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Letter 1 

Changing risks of simultaneous global breadbasket failure 2 

 3 

The risk of extreme climatic conditions leading to unusually low global agricultural production is 4 

exacerbated if more than one global ‘breadbasket’ is subject to climatic extremes at the same time. 5 

Such shocks can pose a risk to the global food system amplifying threats to global food security1,2 and 6 

have the potential to trigger other systemic risks3,4. So far, while the possibility of climatic extremes 7 

hitting more than one breadbasket has been postulated5,6 little is known about the actual risk. Here we 8 

present quantitative risk estimates of simultaneous breadbasket failures due to climatic extremes and 9 

show how risk has changed over time. We combine region-specific data on agricultural production with 10 

spatial statistics of climatic extremes to quantify the changing risk of low production for the major food 11 

producing regions (‘breadbaskets’) in the world. We find evidence that there is increasing risk of 12 

simultaneous failure of wheat, maize and soybean crops, across the breadbaskets analyzed. For rice, 13 

risks of simultaneous adverse climate conditions have decreased in the breadbaskets analyzed in this 14 

study in the recent past mostly owing to solar radiation changes favoring rice growth. Depending on 15 

the correlation structure between the breadbaskets, spatial dependence between climatic extremes 16 

globally can mitigate or aggravate the risks for the global food production. Our analysis can provide 17 

the basis for more efficient allocation of resources to contingency plans and/or strategic crop reserves 18 

that would enhance the resilience of the global food system.  19 

Climate variability explains at least 30% of year-to-year fluctuations in agricultural yield7. Under 20 

‘normal’ climatic circumstances the global food system can compensate local crop losses through grain 21 

storage and trade8. However, it is doubtful whether the global food system is resilient to more extreme 22 

climatic conditions9, when export restrictions10 and diminished grain stocks may undermine liquidity 23 

in agricultural commodity markets, resulting in higher price volatility. The food price crisis in 2007/08 24 

has shown that climatic shocks to agricultural production contribute to food price spikes1 and famine2, 25 

with the potential to trigger other systemic risks including political unrest3 and migration4. Climatic 26 

teleconnections between global phenomena such as El Niño Southern Oscillation (ENSO) and regional 27 

climate extremes such as Indian heatwaves11 or flood risks around the globe12 could lead to 28 

simultaneous crop failure in different regions, therefore posing a risk to the global food system8,10, and 29 

amplifying threats to global food security. While the possibility of a climatic extreme hitting more than 30 

one breadbasket has been a growing cause for concern5,6, only few studies have investigated the 31 

probability of simultaneous production shocks 13 or estimated the joint likelihoods of adverse climate 32 

conditions 14.  Here we present, to our knowledge for the first time, quantitative risk estimates of 33 

simultaneous breadbasket failures due to climatic extremes by explicitly accounting for spatial 34 

dependence structures between the regions and show how risk has changed over time.  35 

Changing climatic risks in food producing regions 36 

We analyzed climatic and crop yield data (see Supplementary Material 1 and 2.1) for the main 37 

agricultural regions within the highest crop producing countries by mass both in 1961 and 2012, 38 

according to FAO data, i.e. United States, Argentina, Europe, Russia/Ukraine, China, India, Australia, 39 

Indonesia and Brazil. The global breadbaskets for each crop and corresponding states and provinces 40 

are shown in Supplementary Fig. SF1. For wheat, maize, soybean and rice the selected breadbaskets 41 
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account for 74%, 74%, 81% and 74% of the total production in the breadbasket countries and 56%, 1 

56%, 73% and 38% of the total global production in 2012, respectively. We developed region-2 

dependent relationships between climatic variables (temperature, precipitation and solar radiation 3 

indicators; summarized in Supplementary Table ST1) and logistically de-trended crop yields using data 4 

for the period 1967 to 2012 and analyzed the dependence structure at regional and global scales using 5 

a Vine copula approach (see Methods and Supplementary Material 2.3). We report results (i) for each 6 

breadbasket, and the states/provinces within that breadbasket and (ii) aggregating across multiple 7 

breadbaskets at a global scale. We look at changes over time by comparing the period 1967-1990 with 8 

1991-2012. For the individual breadbaskets, increases of climate risk (defined as exceedance of a 9 

region-specific climate threshold that corresponds to the lower 25% yield deviation percentile, see 10 

Supplementary Fig. SF3) and simultaneous crop failures of states/provinces within one breadbasket 11 

were found for 18 out of 32 climate indicators across all regions and crops. For example, for soybean 12 

in China, the critical climate indicator is the number of days above 30°C during the growing season (see 13 

Supplementary Table ST1). While only 1.2% of extreme hot months occurred simultaneously in all 14 

provinces of the Chinese soybean breadbasket in any given year in the period 1967-1990 (defined as 15 

the exceedance of the “days-above-30°C” temperature indicator threshold), this increased to 18.4%for 16 

the period 1991-2012 (Fig. 1). This accords with other analysis15,16  that reports a significant increase 17 

in temperature extremes in China in recent decades.  18 

 19 

Figure 1: Likelihood of simultaneous climate risks in the 9 most important soybean producing provinces in China 20 

threatening agricultural production: defined as relevant climate indicators exceeding the value that corresponds to the to 21 

the lower 25% yield deviation percentile. The error bars indicate the standard error based on bootstrapping 22 

(Supplementary 2.3). 23 
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Figure 2: Likelihood of climatic conditions simultaneously threatening crop losses in the global breadbaskets: defined as 3 

relevant climate indicators exceeding the value that corresponds to the to the lower 25% yield deviation percentile. (A) 4 

wheat (b) soybean (c) maize and (d) rice breadbaskets. 5 
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On a global scale, there has been a significant increase in probability of multiple global breadbasket 7 

failures for all crops except for rice (Figure 2). The number of breadbaskets suffering from unfavorable 8 

climate for plant growth increased significantly on average between the two periods for wheat, maize 9 

and soybean and decreased for rice. Looking at the extremes, the annual probability of all 10 

breadbaskets experiencing climate risks simultaneously increased from 0.3 to 1.2% for wheat, from 11 

0.8 to 1.1% for maize and from 1.7 to 2% for soybean. For rice, it decreased from 21.2 to 11.8% 12 

between the two periods. Wheat has experienced the largest increases in simultaneous climate risks 13 

(16.8% from in average 3.42 to 4 breadbaskets experiencing risks simultaneously). Risks from 14 

temperature effects have increased in all temperature sensitive wheat breadbaskets, whereas 15 

precipitation risks have only increased in India and Australia and decreased in China, Europe, 16 

Russia/Ukraine and USA (see Supplementary Figures SF4 and SF5). For the summer crops soybean and 17 

maize, simultaneous risks have on average increased by 6.5% and 9.9% respectively. Climate risks have 18 

decreased in the Americas (except for precipitation affecting soybean in Argentina) and increased in 19 

Asia and Europe (except for precipitation based risks affecting maize in China).  In general, the risks of 20 

extreme temperature simultaneously hitting yield in multiple breadbaskets have increased more than 21 

risks of unfavorable precipitation (see Supplementary Figures SF5). 22 
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Although precipitation and temperature are usually seen as the most important climate factors 1 

influencing crop yields in statistical models7,17, precipitation often has no substantial impact on rice 2 

production as rice is mostly irrigated18–20. Moreover, there is no discernable temperature effect in 3 

Indonesia because temperatures are generally below the critical thresholds during rice growing 4 

season21. In China, temperature effects depend largely on the region22 and no single clear indicator 5 

was found for the entire rice breadbasket. Consideration of solar radiation helps to explain more of 6 

the variation in rice production. Risks from extreme solar radiation decreased in all three rice 7 

breadbaskets and the overall likelihood of simultaneous climate risks in the global rice breadbaskets 8 

decreased by 17%. A detailed description of changes in rice climate risks and possible explanations can 9 

be found in Supplementary Material 3.5. Note that our approach of estimating the number of 10 

breadbaskets experiencing simultaneous climatic risks does not account for the different sizes of the 11 

breadbaskets, for instance the maize production being one order of magnitude higher in the US 12 

breadbasket than in the Argentinian one. To give an impression of the magnitude of those 13 

simultaneous risks we show in Supplementary Figure SF 6 the distribution of area simultaneously 14 

affected by climate risks in the global breadbaskets which shows that the changes in simultaneous risks 15 

are robust, even if the breadbaskets where weighted by area  16 

For soybean, the implications for production of  breadbasket failures in all five breadbaskets (which 17 

are associated with climate risks) would be at least 12.55 million tons of crop losses (with crop losses 18 

defined as the 25 percentile detrended yields multiplied by 2012 harvested area, see calculations in 19 

Supplementary Table Expected_loss_calculations), which exceeds the 7.2 million ton losses in 1988/89, 20 

one of the largest historical soybean production shocks6. Simultaneous maize, wheat and rice climate 21 

risks in all of the breadbaskets considered here would lead to production losses of at least 25.9, 18.8 22 

and 0.5 million tons respectively. For comparison, the largest global shocks (defined as total production 23 

anomalies) that have occurred in the past were estimated  at 55.9 million tons in 1988 for maize , 36.6 24 

million tons in 2003 for wheat and 22 million tons in 2002 for rice due to a failure of monsoon6 . 25 

Spatial dependence between global breadbaskets 26 

The aggregate risk of low production at a global scale is influenced by the spatial dependence in climate 27 

variables between breadbaskets, as well as by the climate risk in each breadbasket. There are positive 28 

as well as negative spatial dependencies between the relevant climatic variables, so the aggregate 29 

expected agricultural production losses from simultaneous climate risks in all breadbaskets can be both 30 

higher and lower than would be the case were relevant climate variables in different breadbaskets to 31 

be statistically independent. However, we found no significant change in the spatial dependence 32 

structure between the two periods. The changes to simultaneous climate risks that are reported above 33 

are attributable to changes in climatic mean and variance only – no significant change was detectable 34 

in the spatial dependence structure between the breadbaskets. 35 

We compared the case of statistical independence between breadbaskets with the observed climate 36 

data, to show the effect of spatial dependence in climate variables (see Supplementary Fig. SF7). The 37 

spatial dependence in climatic variables is shown to increase the aggregate risk of production losses in 38 

some cases e.g. the expected loss (for details on the calculations see Supplementary Material 39 

Expected_loss_calculations) for rice in the second period is slightly higher than in the independent 40 

case. In other cases, spatial dependence mitigates the aggregate risk (i.e. the losses are negatively 41 

correlated), as is the case for soybean, maize, wheat and for rice in the first period.   42 
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Overlaying inter-dependent climate risks with global trade patterns23, we estimated the significance of 1 

climatic dependence between breadbaskets on the global food system. A positive correlation between 2 

maximum temperature in the EU and in Australia, for example,  (a full list of correlation matrices can 3 

be found in Supplementary Figure SF8)  indicates that increasing temperature risks in Australia, an 4 

important wheat exporter to the EU, puts additional pressure on the EU in the case of a drought during 5 

the wheat growing season. Precipitation based risks for soybean in India and Argentina, on the other 6 

hand, are negatively correlated which means that soybean losses in India can be mitigated by imports 7 

from Argentina. For maize, mean temperature in the EU during growing season is positively correlated 8 

with growing season precipitation in Brazil, a net maize importer to the EU. If Europe experiences an 9 

extremely hot year, Brazil is likely to get enough rainfall for its maize production and is able to mitigate 10 

losses in the EU through trade. This is especially important as in the last decades, precipitation risks in 11 

Brazil have declined whereas temperature based risks in the EU have increased (see Supplementary 12 

Figure SF5). 13 

Discussion 14 

Analysis of climatic risks to crop production has conventionally used crop models on a global scale24. 15 

Whilst crop-models can incorporate complex time-dependent climatic influences on yield, there is   a 16 

mismatch between model predictions and actual yield data24,25. The more direct approach that we 17 

have adopted has incorporated phenological as well as statistical information, with a specific focus 18 

upon the climatic factors that demonstrably influence low agricultural production. Whilst statistical 19 

analysis of global production data does not identify significant inter-regional spatial dependence or 20 

climate-related change signals, because of the number of confounding factors, we have been able to 21 

fingerprint the effects of these signals through direct analysis of the relevant climatic data. We have 22 

therefore been able to begin to interpret the risks of multiple simultaneous climate extremes to crop 23 

production. Climate risks to  wheat, maize and soybean production in the global breadbaskets have 24 

changed already. Climate risks to the rice breadbaskets have decreased over past decades, though 25 

studies indicate this trend may change direction in the future21,26,27. Whilst our empirically based 26 

approach has some attractions compared to global crop modelling, there were inevitable limitations. 27 

Our study only considered temperature, precipitation and, for rice, solar radiation data. However, 28 

there are numerous other factors that could influence the climate-yield relationship, e.g. we did not 29 

consider wind speed, ozone exposure or CO2 effects28,29. Owing to limited data availability, we could 30 

not consider agronomic factors such as irrigation, pest infestation or different crop varieties. This study 31 

represents, to our best knowledge,  a first empirical analysis of global and regional dependence 32 

structures of climate risks in the global breadbaskets. Further analysis of underlying teleconnection 33 

patterns is needed to understand how dependence structures might change in the future. 34 

Quantifying likelihoods of simultaneous climate risks as in our approach should help governments, 35 

businesses and international institutions to identify plausible risk scenarios and allocate proportional 36 

resources to contingency plans and/or strategic crop reserves. Importantly, as demonstrated here, not 37 

only overall risks may change over time, but the likely combinations of conditions that threaten the 38 

food system may also have changed. For trade networks, which are established over time, such 39 

changes may threaten food security when existing trade connections are not able to buffer 40 

simultaneous breadbasket failures. Our identification of climatic patterns associated with global crop 41 

losses can help to target the deployment of early warning systems.  42 

 43 
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Methods (for the online version) 25 

The extensive literature on the relationship between agricultural yield and climatic factors, from both 26 

an empirical17 and model-based24 perspective, was used to identify relevant climate indicators in a 27 

multi-step process (see Supplementary Material 3.2). We focused upon the climatic indicators that 28 

significantly influenced yields. A list of selected climate indicators for each crop and breadbasket are 29 

available in Supplementary Table ST1. Indicators include both statistical measures such as the 30 

Standardized Precipitation Index30 (SPI) as well as measures based on plant phenology such as number 31 

of days above 30°C during the reproductive stage of soybean31. Depending on the fit between literature 32 

values and the results of our data analysis, between one and three indicators per crop and breadbasket 33 

were selected. We analyzed the probability of selected climatic indicators exceeding the value 34 

associated with yield deviations being in the lower 25 percentile (see Supplementary Material).  35 

To analyze the dependence structure between these relevant climatic variables at regional and global 36 

scales we used the copula methodology. We applied regular vine copulas (RVines) which model high 37 

dimensional statistical dependencies. RVines are able to decompose a multivariate probability density 38 

using a cascade of unconditional and conditional bivariate pair-copulas. These pair-copulas are ordered 39 

in tree-structures, which are built using maximum spanning trees with Kendall’s tau as edge weights. 40 

Pair-copulas are chosen from a list of copula families with different characteristics using the Akaike 41 

information criterion and parameters are estimated with a maximum likelihood estimation (see 42 

Supplementary Materials). 43 
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