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Marine fish and invertebrates are shifting their regional and global

distributions in response to climate change, but it is unclear whether

their productivity is being affected as well. Here we tested for time-

varying trends in biological productivity parameters across 262 fish

stocks of 127 species in 39 large marine ecosystems and high-seas

areas (hereafter LMEs). This global meta-analysis revealed wide-

spread changes in the relationship between spawning stock size and

the production of juvenile offspring (recruitment), suggesting fun-

damental biological change in fish stock productivity at early life

stages. Across regions, we estimate that average recruitment capacity

has declined at a rate approximately equal to 3% of the historical

maximum per decade. However, we observed large variability among

stocks and regions; for example, highly negative trends in the North

Atlantic contrast with more neutral patterns in the North Pacific. The

extent of biological change in each LME was significantly related to

observed changes in phytoplankton chlorophyll concentration and

the intensity of historical overfishing in that ecosystem. We conclude

that both environmental changes and chronic overfishing have al-

ready affected the productive capacity of many stocks at the recruit-

ment stage of the life cycle. These results provide a baseline for

ecosystem-based fisheries management and may help adjust expec-

tations for future food production from the oceans.

fisheries | population dynamics | productivity | recruitment |
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Human well-being is closely linked with the productivity of
marine fisheries, which provide a significant source of pro-

tein for more than half of the world’s population (1). However,
ongoing environmental and biological changes may impact pro-
ductivity through a variety of mechanisms, including larger habitat
areas for temperate species (2), altered body sizes (3), food
availability (4), and increased exposure to oxygen-depleted and
acidic waters (5). Recent research has documented marked
changes in the distributional patterns of marine species that are
consistent with climate forcing (6, 7). However, the net effect of
these changes on global fish stock productivity is not clearly
understood. In particular, documented environmental changes
(4, 8, 9) and the long-term consequences of overfishing (10, 11)
all impose relevant but poorly constrained effects. Here we
help address this issue by evaluating the evidence for empirical
trends in the relation between the size of the reproductively
mature population (or “spawning stock”) and the annual pro-
duction of juvenile offspring (“recruits”) using a recently syn-
thesized global database of stock-recruit time series (12). We then
test the relation between empirical recruitment trends and re-
gional environmental variables associated with temperature,
phytoplankton abundance, and historical overfishing.
Recruitment is modeled by relating the size of the spawning

stock biomass to the annual production of recruits. The mag-
nitude of annual recruitment is highly variable (13), yet it pro-
vides the basis for population growth and stock productivity by
determining the initial number of fish that may grow, die, or be
harvested by the fishery (14) (i.e., total productivity is the com-
bination of recruitment, individual growth, and mortality). As
such, the stock-recruit relationship has been identified as “the
most important and generally most difficult problem in the biological

assessment of fisheries” (14). The simplest commonly used re-
cruitment function is the Ricker model

Rt = αBt−τe
−βBt−τ ,

where recruitment R at time t is an increasing function of the
spawning stock biomass B (lagged by the age of recruitment τ),
with negative exponential density-dependent feedback. The two
model parameters, α and β, characterize the magnitude of recruit-
ment, where α is the maximum reproductive rate (or density-
independent recruitment), and β gives the rate at which recruitment
is reduced by density-dependent feedbacks. These two parameters
combine to give the maximum recruitment capacity for an indi-
vidual stock when dR=dB= 0 and ðd2RÞ=ðdB2Þ< 0, yielding

RMAX =
α

β
e−1,

where e is Euler’s number. Note that RMAX is a biomass-indepen-
dent measure of maximum recruitment and does not depend on
current stock size. This property of the measure is attractive as it
allows comparisonof both abundantandheavily depleted stocks, but
it alsomeans that RMAX occasionally occurs at biomass levels larger
than those observed today. Because RMAX is highly correlated with
alternative biomass-dependent measures of recruitment success
(SI Appendix), we adopt it as a simple and comparable metric of fish
stock productivity at the recruitment stage of their life cycle.

Results

When recruitment models are fitted to data (Fig. 1 A–F), there is
often considerable structure in the residual variation (Fig. 1 G–I)
that suggests that biological productivity may have changed sig-
nificantly over time. Trends can be observed as directed declines
(Fig. 1G), threshold-like dynamics (Fig. 1H), or regime shifts (Fig.
1I; note that the observed shift coincided with the 1977 reversal of
the Pacific Decadal Oscillation) (15). We evaluated evidence for
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changes in recruitment by performing model selection with respect
to static or time-varying biological parameters within the Ricker
model (i.e., α and β;Methods) and estimated changes through time
where parameters are indeed found to vary. We then summarized
trends in recruitment as follows. For an individual stock, we
computed the linear slope of RMAX with respect to time (denoted
ΔRMAX) and standardized the slopes to have units of percent
change per decade relative to the stock-specific historical maxi-
mum, thus combining effects of α and β and capturing broad-scale
trends through time. To describe trends across stocks, we com-
bined ΔRMAX estimates using random-effects meta-analysis to
control for variable time series length and goodness-of-fit across
individual stocks. We denote meta-analytic averages ΔRk

MAX,
representing the mean ΔRMAX for a group k. Groupings are made
on basis of individual large marine ecosystems (LMEs) and major
taxonomic groups. We adopt the LME definition as a simple,
ecologically meaningful (16) and management-relevant (17) way to
spatially categorize individual stocks. To relate recruitment trends
to the environment, we use multiple regression to model ΔRk

MAX as
a function of estimated linear changes in sea surface temperature
(denoted ΔSST), chlorophyll concentration (ΔCHL, a widely-used
a proxy of phytoplankton standing stock), and a measure of his-
torical overfishing (taken as the average ratio of historical stock
biomass to target biomass, denoted B:BMSY). Environmental var-
iables ΔSST and ΔCHL were computed from quality-controlled,
publically available databases consistent with the time window
covered by stock assessments within individual LMEs, and B:BMSY

was calculated as the mean values across all stocks within each
LME. See Methods and SI Methods for full details.
We found that stock-recruitment data supported time-varying

recruitment capacity (RMAX) for 71% (n = 186) of stocks
according to model selection (Fig. 2). Of these, 69% (n = 128)
showed negative trends (Fig. 2). For all stocks combined, ΔRk

MAX
was estimated at approximately −3% per decade, relative to the
historical maximum (P < 0.001; Fig. 2D). However, there was a
broad-scale divergence in values between the North Pacific and
North Atlantic oceans, with the North Atlantic showing steeper

declines. In contrast, the North Pacific showed approximately
neutral trends across four LMEs, each with a relatively large
number of stocks. Across all LMEs, we estimated that 31 of all
39 LMEs (79%), and 20 of 27 LMEs with more than three
assessed stocks (74%), showed negative ΔRk

MAX (Fig. 2). The
most positive value was found in the Gulf of Mexico, whereas the
heavily depleted Newfoundland and Labrador LME showed
the most negative trend (Fig. 2B).
There was significant variation associated with different taxa.

Groundfish (bottom-associated species such as flatfishes, Pleu-
ronectiformes, and cod-like Gadiformes) showed the most neg-
ative ΔRk

MAX (Fig. 2C). At the species level, the most negative
values were observed for several North Atlantic species such as
American plaice (Hippoglossoides platessoides), European plaice
(Pleuronectes platessa), common European sole (Solea vulgaris),
and Atlantic cod (Gadus morhua). In the North Pacific, however,
many groundfish species showed opposite patterns, with stocks of
rex sole (Glyptocephalus zachirus), flathead sole (Hippoglossoides
elassodon), and arrowtooth flounder (Atheresthes stomias) trending
positively. Pelagic (open-water) species such as herring (Clupea
harengus, C. pallasii) and swordfish (Xiphias gladius) often showed
ΔRk

MAX values closer to zero.
In general, we found individual stock-recruit parameters changed

in a way that resulted in stronger density-dependent processes and
reduced maximum reproductive rates. Of individual stocks with
negative ΔRMAX, 71% displayed more negative β parameters and
29% experienced declining α, according to model selection. We
also performed the analysis over a fixed common time window
(1980–2000) and found that the two ΔRMAX values correlated
strongly (r = 0.82; P < 0.001), suggesting that the observed trends
are robust to stocks having variable time series length. We also
found that ΔRMAX was generally independent of the assumed
form of density dependence in the stock-recruit model or to
whether the model let α or β vary in time, indicating further ro-
bustness in ΔRMAX. Likewise, using an alternative metric of re-
cruitment success (expected recruitment at the median historically

Fig. 1. Patterns in stock-recruitment data. Ricker models fitted to stock-recruitment data (A–C) often display systematic errors (D–F). Model residuals can

show diverse behaviors, including progressive declines (G), abrupt thresholds (H), or reversing regime shifts (I). Data are standardized to have unit variance.
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observed biomass) we found no major change in the resulting
trends (see SI Methods for details on these sensitivity analyses).
Importantly, average trends in recruitment capacity in each

ecosystem were found to be significantly related to environ-
mental and fishing-related variables (ΔCHL and B:BMSY,) across
all LMEs (Fig. 3). Considering all species together (Fig. 3A),
ΔRk

MAX in each LME was positively associated with ΔCHL (Fig.
4A), which accounted for 38% of the total variance. Again, an
interesting contrast emerged when isolating the heavily exploited
groundfish (combining orders Pleuronectiformes and Gadiformes;
Fig. 3B). Here, the history of overfishing emerged as the most
important predictor and explained 58% of the total variance.
Analysis of the pelagic Perciformes and Clupeiformes revealed a
positive effect of ΔCHL and negative effect of ΔSST, but these
were marginally insignificant. We also investigated patterns of re-
cruitment variation with respect to maximum body size but found
no significant relationships.

Discussion

Taken together, these results provide empirical context for un-
derstanding contemporary changes in the productivity of exploited

marine fish stocks. To date, future forecasts of fisheries produc-
tivity have varied in their predictions; for example, the productivity
of temperate species has been projected to increase 30–40% based
on expansion of fish habitat and increased primary productivity (2),
whereas models of individual fish metabolism predict shrinking
body sizes with warming oceans (3) that could affect fecundity and
productivity. A recent global study of fisheries time series dem-
onstrated that the relationship between adult biomass and total
yield can be highly nonstationary (18), but the forcing of such
changes has remained unclear. Here we focused our empirical
analysis on stock recruitment dynamics and related observed
nonstationary patterns to changes in plankton abundance and the
history of overfishing. The observed changes in productivity at the
recruitment stage of the life cycle may provide a partial explanation
for nonstationary patterns observed in fisheries yield for the
affected stocks.
We caution that these trends in recruitment biology represent

broad-scale spatial and temporal patterns when averaging over
many stocks and regions. These patterns should be combined with
other model-based forecasts that weigh factors related to habitat
quantity and quality to more fully determine expected change in

Fig. 2. Meta-analysis. Standardized trends in recruitment capacity (ΔRMAX; units % change RMAX per decade, relative to the historical maximum) estimated

by changes in biological recruitment parameters (see text). (A) ΔRk
MAX (representing the meta-analytic average ΔRMAX) by LME containing more than three

assessed stocks. The color of the circle gives the direction and magnitude of ΔRk
MAX and the size of the circle gives the number of stocks in the LME. (B) Meta-

analytic ΔRk
MAX per LME and SE. (C) Taxon-level ΔRk

MAX for species with more than three assessed stocks (●) and by taxonomic order (○). (D) All 262 individual

stock ΔRMAX with the grand meta-analytic mean (P < 0.001) and SE (shaded bar). Meta-analytic means were derived by averaging the individual stock trends

by inverse-variance weighting.
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biomass distribution and the productivity of individual stocks.
We further note that the drivers of recruitment capacity identified
here likely vary in importance among stocks and regions. Bottom-
up changes in plankton concentration and top-down effects of
overfishing are all known to affect recruitment in complex ways,
including effects at both the adult (e.g., maternal effects on re-
cruitment) (19) and larval stages (e.g., food availability) (20). Our
results, however, make neither assumptions nor inferences re-
garding stock-specific mechanisms. Finally, correlations in re-
cruitment may also be important for inferring long-term trends
and patterns of shared responses to environmental changes and
fishing at the regional scale. We emphasize that a more detailed
hierarchical approach that accounts for recruitment correlations
(21, 22) and species interactions is needed to fully resolve re-
gional patterns and drivers and thus provide direct management
guidance for individual stocks within individual LMEs.
At larger scales, the apparent divergence in productivity among

the North Pacific and North Atlantic provides an interesting con-
trast, possibly linked to divergent ecological histories. The North
Pacific experienced a large oceanographic regime shift in the 1970s
(15), which resulted in relatively flat long-term environmental
trends (Fig. 4). Observed patterns suggest that recruitment capacity
may have tracked this variability (Fig. 1I), resulting in small ΔRk

MAX
values overall. Shorter histories of exploitation and lower exploi-
tation rates (23) are also likely to have tempered declines in this
region due to overfishing. In contrast, the North Atlantic is marked
by strong directional environmental change and long-term over-
exploitation (Fig. 4). Environmental and fishing-related trends in
this region were among the most severe and were significantly
related to observed changes in recruitment capacity. An exception
for the North Atlantic trend is the positive ΔRk

MAX value in the
Gulf of Mexico [12 of 13 time series there predate the Deepwater
Horizon (24) spill in 2010]. It is also important to note that the
database is most representative of North American and European
stocks due to the relative scarcity of stock assessments in tropical
oceanic regions of the world (Fig. 4C) (12, 25) where earth system
models predict that plankton productivity will decline more
strongly than in the coastal and temperate regions that dominate
the stock recruitment database (26). This historical bias in spatial

coverage limits our understanding of global fish populations as a
whole (25).
In addition to impacting the productivity of marine fish stocks,

observed changes in recruitment parameters may also have
consequences for the stability of populations. Recent theoretical
work has linked observed patterns of population stability (27) to
changes in stock recruitment parameters (28) due to age-selec-
tive fishing. It was hypothesized that population stability has
decreased in stocks due to increases in the mean and variance of
the maximum reproductive rate α caused by the truncation of
population age structure by fishing. Our results, however, suggest
that such increases in α are not often observed in assessed fish
populations, where α has generally trended downward. Rather,
frequently observed increases in the magnitude of the density-
dependent parameter β may provide an alternative explanation
for reduced stability in exploited stocks based on the well-known
destabilizing effects of strong density-dependent feedbacks (29).
Testing this hypothesis should be a priority for follow-up research.
In summary, empirically estimated trends in recruitment capacity

(Figs. 1 and 2) provide evidence for environmental- and fishing-
related changes in the productivity of marine fish stocks (Fig. 3).
Although far from uniform at the stock level, observed trends were
significantly related to ongoing environmental and biological
change at the ecosystem scale, specifically changes in phytoplankton
biomass and the history of stock biomass depletion (Fig. 4 B and C).
The reality of time-varying biological parameters requires managers
to revisit the common assumptions of fixed maximum sustainable
yields (30) and emphasizes the need for ecosystem-based man-
agement strategies that investigate and account for observed envi-
ronmental and fishing-related impacts on the long-term productive
capacity of fish stocks. Such strategies are enabled by the methods
presented here, in that the complex effects of environmental
changes can be tracked within a reasonably simple assessment
framework. Accounting for such changes is a prerequisite for the
successful rebuilding and sustainable harvesting of fisheries
resources in a rapidly changing environment.

Methods
The RAM Legacy Stock Assessment Database. All stock recruitment data were

extracted from the RAM Legacy Stock Assessment Database (12), which is a

global, quality-controlled database, available publicly at ramlegacy.org/.

Stock assessments provide estimates of both spawning stock biomass (kilo-

grams) and recruitment (no. individuals). We analyzed 262 of the ∼420 time

series available in the database based on (i) whether a recruitment rela-

tionship was already assumed in generating the stock assessment estimates

(12) and (ii) whether the spawning stock biomass and recruitment time se-

ries were estimated directly, as opposed to indirect proxies such as spawner

egg abundance. All series were then normalized to unit variance for easy

comparison across stocks and regions. A list of species used in the analysis,

along with their designated LME, can be found in Table S1. Frequency his-

tograms of the start and end dates of the stock recruitment time series are

shown in Fig. S1 and tabulated in Table S2.

Nonstationary Recruitment Model. The Ricker model can be linearized by

reexpressing recruitment as log survival

ln

�

Rt

Bt−τ

�

= ln α− βBt−τ .

This model can be fitted to data as a linear regression. To model non-

stationary recruitment relationships, we let the recruitment parameters vary

in time (21, 31) by specifying the following linear Gaussian state space model

ln

�

Rt

Bt−τ

�

= ln αt − βtBt−τ +wt ,                              wt ∼  N
�

0, σ2o
�

,

   

�

ln α

β

�

t

=

�

ln α

β

�

t−1

+  

�

v1
v2

�

t
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�

v1
v2

�

t

∼N

��

0
0

�

,  Q=

�

σ2ln α
0

0 σ2β

��

,

where the recruitment parameters are treated as dynamic latent states. Note

that wt is the observation error with variance σ2o and ½v1   v2�t ’ is the process

Fig. 3. Drivers of recruitment capacity. Relationships between LME-level

ΔRk
MAX and environmental and fisheries variables for all species (A) and or-

ders Gadiformes and Pleuronectiformes (B) using multiple regression

(weighted according to the number of stocks in the LME). The three LME-

specific covariates tested include (i) observed changes in average sea surface

temperature (ΔSST) and (ii) chlorophyll concentration (ΔCHL), as well as

changes in overfishing indicated by the ratio of observed to target biomass

(B:BMSY). See Fig. 4 for spatial patterns. The regression slopes were nor-

malized by transforming the regression variables to unit variance. Black

symbols indicate statistical significance. See text and SI Methods for details.
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error vector with covariance matrix Q. The unknown parameters are σ2o and

the diagonal of the matrix Q, which are estimated by the method of maxi-

mum likelihood. Details of the estimation can be found in SI Methods, in-

cluding the model selection algorithm based on the Bayesian information

criterion (BIC). Model selection was used to determine whether variance pa-

rameters should be zero or nonzero, thus determining whether the data

support static or time-varying recruitment parameters (SI Methods). For stocks

with at least one time-varying parameter, the trend in RMAX was summarized

by a linear slope (ΔRMAX) standardized to have unit percent change per de-

cade relative to the historical maximum. For stocks where both α and β were

inferred as static, ΔRMAX is zero. Results for the time-varying recruitment

analysis for all stocks, along with statistical diagnostics, are displayed in

SI Appendix. Model selection results are also given in Table S3.

Meta-Analysis. The nonstationary recruitment analysis and subsequent trend

analysis were applied to each stock individually, and then regional and

taxonomic patterns were summarized using a random effects meta-analysis

model. The random effects model is written

ΔRi
MAX =ΔRk

MAX + ϑi +φi ,

where ΔRi
MAX is the linear slope of RMAX for stock i, ΔRk

MAX is the overall mean

across all stocks in group k, ϑi is the deviation of the observed ΔRi
MAX from the

“true” ΔRi
MAX, and φi is the deviation of the true ΔRi

MAX from ΔRk
MAX. The ran-

dom effects analysis assumes that a group trend can be described by an inverse-

variance weighted average of trends across stocks and stock-specific deviations

from the overall trend (SI Methods). The meta-analysis model was implemented

in the R package rmeta (32). All meta-analytic results for LMEs and taxa are given

in the SI Appendix, which gives group-specific slopes and contributions from

individual stocks. Three sensitivity analyses were also performed and are docu-

mented in SI Methods. These analyses included robustness tests against (i) al-

ternative forms of density dependence (Figs. S2–S4); (ii) BIC model selection

algorithm (Fig. S5); (iii) the choice of alternative metrics of recruitment success

(Fig. S6); and (iv) the impact of variable time series length (Fig. S7).

Global Scale Correlates of Recruitment. To correlate recruitment trends to

environmental change and overfishing intensity, we fit multiple regression

models of the form

ΔRk

MAX = c0 + c1ΔSST+ c2ΔCHL+ c3B : BMSY+ ek ,

where ΔRk

MAX is the vector of ΔRk
MAX estimated per LME, ΔSST is the linear

trend in sea surface temperature in each LME, ΔCHL is the linear trend in

chlorophyll concentration (a widely used proxy for phytoplankton biomass),

B:BMSY is an index of historical overfishing, representing the mean historical ratio

of annual biomass to target biomass levels as extracted from the stock as-

sessments (12), c0 is the intercept, c1,   c2,   c3 are the partial slopes, and ek is the

LME-specific regression error. ΔSST and ΔCHL were computed according to the

time window covered by stock assessments within individual LMEs. The fre-

quency distributions of time series start and end dates are shown in Fig. S1.

Historical SST data were extracted from the Simple Ocean Data Assimilation

(33), and CHL data were taken from the in situ database provided in ref. 8. The

trend model for CHL contained a seasonal term due to unequal seasonal

sampling, whereas mean annual temperatures were extracted for SST. The

Fig. 4. Spatial distribution of environmental variables by LME. (A) ΔSST computed over the period covered by stock assessments in each LME. (B) ΔCHL (used

as a common proxy for phytoplankton biomass). (C) B:BMSY (12).
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regression was weighted according to the number of stocks in each LME. We

tested possible interactions but none were retained. All independent variables

were standardized to unit variance to standardize the regression coefficients.

Themultiple regression analysis was fit three times on three sets of species.

The first included all species in each LME, and twomore subsets (within LMEs)

weremade on thebasis of taxonomic order. One taxonomic grouping included

Gadiformes and Pleuronectiformes (generally bottom-associated species) and

other included Clupeiformes and Perciformes (pelagic, open-water species).

These orders do not occur in all LMEs; therefore, the regression analysis on

the subsets included fewer data points. The Gadiformes and Pleuronectiformes

occurred in 21 LMEs and the Perciformes and Clupeiformes occurred in 23 LMEs.
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SI Methods

Here we provide additional detailed regarding the analysis. For
compact description of the estimation, we define the recruitment
parameter vector θ= ½ln α, β�′. Thus, the linear Gaussian state space
models can be written

yt =Htθt +wt                                   wt ∼N
�
0,R= σ2o

�

θt = θt−1 + vt                                     vt ∼N

�
0,Q=

�
σ2ln α 0

0 σ2β

��
,

where yt is the observed log survival at time t, Ht is the design
matrix, wt is a realization of the Gaussian observation error at
time t with variance R, and vt is a realization of the bivariate
Gaussian process error at time t with covariance Q. Conditional
on R and Q and initial values for the state vector θ0, the optimal
reconstruction for the latent time-varying recruitment parame-
ters θt are estimated using the Kalman filter and smoother (34).
Note that variance parameters R and Q are estimated by maxi-
mum likelihood, whereas the recruitment parameters (θt) are
analytically determined by the forward-filter/backward smoother
Kalman smoother algorithm, conditional on R, Q, and θ0 (the
latter assumed to take the form of a diffuse Gaussian).

Maximum Likelihood Estimation. Maximum likelihood estimation
(MLE) is based on the normally distributed one-step ahead pre-
diction errors of the filtering algorithm (34), termed the innovations.
The innovations for the dynamic regression are given by

δt = yt −Htθ̂t,

where θ̂ denotes an estimate. The error covariance of the inno-
vations is defined by

Ft =HtMtH
′

t +R,

where Mt is the predictive covariance (34). The log likelihood of
the innovations can then be written as

Log  LðR,QÞ= c−
1

2

XT

t=1

lnjFtj−
1

2

XT

t=1

δ′

tFtδt,

where c is a constant. Log L ismaximized using standard nonlinear
optimization, yieldingMLE estimates ofR,Q, and subsequently θ̂t
(hat denotes the MLE estimate) by applying the Kalman filter/
smoother algorithm. All calculations were written in the R lan-
guage (www.r-project.org), and the optimization was performed
using the numerical routines within the R base package.

Model Selection. To determine whether individual recruitment
time series have stationary or nonstationary parameters, we ap-
plied model selection using various parameterizations of the
matrix Q. We used the BIC for model selection, which is given as

BIC=−2bLog L+ k lnT,

wherebLog L is the optimized value of the log likelihood, k is
number of nonzero estimable variance parameters in the dynamic
regression model, and T is the length (number of years) of an
individual recruitment time series. We consider four

parameterizations of Q which represent (i) static stock-recruit
relationship (all elements of Q equal to zero; k = 1); (ii) time-
varying maximum reproductive rate, static density dependence
[element (1,1) nonzero, all others zero; k= 2]; (iii) staticmaximum
reproductive rate, time-varying density dependence [element (2,2)
nonzero, all other zero; k = 2]; and (iv) time-varying maximum
reproductive rate and density dependence [elements (1,1) and
(2,2) nonzero, all others zero; k = 3]. Note we did not test the full
covariance matrix with nonzero off-diagonal elements due to the
inherent statistical dependency between the two stock-recruitment
parameters (14). Under each parameterization, the Kalman filter/
smoother algorithm yields a likelihood that can be used to com-
pute theBIC. {Note that we adopt theBICover themore common
AIC to be more conservative in model selection in the sense that
BIC favors fewer parameters due to its stricter penalty term [i.e.,
for n≥ 8, the BIC penalty (k ln n) is greater than the AIC penalty
(2k)] and will thus discriminate more strongly against time-varying
recruitment parameters.} The summarized results of the model
selection procedure are given in Table S3.

ΔRMAX and ΔRk
MAX. The dynamic linear regression analysis yields

time series of recruitment parameters Ri
MAX, and ΔRi

MAX for 262
fish populations (now using i to denote an individual stock). We
then summarize the trend using a linear slope based on least
squares regression

Ri
MAX = bi0 + bi1t+ eit,

where bi0 is the intercept of the linear regression for stock i, bi1 is
the slope multiplied by time index t, and eit is the regression error.
To standardize the rate of change in recruitment, we define

ΔRi
MAX =

bi1
max

�
Ri

MAX

� p 10 years.

which represents the rate of change per decade (10 years) as a per-
cent relative the historical maximum of Ri

MAX. To estimate the
uncertainty in ΔRi

MAX according to the uncertainty in the esti-
mated time-varying recruitment parameters, we used a bootstrap
resampling scheme as follows. (i) Sample from the uncertainty
distribution of the inferred time-varying recruitment parameters
to compute bootstrapped time series of Ri

MAX. (ii) Compute the
standardized linear slope ΔRi

MAX from the bootstrapped Ri
MAX

series. (iii) Repeat 500 times. This procedure yields bootstrapped
distributions ofΔRi

MAX with uncertainty determined by the uncer-
tainty in the inferred recruitment parameters. Due to the nonlin-
earity in RMAX, we use the median and median absolute deviation
(MAD) as summary statistics for robustness.
To combine the results of the individual trend analyses, we

perform a random effects meta-analysis at the taxonomic, regional,
and global scales. For any particular grouping, the random-effects
model is written

ΔRi
MAX =ΔRk

MAX +ϑi +φi,

where ΔRi
MAX is the estimated linear slope of RMAX for stock i,

ΔRk
MAX is the overall mean ΔRMAX for in the group, ϑi is the

deviation of the observed ΔRi
MAX from the true ΔRi

MAX, and φi is
the deviation of the true ΔRi

MAX from ΔRk
MAX. In the estimation,

weights are applied according to the inverse variance of the
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bootstrap distribution of ΔRi
MAX. The meta-analysis model was

implemented in the R package rmeta (32). All meta-analytic results
for LMEs and taxa are given in SI Appendix.

Sensitivity Analyses.

Sensitivity of RMAX trends to alternative forms of density dependence.

The Ricker function is only one of several possible parameteri-
zations for the recruitment function. Other common recruitment
functions include the Beverton–Holt model, Rt = α½β=ð1+ βBt−τÞ�,
or the more general three-parameter Shephard curve, Rt =

αð1− γβBt− τÞ
1=γ, both of which vary in their representation of

density dependence. Several studies (35–37) have found that the
Ricker model is most robust to biases introduced by both ob-
servation error and model misspecification. These results moti-
vated our use of the Ricker function in the paper. However, we
also tested the sensitivity of our results to the shape of density
dependence by applying the generalized Ricker function (35),
which approximates the behavior of the above models through the
inclusion of the shape parameter γ

Rt = αBt−τe
−ðβBt−τÞ

γ

.

We set γ = 0.5, 0.75, 1.25, and 1.5 to simulate the range of density-
dependent behaviors from very weak (γ = 0.5Þ to highly over-
compensatory (γ = 1.5). See Fig. S2 for depictions of the various forms
of density dependence. Note that γ = 1 recovers the Ricker model.
We found that the quantity ΔRi

MAX was generally independent of
the shape parameter γ (Figs. S3 and S4) and thus independent
of the form of density dependence in the recruitment function.
The individual recruitment parameters α and β changed in rela-
tive magnitude with γ (Fig. S3) in a way that resulted in α and β

parameters closer to zero with increasing γ. However, the stan-
dardized slopes remained constant (Fig. S4) because as γ increases,
the parameter is vertically translated on the y axis, altering the y
intercept, but leaving the slope unchanged. This transformation
resulted in constant ΔRi

MAX across all values of γ.
Sensitivity of RMAX trends to parameterization of Q. The BIC model
selection algorithm was used to choose the appropriate structure

of the covariance matrixQ, which determined whether recruitment
parameters varied in time. We tested the sensitivity of Ri

MAX and
ΔRi

MAX to the alternate parameterizations of Q by repeating the
model selection two times under a restricted set of possible Q

parameterizations: (i) static stock-recuit vs. time-varying α; and (ii)
static stock-recruit vs. time-varying β. We then took each set of re-
sults and repeated the estimation procedure for Ri

MAX and ΔRi
MAX.

Results indicated that the distribution of ΔRi
MAX was relatively

insensitive to whether Q was parameterized to represent time-
varying α or β. The magnitudes and relative number of stationary
vs. time-varying stock-recruit relationships also remained similar,
as well as the magnitudes of ΔRi

MAX. The main difference was
that time-varying α tended to produce larger SEs for ΔRi

MAX.
The results of this analysis are presented in Fig. S5.
Sensitivity to an alternative definition of recruitment capacity. For some
heavily depleted stocks, or those exhibiting extremely weak density
dependence, the majority of the historically observed biomass may
be below the biomass that produces maximum recruitment; there-
fore, RMAX may not be a practical metric for management. To test
the robustness of trends to the specific definition of recruitment
capacity, we repeated the trend analysis with an alternative defi-
nition; specifically, recruitment evaluated at the median observed
biomass, R½B=medianðBÞ� (Fig. S6). We found that ΔR½B=
medianðBÞ� correlated very strongly with Δ RMAX at the regional
and global scales, with correlations of 0.85 and 0.92, respec-
tively. Magnitudes of ΔR½B=medianðBÞ� were slightly smaller
than ΔRMAX but were generally estimated with smaller bootstrap
resampled variances so resulting in very similar P values at the
global and regional scales.
Analysis over the years 1980:2000.To test the sensitivity of our results
to variable time series length, we repeated the time-varying re-
cruitment analysis by subsetting time series for the period 1980:2000
and excluded stocks that do not cover this period. This subset ex-
cluded six stocks from the analysis. The scatterplot between ΔRi

MAX
using the full time series and ΔRi

MAX calculated for the period
1980:2000 is given in Fig. S7. The results indicate a high correlation
of 0.82 indicating a robustness in the overall trends that is not driven
by the longer time series.
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Fig. S1. Frequency distribution of start and end dates of time series analysis in this study. A and B give the distribution of start dates for individual stocks and

LME groupings, respectively, and C and D give end dates.

Fig. S2. The generalized Ricker model and alternate forms of density dependence. The shape parameter γ in the generalized Ricker model has a strong effect

on the form of density dependence in the stock-recruit relationship. Increasing values of γ lead to stronger density-dependence feedback, and as γ→0, the

generalized Ricker describes a linear relation between stock and recruitment with slope α.

Britten et al. www.pnas.org/cgi/content/short/1504709112 3 of 7

www.pnas.org/cgi/content/short/1504709112


Fig. S3. Effect of γ transformation on recruitment parameters α and β. As examples, A and B give the estimated recruitment parameters for Peruvian an-

choveta (north-central Peru) and C and D give recruitment parameters for Southern blue whiting (southern Argentina). The two stocks exhibited time-varying

α and β, respectively, according to model selection. The reader should note that varying γ affects the magnitude of the parameters, but not the time variability.

As a result, the standardized slopes (when expressed in terms of % relative to historical maximum) remain constant and independent of γ.

Fig. S4. Sensitivity analysis. To test the sensitivity of ΔRMAX to alternate forms of the stock-recruit relationship, the dynamic regression models were applied to

the generalized Ricker model using prescribed values for the shape parameter γ (Figs. S2 and S3 and SI Methods). (A and B) Distribution and median of α and β

estimates under each value of γ (note γ = 1 recovers the traditional Ricker model used in this study). (C) Distribution of the standardized linear slopes ΔRMAX

under the γ transformations. These results imply that the ΔRMAX quantity (when expressed in terms of % relative to historical maximum) was independent of

the form of density-dependence in the generalized Ricker model.
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Fig. S5. Sensitivity of ΔRMAX to model selection and specification. We tested the sensitivity of individual ΔRMAX to the parameterization of the covariance

matrix of the recruitment parameters Q. (A) Distribution of ΔRMAX (and SE) when choosing the elements of Q according to BIC model selection. (B) Distribution

ΔRMAX when performing model selection between static stock-recruit vs. time-varying α. (C) ΔRMAX for model selection between static stock-recruit and time-

varying β. These results imply that maximum recruitment potential was relatively independent of whether we allowed α or β to vary.
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Fig. S6. Comparison of ΔRMAX with an alternative recruitment metric ΔR[B = median(B)]. (A and B) Scatterplot between slopes of recruitment capacity

(Δ RMAX) and recruitment evaluated at median observed biomass (Δ R[B = median(B)]) for individual stocks and LME regions, respectively. The correlation

between the two respective metrics was r = 0.85 and r = 0.92. Note that the regression line has a smaller slope than the 1:1 line, in both cases indicating that

the (Δ R[B = median(B)]) metric resulted in slightly smaller magnitudes. (C and D) Global meta-analysis results for the respective metrics Δ RMAX and (Δ R[B =

median(B)]). The dashed line at zero represents no effect and the solid black lines give the bands of the 95% meta-analytic CIs. Notice that Δ RMAX gives a

slightly larger effect size with wider confidence limits, which results in similar statistical significance.
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Fig. S7. Scatterplot between Δ RMAX using the full time series (denoted Δ RMAX(all) and Δ RMAX calculated for the period 1980:2000 (denoted Δ RMAX(1980:2000)).

The results indicate a high correlation indicating robustness in the trends to the length of the time series analyzed.
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