with
the spring survey starting 5 years later (Desprespatanjo et al.,
1988). In addition, data was also collected in two comprehensive
ecosystem surveys over the study period including the Marine
Resources Monitoring Assessment and Prediction program
or MARMAP (1977–1987) and the Ecosystem Monitoring
program or EcoMon (1992-present), both providing shelf-wide
observations (Sherman et al., 1998; Kane, 2007). These data
provide time series of spring and fall salinity in all the subareas.
The spring and fall salinity time series were correlated (Spearman
rank order correlation, p < 0.05); hence, we combined the
seasonal time series to produce an annual PSU time series by
taking the mean.

Chlorophyll Concentration
Chlorophyll concentration (CHL) data were extracted from
a merged multi-sensor ocean color data product from the
Hermes GlobColour (see “Data Availability Statement”). This
product includes measurements made with the Sea-viewingWide
Field of View Sensor (SeaWiFS), Moderate Resolution Imaging
Spectroradiometer on the Aqua satellite (MODIS), Medium
Resolution Imaging Spectrometer (MERIS), and Visible and
Infrared Imaging/Radiometer Suite (VIIRS) sensors during the
period 1998–2019. The data weremerged using theGarver, Siegel,
Maritorena Model (GSM) algorithm (Maritorena et al., 2010).
CHL was summarized as annual and seasonal means; the spring
or first half of year seasonal was the average CHL from January
through June; and, fall or second half of the year was the average
CHL from July through December. The two halves of the year
reflect the bloom patterns found in the NES that includes both
spring and fall blooms (Friedland et al., 2016). Seasonal CHL time
series were plotted as Z-scores (observation minus the mean and
divided by the standard deviation) as were the phytoplankton size
fraction and phytoplankton functional type data described below.

Time Series Change Points and Trend
We identified change in study time series as both discreet
change points and trends, both of which may potentially indicate
underlying processes such as a regime shift. We applied two
parametric modeling approaches to identify potential change
points in the annual means of SST, salinity, and CHL data. First,
discrete change points or a change in signal level within a single
time step were identified with the sequential averaging algorithm
called STARS or “sequential t-test analysis of regime shifts”
(Rodionov, 2004, 2006; Thomson and Emery, 2014). The STARS
algorithm parameters were specified a priori to detect change in
thermal, salinity, and chlorophyll regimes (alpha level α = 0.05;
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the length criteria was set to 10; and, the Huber weight was set
to 1). To be consistent with the terminology associated with the
STARS algorithm, the change in a parameter level before and
after a change point is referred to as the change in regime means,
which may have the units of◦C, PSU, or mg m−3. Second, we fit
piecewise linear relationships using the R package “segmented”
(version 1.1-0), which fits the data as segmented linear models
while identifying time series break-points (Muggeo, 2003, 2017).
The performance of these approaches was compared for an
individual time series with Akaike information criterion (AIC)
using the simplified form intended for model comparison.

AIC = 2k + nln(RSS)

Where RSS is the residual sum of squares, n is the number of
observations, and k is the number of independent parameters
(Burnham and Anderson, 2004). To evaluate trends in the
data, we applied a non-parametric test of time series trend
using the R package “zyp” (version 0.10–1.1). We used the
Yue and Pilon method to estimate Theil-Sen slopes and
performs an auto-correlation corrected Mann-Kendall test of
trend (Yue et al., 2002).

Phytoplankton Size Fractions
Estimates of phytoplankton size fraction contribution to
total CHL were based on the three-component model of
phytoplankton size classes (Lamont et al., 2019) using the global
parameters from Brewin et al. (2015). The model provides
estimates of the contribution of microphytoplankton (> 20 µm),
nanophytoplankton (2–20 µm), and picophytoplankton (< 2
µm) to total CHL. Model equations provide an estimate of the
CHL fraction that is associated with combined contribution of
pico- and nanoplankton:

Cp,n = Cm
p,n

[

1 − exp

(

−
Dp

Cm
p

)

CHL

]

and picoplankton only:

Cp = Cm
p

[

1 − exp

(

−
Dp

Cm
p

)

CHL

]

Which by difference yield the nano- and the microplankton
fractions, Cn and Cm, respectively. Themodel was parameterized
using the following global model estimates.

Cm
p,n = 0.77;Cm

p = 0.13;Dp,n = 0.94;Dp = 0.80

These parameters are similar to the average across regional and
other global study estimates.

Phytoplankton Functional Types
Three complimentary approaches are considered for estimating
Phytoplankton Functional Types (PFTs) to evaluate change in
the quality of phytoplankton entering the food web of the NES.
First, we used the method presented in Moisan et al. (2017)
for studying spatial distributions of PFTs, their phenology, and
ecotones along the U.S. east coast. That study utilized a total

of 172 independent measurements of phytoplankton absorption
spectra and High-Performance Liquid Chromatography (HPLC)
pigment measurements to develop a satellite-based model for
PFTs. Pigment-specific absorption spectra for 18 phytoplankton
pigments were obtained by inverting the observed pigment
concentrations and the total phytoplankton absorption at each
wavelength using Singular Value Decomposition, SVD (Press
et al., 1987). The resulting pigment-specific absorption spectra
were then used with individual phytoplankton absorption spectra
with the Non-Negative Least Squares, NNLS (Lawson and
Hanson, 1995) inversion method to estimate the pigment
concentrations. The individual phytoplankton absorption spectra
values at each wavelength were modeled as a second order
function with chlorophyll a as the independent variable.

In this study, the resulting SVD-derived pigment-specific
absorption spectra and the wavelength-dependent, second order
model coefficients for absorption spectra from Moisan et al.
(2011) are used with the annual mean 1998–2019 chlorophyll
a estimates for each of the five subareas to estimate the PFT
time series. The chlorophyll a values are used with the second-
order linear model to estimate the phytoplankton absorption
spectra. These spectra are then used with the SVD-derived
pigment-specific absorption spectra in the NNLS inverse process
to estimate the 18 different phytoplankton pigments.

Once maps of the 18 phytoplankton pigments were derived,
they were used to generate estimates of the various PFTs by using
the estimation formulas outlined in Table 1 of Hirata et al. (2011)
for diatoms, dinoflagellates, prymnesiophytes, prokaryotes,
and green algae. The pigments necessary as inputs for these
algorithms included: fucoxanthin, peridinin, chlorophyll-b,
19-butanoyloxyfucoxanthin, 19-hexanoyloxyfucoxanthin,
alloxanthin, and zeaxanthin. A time series of these functional
types were calculated for all five subareas.

The second approach used was an algorithm designed
to estimate the dominant PFTs at a location. The method
is called PHYSTWO and is described in Correa-Ramirez
et al. (2018). The approach uses Empirical Orthogonal
Function (EOF) decomposition to relate pigment signatures
to water-leaving radiances. It applies normalized radiances
at seven wavelengths including 412, 443, 469, 488, 531,
547, and 555 nm. The analysis was based on the monthly
25 km merged reflectance data retrieved from the same
source as the CHL data. The PFT estimates were made
for the period 2003 through 2019, which corresponds to
the sensor collections for these wavelengths. Reflectance
at 488 nm was estimated based on an interpolation of
reflectance data for 469 and 490 nm. The PFT identified
Nanoeucaryotes (typically chlorophytes and cryptophytes),
Diatoms, Coccolithophorids, Phaeocystis-like (typically
haptophytes), and two cyanobacteria, Prochloroccocus and
Synechococcus. Following the approach used in Alvain et al.
(2008), the percent contribution of a PFT was estimated as the
ratio of the area of NES with each PFT to the total. Monthly
means of the percent contributions of PFT were calculated over
the course of each year.

Finally, as verification of modeled PFT data, we queried
the abundance of total diatoms and dinoflagellates from
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the Continuous Plankton Recorder (CPR) Survey dataset.
The CPR collects continuous measurements of zooplankton
and phytoplankton taxa retained on the CPR mesh, hence
it includes a partial sampling of the microphytoplankton
(Batten et al., 2003). Monthly samples were collected in
the NES during the period of 1998–2018, however, not all
NES subareas were sampled over the entire period. The
GBK and MABn subareas were sampled in all 21 years the
time series and GOMe was sample in 20 years, however,
GOMw and MABs were sampled in less than 7 years
each. The average number of annual sample units was
138; a sample consisted of a total number of diatoms and
dinoflagellates from 68 to 35 taxa, respectively (see “Data
Availability Statement”).

Survey Growth Trends
Change in the size at age of fish in the NES was assessed
using biological data collected during the Northeast Fisheries
Science Center (NEFSC) bottom trawl survey (Desprespatanjo
et al., 1988). Catch weight was collected during the full duration
of the survey, however, individual weight measurements began
in 1992 (see “Data Availability Statement”). From these data,
changes in length and weight at age were examined. The size
at age metrics were computed for a subset of survey species
having sufficient age samples. Annual growth indices were
computed using a general linear model (GLM) following the
approaches applied to estimate catch per unit effort (Forrestal
et al., 2019). The general form of the size at age GLM
was:

GLM (Length/Weight) ∼ factor (Species) + factor (Age) + factor (Year)

Moreover, it was also partitioned by season and sex. Year
factor coefficients were used to represent the rate of change
over time. The change in size at age was assessed with
canonical correlation with temperature, salinity, and chlorophyll
concentration as environmental covariates. The canonical
correlation was fit using the CCA package in R (version 1.2).

Survey Biomass by Functional Groups
Seasonal time series trends in biota were represented by the
CPUE for biomass of all taxa from the bottom trawl survey (see
“Data Availability Statement”), and by assignment to functional
groups based on their adult prey preferences and vertical
distribution (Friedland et al., 2020). The functional groupings
included benthivores, demersal piscivores, pelagic piscivores, and
planktivores. Catches were standardized for various correction
factors related to vessels and gears used in the time series (Miller
et al., 2010). The spring and fall CPUE time series were correlated
with Spearman rank order correlation reasoning that since many
taxa are known to undertake seasonal migrations, correlated
spring and fall signals could be considered an indication of
more reliable abundance data. Similar to the change in size
at age analysis, the change in biomass was assessed with
canonical correlation with temperature, salinity, and chlorophyll
concentration as environmental covariates.

RESULTS

Trends in SST, PSU, and CHL
The main result of the trend analysis is that CHL declined in
the Northeast Shelf as both SST and salinity increased, with
change points in these data around the year 2012. We found
that SST in the NES increased from ∼12 to 13◦C in a stepwise
fashion with a change point in 2012 (Figure 2A), which was
also the highest SST in the time series. Salinity also increased
in a stepwise fashion by ∼0.3 PSU, albeit in the year after
the SST shift, noting there were no local maxima in salinity
around the year 2012 (Figure 2B). The non-parametric trend
test for NES SST yielded a significant positive Theil–Sen slope,
however, the positive slope for salinity was non-significant at
p = 0.1 (Table 1). In contrast, CHL decreased from ∼1.5 to
1.1 mg m−3 in a segmented linear fashion, with a change point
in 2012 (Figure 2C); and, the highest system-wide CHL level
occurred in 2011. The Theil–Sen slope for NES CHL was negative
and significant.

Similar patterns were found in the NES subareas time series
of SST, salinity, and CHL. The pattern found for the NES as a
whole was reflected in Georges Bank (Figures 2D–F) and MABn
(Figures 2M–O). The SST change points in Gulf of Maine east
(Figures 2G–I), and Gulf of Maine west (Figures 2J–L) subareas
initiated earlier than the NES as a whole or in the neighboring
Georges Bank area. In addition, the GOMe and GOMw salinity
time series were modeled marginally better with a segment
regression suggesting a less distinct transition in salinity. The
segmented regression depiction of change in CHL in these areas
was similar to the other parts of the ecosystem. The SST time
series in the MABs was modeled best with segmented regression,
and though 2012 was the warmest year in the time series, there
was no evidence of a change in SST level as seen in the more
northerly subareas (Figures 2P–R). The Theil–Sen slopes for the
subareas follow the NES trend with the exception of Georges
Bank SST, which had a positive trend that was non-significant.
To summarize, the NES and its regional subareas experienced a
shift in SST, salinity, and CHL around 2012. Both SST and salinity
started increasing around this change point while CHL decreased,
noting that the change in SST and salinity were generally more
stepwise whereas the change in CHL was gradual.

Seasonal CHL
Seasonal CHL generally followed the patterns established in the
annual means suggesting that spring and fall blooms have been
affected by a similar set of factors. CHL for the first half of the
year followed a coherent pattern of decline after 2012, similar to
the CHL annual trend for the NES (Figure 3A). The Theil–Sen
slopes for the first half of the year CHL were all negative and
significant (Table 1). The CHL for the second half of the year were
also coherent among the subareas, but had features that varied
from the first half of the year (Figure 3B). In particular, localized
minima around 2004 and maxima around 2011 varied between
the data series. The Theil–Sen slopes for the second half of the
year CHL were all negative and significant with exception of the
data for Gulf of Maine east.
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FIGURE 2 | Mean annual SST (A,D,G,J,M,P) for the Northeast Shelf (NES) and NES subareas (NES, GBK, GOMe, GOMw, MABn, and MABs, respectively), mean

annual PSU (B,E,H,K,N,Q) and mean annual CHL (C,F,I,L,O,R) for the same areas, respectively. Lines are either STARS or segmented regression model fits; 2012

is highlighted with vertical dotted line.

Phytoplankton Size Classes
The decrease in CHL throughout the ecosystem after 2012
was associated with a change in the size-class composition of
the phytoplankton community. The estimates of the percent
contribution to total CHL by picophytoplankton shifted from
∼10 to 14% after 2012, or a 40% increase in the contribution
(Figure 4A). Similarly, nanophytoplankton exhibited a shift
in composition from ∼23 to 28%, or a 22% increase in the
contribution (Figure 4B). The increase in the contribution
of smaller phytoplankton appears to come at the expense of
microphytoplankton, which shifted from a contribution of 67
to 58%, or a 13% decline in contribution (Figure 4C). The
Theil–Sen slopes for the trends in pico- and nanophytoplankton
were all positive and significant; whereas, the trends for
microphytoplankton were negative and significant (Table 1).
In summary, the shift in NES CHL likely also represents
a shift in the size class composition of the phytoplankton
community driven by the increasing availability of smaller cells
vs. larger cell taxa.

Phytoplankton Functional Types
Analysis of the PFT time series using the Moisan method
suggests phytoplankton populations were relatively stable from
1998 to 2012. In the NES region, diatoms, dinoflagellates, green
algae, prymnesiophytes and prokaryotes comprised nearly 63,
11, 13, 2, and 12 percent of the phytoplankton biomass in
terms of chlorophyll a, respectively (Figures 5A–E). In 2012, all
of these populations of phytoplankton show a dramatic linear
trend away from the prior relatively stable levels. Specifically,
the diatom population shows a decrease while all of the other
functional types show increases in their relative percent biomass.
These changes were consistent with a shift away from high
production coastal phytoplankton populations to a more open
ocean, less productive domain. These estimated changes were
supported by the observed nearly 50% decrease in the chlorophyll
a levels. These changes in phytoplankton composition were
further corroborated by the phytoplankton size class estimates
which show stable size class population levels prior to 2012
and decreasing microplankton with increasing nanoplankton
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TABLE 1 | Theil–Sen slope estimates expressed in decadal rate of change for environmental variables by NES and NES subareas (NES, GBK, GOMe, GOMw,

MABn, and MABs).

Data type Variable NES GBK GOMe GOMw MABn MABs

Temperature, SST 0.52 0.52 0.75 0.70 0.50 0.28

Salinity, and PSU 0.21 0.11 0.16 0.06 0.04 0.17

Chlorophyll CHL −0.21 −0.17 −0.16 −0.14 −0.20 −0.17

CHL–first −0.23 −0.16 −0.24 −0.18 −0.22 −0.21

CHL-second −0.15 −0.20 −0.20 −0.21 −0.27 −0.21

Phytoplankton Pico 0.01 0.01 0.02 0.02 0.01 0.01

size Nano 0.02 0.02 0.02 0.02 0.02 0.02

classes Micro −0.03 −0.03 −0.03 −0.04 −0.03 −0.04

Phytoplankton Diatoms −2.08 −2.39 −2.88 −2.61 −1.96 −2.20

Functional Dinoflagellates 0.20 0.22 0.23 0.25 0.20 0.24

Types Green algae 0.78 0.89 1.07 0.98 0.73 0.83

Moisan Prymnesiophytes 0.11 0.13 0.16 0.14 0.11 0.11

Prokaryotes 0.98 1.13 1.41 1.23 0.92 1.01

Phytoplankton Nanoeucaryotes 2.03 6.35 5.28 5.65 −3.34 −3.06

Functional Prochloroccocus 0.17 0.57 0.00 0.00 0.20 0.00

Types Synechococcus −0.15 0.52 0.00 0.00 −0.61 −1.20

PHYSTWO Diatoms −3.86 −5.12 −7.21 −5.52 −1.38 −3.48

Phaeocystis-like 1.24 −3.60 0.27 −0.35 3.39 4.95

Coccolithophorids 0.29 0.00 −0.23 0.00 −0.60 2.09

CPR Diatoms −40619 −39731 −49373 −6465

Dinoflagellates 745 610 0 −1403

Estimates with associated p < 0.1 highlighted in bold.

FIGURE 3 | Z-score of CHL for the first (A) and second (B) half of the year for the Northeast Shelf (NES) and NES subareas (NES, GBK, GOMe, GOMw, MABn, and

MABs). The mean for each size class shown in the panel title with ± 1 SD; the NES time series is shown as a b-spline; 2012 is highlighted with vertical dotted line.

and picoplankton levels after 2012, indicating a population
shift away from a eutrophic coastal productive population
to a more oligotrophic and less productive population. The
Theil–Sen slopes for PFT in the analysis were significant and

were positive trends except for diatoms, which had negative
trends (Table 1).

Analysis of Phytoplankton Functional Types using the
PHYSTWO method largely corroborated the changes identified
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FIGURE 4 | Z-score of estimated phytoplankton size fractional contribution

percentage of pico (A), nano (B), and micro (C) plankton to total chlorophyll

for the Northeast Shelf (NES) and NES subareas (NES, GBK, GOMe, GOMw,

MABn, and MABs). The mean percentage for each size class shown in the

panel title with ± 1 SD; the NES time series is shown as a b-spline; 2012 is

highlighted with vertical dotted line.

by the Moisan method and had the advantage of identifying
changes in the dominant PFT by subarea. For the NES,
Nanoeucaryotes and Diatoms were the most important
functional types with average percentages of 43% in all areas
(Figures 6A,B). Phaeocystis-like forms, Coccolithophorids, and
cyanobacteria were low contributors with mean percentages of
only 8, 3, and > 1–2%, respectively (Figures 6C–F). The only
consistent trend observed was a decrease in the contribution
of diatoms, however, this trend was only significant in the
NES and the Gulf of Maine subareas (Table 1). The other
dominant group, Nanoeucaryotes, had a significant positive
trend in the Gulf of Mine east and a negative trend in the Middle
Atlantic Bight south.

The time series CPR abundances support the conclusion that
there was a change in diatom populations, but were inconclusive
in respect to any change in dinoflagellates. Diatom abundances
on a CPR sample unit averaged over 89,000 cells and in all
the time series with sufficient data trended downward over
the study period (Figure 7A). The Theil–Sen slopes were all
negative for diatom trends and significant for the GBK and
NES areas (Table 1). There were no apparent trends in the

dinoflagellate time series (Figure 7B) and Theil–Sen slopes for
these time series were of mixed sign and all non-significant.
In summary, using two model-based methods to characterize
Phytoplankton Functional Types, a shift was observed in
functional types associated with the change in CHL in 2012 and
most notably evidence to suggest a decline in diatoms in the
plankton community. The conclusion of a change in diatom
population based on the model-based data is in part supported
by in situ sampling data.

Change in Fish Growth
Size at age has declined for a number of fish species in the
NES. GLM coefficients indicate that length at age for males
declined during spring (Figure 8A), however, the decline in
female length at age was not significant (Table 2). Spring weight
at age declined for both sexes (Figure 8B). Similar to spring,
fall length at age for males showed a decline, whereas females
did not decline significantly (Figure 8C). Fall weight at age
declined for both sexes (Figure 8D). These GLM results are a
composite trend of a number of important groundfish species.
Two change points emerge from these data, one in the spring
male length at age data in 2009 and in the fall male weight
at age data in 2005. When we decomposed the analysis to the
species level, we found that not all species had declining trends
in growth. For example, two species, silver hake Merluccius
bilinearis and butterfish Peprilus triacanthus, were consistently
increasing in length and weight at age for both sexes and
seasonal categories (Table 2). The canonical correlation analysis
between environmental and growth variables for the composite
fish sizes yielded two significant dimensions at p < 0.1 (Table 3).
The growth variables were positively correlated with CHL and
negatively related to temperature (Figure 9A); salinity produced
weaker correlative relationships.

Change in Survey Biomass by Functional
Groups
Time series of biomass constructed from scientific surveys are
difficult to interpret since they are shaped by a number of
different factors and often dependent upon the catch of migratory
species. It would appear the total biomass for the system has
increased over time (Figure 10E). The biomass of the functional
groups, benthivores, pelagic piscivores, and planktivores, seem
to suggest a recent decline in biomass (Figures 10A,C,D). In
contrast, the biomass of demersal piscivores appears to have
remained high, although the level of biomass has been highly
variable from year to year (Figure 10B); this variability may be
due to the influence of migratory species. Two functional groups,
benthivores and planktivores, had spring and fall signals that
were correlated suggesting the same populations were sampled
between seasons. These time series show similar patterns, namely
that biomass increased to high levels within the last decade and
has been declining since around 2015. The benthivore time series
was the only CPUE time series with the suggestion of a change
point, which occurred in 2012. The analysis of overall trend
suggests the increase in CPUE has been higher in the spring
and that the increase in total biomass may be driven by changes
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FIGURE 5 | Z-score of estimated percent contribution of PFT diatoms (A), dinoflagellates (B), green algae (C), prymnesiophytes (D), and prokaryotes (E) for the

Northeast Shelf (NES) and NES subareas (NES, GBK, GOMe, GOMw, MABn, and MABs). The mean percentage for each PFT shown in the panel title with ± 1 SD;

the NES time series is shown as a b-spline; 2012 is highlighted with vertical dotted line.

in benthivore and demersal piscivore populations (Table 4).
The canonical correlation analysis between environmental and
biomass variables yielded two significant dimensions at p < 0.1
(Table 3). The biomass of benthivores and demersal piscivores
were positively related to temperature whereas pelagic piscivores
were correlated with CHL (Figure 9B); planktivores appear to be
uncorrelated with these factors.

DISCUSSION

The US Northeast Shelf ecosystem has gone through a
transformational change in thermal state, primary producer

biomass levels, and functional group assemblages over the past
two decades. The upper part of the water column increased in
temperature around the year 2012 and has since remained at a
temperature level nearly 1◦C higher than prior to 2012. The year
2012 was an exceptionally warm year and is recognized as the
warmest year in the historical record of SSTmeasurements for the
ecosystem (Chen et al., 2014). Salinity has also increased on the
order of 0.3 PSU, indicating a change in advective source water in
the upper water column and photic zone of the ecosystem (Austin
et al., 2019). Coincident with this transition in temperature and
salinity, chlorophyll biomass peaked in 2011, and then declined
from a relatively stable pre-2011 level in excess of 1.5 mg m−3

progressively to a low value of ∼1.0 mg m−3. These broad
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FIGURE 6 | Z-score of percentage area where Nanoeucaryotes (A), Diatoms (B), Phaeocystis-like (C), Coccolithophorids (D), Synechococcus (E), Prochloroccocus

(F) were the dominant PFT for the Northeast Shelf (NES) and NES subareas (NES, GBK, GOMe, GOMw, MABn, and MABs). The mean percentage for each PFT

shown in the panel title with ± 1 SD; the NES time series is shown as a b-spline; 2012 is highlighted with vertical dotted line.

scale ecosystem level changes were most evident in the northern
segments of the ecosystem, specifically in the Gulf of Maine and
on Georges Bank.

The link between climate-induced warming and CHL is
extremely complex. If warming was primarily driven by internal
heating processes, then we might expect that phytoplankton
communities will shift to a warm tolerant assemblage over
time (Barton et al., 2016). However, warming in the NES is
often the result of changing offshore water masses entering the
system and these water masses can have significantly different
nutrient concentrations and ratios. For example, Townsend et al.
(2015) documented more frequent incursions of low-nutrient
Scotian shelf waters into the Gulf of Maine and Georges Bank

over a ten year period. Shifts in the nature of incoming water
masses may exert strong and unpredictable controls on NES
productivity. However, stratification, another important driver
of phytoplankton production, is generally expected to increase
due to increases in freshwater inflow from the Arctic and
associated warming (Greene, 2012; Li et al., 2015). Enhanced
stratification can potentially reduce the depth of the photic zone,
thereby increasing the light exposure of phytoplankton in the
surface mixed layer, however, it can also disconnect surface
phytoplankton from bottom waters limiting the availability of
nutrients, particularly nitrate. The importance of vertical mixing
for the delivery of bottom water nitrate for phytoplankton
production is well documented in the NES (Townsend, 1998) and
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FIGURE 7 | Z-score of the abundance of diatoms (A) and dinoflagellates (B) in a CPR sample unit for the Northeast Shelf (NES) and NES subareas (NES, GBK,

GOMe, GOMw, MABn, and MABs). The mean for each abundance shown in the panel title with ± 1 SD; the NES time series is shown as a b-spline; 2012 is

highlighted with vertical dotted line.

FIGURE 8 | GLM model coefficients of length (A) and weight (B) for males and females of 15 species of fish during spring. GLM model coefficients of length (C) and

weight (D) for males and females of 15 species of fish during fall. Lines are either STARS or segmented regression model fits; vertical dotted line marks 2012.
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TABLE 2 | Theil–Sen slope estimates expressed in decadal rates of change for growth variables by season and sex for the results of GLM models and by species.

Spring Fall

Male Female Male Female

Species Length Weight Length Weight Length Weight Length Weight

All −0.791 −0.078 −0.260 −0.084 −0.719 −0.053 −0.179 −0.051

Centropristis striata −0.143 −0.894 −0.054 −0.041 −0.828 −0.980 −0.080 −0.044

Clupea harengus −0.160 −0.033 0.001 0.004 −0.225 −0.165 −0.003 −0.005

Gadus morhua −0.934 −1.187 −0.173 −0.209 0.002 0.091 −0.075 −0.076

Glyptocephalus cynoglossus −0.154 0.314 −0.005 0.006 0.894 1.041 0.013 0.019

Hippoglossoides platessoides 0.059 −0.125 −0.006 −0.022 −0.124 0.461 −0.011 −0.001

Limanda ferruginea −2.319 −2.288 −0.058 −0.117 −1.055 −1.109 −0.035 −0.057

Melanogrammus aeglefinus −4.218 −3.514 −0.284 −0.287 −3.621 −3.389 −0.233 −0.244

Merluccius bilinearis 2.713 4.125 0.025 0.069 0.950 2.540 0.010 0.074

Paralichthys dentatus −2.452 −2.131 −0.128 −0.137 −2.567 −2.525 −0.123 −0.183

Peprilus triacanthus 0.498 0.454 0.005 0.003 0.641 0.654 0.007 0.009

Pollachius virens −2.876 −3.090 −0.411 −0.410 −1.344 −1.344 −0.183 −0.181

Pseudopleuronectes americanus −1.075 −0.849 −0.045 −0.046 −0.193 −0.261 −0.013 −0.021

Scomber scombrus −0.315 −0.338 −0.010 −0.010 0.071 0.053 0.000 0.002

Stenotomus chrysops −0.006 −0.458 −0.014 −0.018 −0.387 −0.463 −0.015, −0.017

Urophycis tenuis −1.548 −2.488 −0.113 −0.226 0.580 0.712 0.030 0.023

Estimates with associated p < 0.1 highlighted in bold.

enhanced stratification induced uncoupling of the water column
may be a reason for the 0.4mgm−3 reduction in CHL observed in
this analysis since 2011. However, Li et al. (2015) points out that
stratification dynamics in the Northwest Atlantic shelf systems
can vary considerably with more haline control of stratification
in the Gulf of Maine and thermal control in the Mid-Atlantic
bight. A recent model analysis by Shin and Alexander (2019)
using downscaled Global Climate Models contends that the rate
of bottom water warming may outstrip surface water warming.
Ultimately, a comprehensive analysis of stratification in recent
high resolution downscaled models of the region coupled to the
biogeochemical processes controlled by vertical mixing will be
necessary step in projecting future climate induced changes in the
productivity of the NES.

In addition to the change in chlorophyll biomass observed
in recent years, evidence suggest there has been a dramatic

TABLE 3 | Tests of Canonical Dimensions for environmental and growth

and biomass data.

Canonical

Dimension Corr. Mult. F df1 df2 p

Growth Variables

1 0.923 3.017 24 33 0.002

2 0.840 1.895 14 24 0.082

3 0.485 0.666 6 13 0.679

Biomass Variables

1 0.883 5.499 15 39 0.000

2 0.837 4.687 8 30 0.001

3 0.583 2.741 3 16 0.077

change in the phytoplankton structure of the NES that portends
ecosystem impacts (Flombaum et al., 2020). The size structure of
the NES phytoplankton community has shifted to smaller sized
cells, which due to functional trait-environment interactions
and the saturation of productivity of these smaller cells would
be expected to have a negative effect on primary production
(Chen et al., 2019). The shift in cell size may be related
to the pulsed uptake of resources during winter months just
prior to the development of the spring bloom that favor
small cells relative to larger celled phytoplankton (Lin et al.,
2020). As systems become more oligotrophic there tends to
be a shift to dominance by picophytoplankton that produces
a size-dependent change in food quality associated with low
grazing pressure (Branco et al., 2020). For example, it is well
known that important secondary producers in the NES, such
as Calanus finmarchicus and other large copepods, do not
graze on cells less than 10 µm (Marshall and Orr, 1955;
Frost, 1972; Bundy et al., 1998). In addition to Calanus
finmarchicus (a keystone species in the Gulf of Maine), the
filter feeding by commercially harvested bivalves in the NES
declines when feeding on particle sizes below 10 microns
as seen in blue mussels Mytilus edulis (Strohmeier et al.,
2012), bay scallops Argopecten irradians and eastern oyster
Crassostrea virginica (Palmer and Williams, 1980), and sea
scallops Placopecten magellanicus (Brillant and MacDonald,
2000). The opposite occurs in nutrient-rich waters that favor
larger phytoplankton species and higher grazing pressure.
In the Southern Ocean, warm, stratified conditions in the
surface waters are dominated by picophytoplankton and a
zooplankton community dominated by small bodied crustaceans
(Venkataramana et al., 2019). Aquatic food webs utilize greater
than 50% of their primary production owning to the higher
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FIGURE 9 | Canonical correlation two-dimensional plot of environmental factors vs. growth (A) and biomass (B) variables. Environmental variable (shown in red)

include temperature (TEMP), salinity (SAL), and CHL. Growth variables (shown in blue) are coded with first position as S for spring and F for fall, second position as

M for males and F for females, and third positons as W for weight and L for length. Biomass variables (shown in blue) include benthivores (BEN), demersal piscivores

(DEM), pelagic piscivores (PEL), planktivores (PLANK), and total biomass (TOTAL).

turnover rates associated with phytoplankton, making variation
in phytoplankton production that much more critical to the
production of secondary consumers and higher trophic level
organisms (Barbier and Loreau, 2019).

In addition to an apparent shift in cell size fractions of
phytoplankton, the dominant functional types of phytoplankton
appear to have shifted, most notably a putative decline in
diatoms. Diatoms play a pivotal role inmarine food-webs shaping
the productivity of ecosystems and are an important link in
biogeochemical cycling (Harvey et al., 2019). Since diatoms are
often chain forming and large-celled, a decline in diatoms may
be synonymous with the size fraction shifts posited for the NES.
And as with the factors associated with the development of size
fraction patterns, vertical mixing is associated with the presence
of larger phytoplankton like diatoms (Fragoso et al., 2019).
The source phytoplankton that generates the flux of organic
matter to the benthos is typically reflective of the dominant
functional types in a given area on a global basis (Durkin et al.,
2016), but since the NES phytoplankton community consists
largely of diatoms, the contribution of diatoms to the POC
is that much more critical. And since diatoms are passively
buoyant, unlike other actively mobile flagellated phytoplankton,
diatom blooms represent active transport of fixed carbon to the
benthos (Gemmell et al., 2016). This effect is most pronounced
with the fall bloom, which is known to produce enhanced
rates of particulate organic carbon flux. Zooplankton grazing
communities are in a transitional state in fall and can leave
portions of aggressive blooms underutilized (Fujiwara et al.,
2018). The fall period is also associated with changeover in the
phytoplankton community leading to functional types that more
readily tend to settle to the benthos (Kemp et al., 2000). We
would expect that the Gulf of Maine and Georges Bank would
be most impacted by the change in diatom populations since
they more reliably have fall bloom activity (Friedland et al.,
2015b). As with any set of modeling results, it is critical be

circumspect about the reliability of the model fits and data
output; hence, we also stress that the model results are at
lease consistent with the observational counts of diatoms from
the CPR samples.

FIGURE 10 | Biomass as catch per unit effort for benthivores (A), demersal

piscivores (B), pelagic piscivores (C), planktivores (D), and total biomass (E)

during spring and fall time frames. Dashed black line is mean of spring and fall

curves. In each caption, rs is the Spearman correlation with associated

p-value. Dashed line are b-splines; solid line either STARS or segmented

regression models; vertical dotted line marks 2012.
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TABLE 4 | Theil–Sen slope estimates expressed in decadal rates of change for

CPUE variables by functional groups.

Functional group Spring Fall Combined

Benthivores 20.9 3.9 12.6

Demersal piscivores 39.0 -2.7 24.3

Pelagic piscivores -2.7 -2.6 -2.8

Planktivores 4.1 2.2 3.3

Total biomass 64.8 3.7 32.0

Estimates with associated p < 0.1 highlighted in bold.

The new levels of CHL and the associated potential decline in
POC deposition in the NES may represent a stressor or critical
production limitation for this ecosystem, and in particular,
ecosystem services related to resource species. Though not well
studied, it would appear large marine ecosystems may have
a threshold of CHL associated with fishery yields. In LMEs
with an average annual CHL over 1.0 mg m−3, fishery total
catch or fisheries production on an areal basis tend to be
over twice the level of ecosystems with annual CHL less than
1.0 mg m−3 (Friedland et al., 2012). Much of the NES is now
at or below this threshold, which we would anticipate would
result in lower productivity of higher trophic level organisms.
In contemporary research, the most demonstrative effects of
phytoplankton biomass and production relate to the feeding and
condition of larval fish and its effect on year class strength.
Over many decades in the North Sea, primary production
measurements suggest a gradual decline in the base of the food
chain and is implicated in the decline of secondary producers,
notably small copepods including the genera Temora, Acartia,
Pseudocalanus, and Paracalanus (Capuzzo et al., 2018). Small
copepods often play a pivotal role in the first feeding of larval fish
(Buckley and Durbin, 2006), hence the concern that recruitment
levels have eroded as a consequence. Over shorter time series and
with the benefit of remote sensing datasets, interannual variation
in blooms and primary production levels have been associated
with recruitment success of Pacific herring, Clupea pallasi, which
seem to benefit from the proximity of the spring bloom to adult
spawning (Boldt et al., 2019) and pre-metamorphic growth of
rockfish (Sebastes spp.) larvae (Wheeler et al., 2017). Finally,
in walleye pollock (Gadus chalcogrammus), whose recruitment
is governed by thermally mediated predation effects (Uchiyama
et al., 2020), bloom activity can serve as an event level forcing
factor affecting year class strength (Gann et al., 2016).

It is difficult to predict the specific ecological response to any
change in habitat (Friedland et al., 2020) due to the complexity
of interactions and pressures in the region. Our observations
indicate that there is an expansion of fish biomass in the NES,
but at the same time, growth is slowing for many species.
There are clear examples of the inverse relationship between fish
growth and temperature, particularly at range edges (von Biela
et al., 2015). Thus, while expanded thermal habitat is associated
with higher recruitment, under the same temperature regime
there is an expectation of a loss of larger fish as oxygen supply
restricts increases in body size (Neuheimer et al., 2011). Long-
term impacts of declining growth rates are also likely to reduce
fecundity and egg quality, which varies with female fish size, and

increases the risk of predation and starvation. For species such as
silver hakeMerluccius bilinearis that has shown a steady increase
in growth over time in the NES, there is some evidence that
they are able to supplement their diet with invertebrates such as
Northern shrimp (Pandalus borealis) and avoid starvation (Link
and Idoine, 2009). Thus, defining winners and losers under a
thermal habitat regime shift, especially those coupled to changes
in primary production, depends on more than just an individual
species’ thermal tolerance; other ecological considerations need
to be considered to fully understand and manage species under
such changes to the habitat.

While the concept of regime change or shift in marine
ecosystems has been extensively reviewed (Collie et al., 2004;
Jiao, 2009), the definition of what constitutes a regime change
varies by the ecosystem function under investigation. Regime
change has been used in both formal and informal contexts.
In the informal context, many practitioners simply associate a
step change in conditions to be a regime change; and in many
cases, the change in conditions is represented by a shift in a
single factor (van Putten et al., 2019). However, in a more formal
application of the term, a change of regime is considered a
demonstration of a change in not only a suite of environmental
indicators, but also evidence of a change in ecosystem function
and productivity (Mollmann et al., 2015). In exploring the
notion of high magnitude regime shifts, Scheffer and Carpenter
(2003) considered what might cause a catastrophic shift in
ecosystem state and conditions. They made the observation that
a large change, or one with hysteresis, may be the result of
accumulated gradual change that arrives at a threshold level
and then the shift occurs. Another important distinction can be
made between consumer and producer effects on transformative
change (Connell et al., 2011). The producer level effects on the
NES ecosystem state would appear to be dominant since the
physical forcing and production level biology are associated with
concomitant change points. Consumer effects would appear to
be moderated by multiyear time lags in the sense the impacts
of a change in growth and recruitment persists over the life
cycle of the organism. This sharpens our focus on the shifts in
temperature and salinity. The proximity of change on the NES
to basin scale circulation (Kwon et al., 2019) would suggest the
accumulated effects of climate perturbation resulted in a change
point in ocean dynamics, which will likely be seen elsewhere
beyond the confines of the NES. What should not be lost in
the detail of the proximate response to change in physical and
biological factors is that this climate change event on the NES
simultaneously impacted the niche space of many species. What
we do not know as of yet is whether the extent of niche change has
or will actuate a change in biodiversity and fisheries productivity
(Trisos et al., 2020).
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