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abstract: The probability of dispersal from one habitat patch to

another is a key quantity in our efforts to understand and predict

the dynamics of natural populations. Unfortunately, an often over-

looked property of this potential connectivity is that it may change

with time. In the marine realm, transient landscape features, such

as mesoscale eddies and alongshore jets, produce potential connec-

tivity that is highly variable in time. We assess the impact of this

temporal variability by comparing simulations of nearshore meta-

population dynamics when potential connectivity is constant through

time (i.e., when it is deterministic) and when it varies in time (i.e.,

when it is stochastic). We use mathematical analysis to reach general

conclusions and realistic biophysical modeling to determine the ac-

tual magnitude of these changes for a specific system: nearshore

marine species in the Southern California Bight. We find that in

general the temporal variability of potential connectivity affects two

important quantities: metapopulation growth rates when the species

is rare and equilibrium abundances. Our biophysical models reveal

that stochastic outcomes are almost always lower than their deter-

ministic counterparts, sometimes by up to 40%. This has implications

for how we use spatial information, such as connectivity, to manage

nearshore (and other) systems.

Keywords: stochasticity, metapopulation dynamics, matrix modeling,

connectivity, larval dispersal, fisheries management.

Introduction

Determining the number of individuals that move from

one habitat patch to another is vital to our ability to predict

the dynamics of natural populations (Tilman and Kareiva

1997; Hanski 1998). Across multiple habitat patches, this

connectivity quantifies the redistribution of abundances

over a landscape and is key to understanding how meta-

populations persist over time (Hanski 1998; Hastings and

Botsford 2006), how they respond to disturbances (Ovas-
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kainen and Hanski 2003; Urban et al. 2009; Bodin and

Saura 2010), and how invasive species might spread

through them (With 2002; Blackwood et al. 2010). Hence,

accurate determinations of connectivity are critical to our

ability to govern and maintain ecological systems (Pos-

singham et al. 2000; Lubchenco et al. 2003). However,

regardless of its importance, connectivity remains poorly

understood for many systems. This is especially true for

one particular property of connectivity: its temporal

variability.

Broadly speaking, connectivity comprises two quanti-

ties: (1) the number of individuals at a source patch A

and (2) the per capita probability of dispersal from A to

a given destination patch B, or potential connectivity (Wat-

son et al. 2010). The first part is demographic in nature;

whatever affects the number of individuals at the source

will alter the number of dispersing individuals from it.

Indeed, there has been considerable attention paid to how

changes in subpopulation abundances affect metapopu-

lation dynamics. For example, spatially correlated distur-

bances can temporarily synchronize subpopulation abun-

dances, leading to decreases in metapopulation persistence

(Day and Possingham 1995; Johst and Drechsler 2003;

Elkin and Possingham 2008). Potential connectivity is dif-

ferent; given certain dispersal abilities, it is defined largely

by the landscape over which a species travels. It too has

received considerable attention, and several sophisticated

methods exist for calculating potential connectivity in spa-

tially complex landscapes, ranging from network and cir-

cuit theory (e.g., McRae et al. 2008; Treml et al. 2008;

Urban et al. 2009) to advection/diffusion approaches (e.g.,

Okubo and Levin 1989; Largier 2003). However, most

analyses of potential connectivity assume that landscape

features are static, not changing over ecological timescales.

This results in a deterministic view of potential connec-

tivity, which may be appropriate in some systems but not

mailto:jrwatson@princeton.edu
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Figure 1: a, Example of a Lagrangian probability density function
(PDF) for the Southern California Bight for Lagrangian particles
released from patch 35 for the spawning period August–October,
1996, and a pelagic larval duration of 20 days. b, Same Lagrangian
PDF but for 1999. Colors identify probability densities of Lagrangian
particles (km!2). Because ocean currents change annually, so do La-
grangian PDFs. Lagrangian PDFs are used to quantify the potential
connectivity between a given pair of nearshore patches (circles). c,
Associated potential connectivity time series (blue line; ) be-D (t)xy

tween patch 35 and patch 90; blue dots identify the mean August–
October connectivity for each year, and the red line is the mean over
the entire period (i.e., ). The coefficient of variation (CV) forD35, 90

this time series is 1.29.

for others since there are many environments whose land-

scape features are highly dynamic.

Perhaps the most obvious landscapes with dynamic fea-

tures are those belonging to the marine realm. For ex-

ample, nearshore marine species are sedentary as adults,

remaining local to habitat patches such as kelp forests or

coral reefs (Roughgarden et al. 1988). Long-distance dis-

persal is achieved by newly spawned larvae dispersing with

ocean currents, traveling distances ranging from tens to

hundreds of kilometers (Kinlan et al. 2005; Cowen et al.

2006; Siegel et al. 2008; Mitarai et al. 2009). As a result,

nearshore marine species exist in systems of intercon-

nected subpopulations (Botsford et al. 2003; Watson et al.

2011a, 2011b). These seascapes were once thought to be

uniformly connected and well mixed over ecological time-

scales (i.e., the larval pool assumption; Vance 1973), but

we now know that nearshore potential connectivity is spa-

tially heterogeneous. Larval dispersal trajectories are

strongly affected by oceanographic features, such as me-

soscale eddies, alongshore jets, and squirts. These provide

structure and often create barriers to dispersal (Cowen et

al. 2006; Watson et al. 2010). Importantly, we also know

that these seascape features are highly dynamic, being pre-

sent 1 year/month/day and not the next (Mitarai et al.

2009).

Over the past decade, coupled biophysical models have

been used to make realistic determinations of nearshore

potential connectivity (e.g., Cowen et al. 2006; Mitarai et

al. 2009). These determinations have revealed often spa-

tially complex patterns of potential connectivity, yet the

temporal dimension of connectivity has received relatively

little attention (although see Berkley et al. 2010). Here,

our goal is to address this knowledge gap and investigate

the influence of temporal variability in connectivity on the

demographics of nearshore marine metapopulations.

We first develop basic theory behind how time-varying

potential connectivity, as a source of environmental sto-

chasticity (Lande and Orzack 1988; Gravel et al. 2011),

alters nearshore metapopulation dynamics relative to when

it is assumed to be constant. This work adapts and extends

the theory of stage-structured populations, where the effect

of stochastic parameters on, for example, the number of

individuals transitioning between age states is well known

(Tuljapurkar and Orzack 1980; Caswell 2001). We then

numerically quantify the magnitude of these changes for

a specific example: nearshore marine species in the South-

ern California Bight (fig. 1a). We determine patterns of

potential connectivity by simulating dispersing larvae, us-

ing a Lagrangian probability density function method (Mi-

tarai et al. 2009). This approach captures the complex

spatial and temporal properties of potential connectivity

in the nearshore of the Southern California Bight (Watson

et al. 2010). Potential connectivity for a broad range of
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species is calculated over a 7-year period, and we also focus

on two nearshore marine species with known dispersal

characteristics: kelp bass Paralabrax clathratus and sheep-

head Semicossyphus pulcher (Love 1991; California De-

partment of Fish and Game 2009). These determinations

of potential connectivity are used to drive metapopulation

models, with the aim of comparing deterministic and sto-

chastic dynamics. For the purposes of this article, deter-

ministic dynamics refer to when potential connectivity is

constant through time (we address the scenario of deter-

ministically time-varying potential connectivity in “Dis-

cussion”). We use the expectation in potential connectivity

over the 7 years of data to develop deterministic dynamics.

In contrast, stochastic dynamics refers to when potential

connectivity varies in time. To create stochastic dynamics,

we use the 7 years of potential connectivity data indepen-

dently. We compare deterministic and stochastic outcomes

using two fundamental metapopulation quantities: (1)

metapopulation growth rates when a species is rare and

(2) equilibrium abundances.

Metapopulation Model Analysis

Deterministic and stochastic nearshore metapopulation

dynamics were compared using a simple single-species

model:

n (t " 1) p n (t)(1 ! m) " g(s (t)), (1)x x x

where is the future number of adults at subpop-n (t " 1)x

ulation x. The time step is 1 year, reflecting the annual

reproductive cycle of many nearshore species. The first

term quantifies adult survival, where m is the natural mor-

tality, and the second term quantifies the number of new

recruits to subpopulation x at time t. The number of re-

cruits, , is a function of the number of larvae settlingg(s (t))x

to x after their pelagic dispersal. This is typically a non-

linear function describing postsettlement density-depen-

dent larval mortality, but here, to maintain generality, we

leave this function unspecified. The number of settlers

is defined ass (t)x

s (t) p n (t)fD (t), (2)!x y xy
y

where is the probability of a larva traveling from aD (t)xy

spawning site y to a destination location x at time t. This

is the potential connectivity (Watson et al. 2010, 2011b).

The summation calculates the total number of settling

larvae arriving from all spawning locations (y), and f is

the per capita fecundity. Our model assumes that repro-

duction occurs before adult mortality.

Dynamics When a Species Is Rare

At low larval abundances, density dependence, either neg-

ative or positive, is assumed negligible. In its place, we

assume that density-independent larval mortality occurs

with , where g is simply the fraction of larvaeg(s ) p gsx x

that survive settlement (Hastings and Botsford 2006). The

population dynamics are now a simple linear function of

. Adopting matrix notation, the dynamics aren (t)x

n(t " 1) p C(t)n(t), (3)

where is the vector of subpopulation abundances andn(t)

is the metapopulation projection matrix, with ele-C(t)

ments

(1 ! m) " gfD (t) if x p yxyC (t) p . (4)xy {gfD (t) if x ( yxy

The elements are termed subpopulation connectionsC (t)xy

because, in the case of self-connectivity ( ), they ac-x p y

count for both larval dispersal between subpopulations

and adult survivability.

If potential connectivity were assumed to be constant

through time, for example, if we considered the temporal

expectation only, then the metapopulation projection ma-

trix would also be constant (i.e., ). Quantifying whetherC

the metapopulation persists is then simply a matter of

finding the dominant eigenvalue of , here termed l1. InC

contrast, if dispersal probabilities change with time, this

simple calculation cannot be made. Instead, the total abun-

dance of the metapopulation can be expressed as

n (t) pk n(t) k! x
x

pk C(t ! 1)C(t ! 2) … C(0)n(0) k , (5)

where n(0) is a vector of initial subpopulation abundances

and is the vector norm. For this system, there existsk.k
a number (ls) such that

1
lim log n (t)! x

t xt r#

1
p lim log k C(t ! 1)C(t ! 2) … C(0)n(0) k (6)

tt r#

p log l .s

ls is the stochastic metapopulation growth rate, and it is

a better estimate of the metapopulation growth rate than

its deterministic counterpart (l1) because it takes into ac-

count the temporal variability of potential connectivity. ls

can be found through numerically simulating the above

formula or by Tuljapurkar’s approximation (Tuljapurkar

and Orzack 1980),
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21 t
log l ≈ log l ! , (7)s 1 2( )2 l1

with

2 2t p Cov (C , C )Z Z p t , (8)!! !xy kl xy kl xy
xy kl xy

where for small deviations around the mean, t2 is a linear

approximation to the variance in the deterministic growth

rate (l1). are the covariances between allCov (C , C )xy kl

possible pairs of subpopulation connections (x, y, k, l p

... the number of subpopulations), and Zxy is the sen-1

sitivity of l1 to changes in a given subpopulation con-

nection; formally, these sensitivities are defined as the par-

tial derivative . In our model, sensitivities are!l /!C1 xy

always positive, and as a result, we can see in equations

(7) and (8) that positive covariances (i.e., synchronized

connections) increase t2 and reduce ls relative to l1. The

variance in self-connectivity, which includes variability in

adult abundances (eq. [4]), is at all times positive and

hence always reduces metapopulation growth rates when

rare. Negative covariances between connections (i.e., asyn-

chrony) are possible and, similar to positive covariances,

arise from the underlying oceanography. For example,

oceanographic features, such as alongshore jets, can con-

nect multiple sites at the same time, resulting in positive

covariances between multiple connections (Mitarai et al.

2009). Concurrently, these features can also disconnect

sites, leading to negative covariances between connections.

Equations (5)–(8) are well understood for stage-struc-

tured populations (Tuljapurkar and Orzack 1980; Caswell

2001). However, in the metapopulation setting, the Tul-

japurkar approximation provides new spatial information.

For example, every subpopulation connection (Cxy) has a

temporal covariance with all others (Ckl). Weighting these

covariances by their sensitivities and then summing them

for each connection defines (right-hand term in eq.2txy

[8]). These values identify the contribution of each con-

nection to t2 and hence the change in metapopulation

growth rate when rare. For example, positive (negative)

values identify connections that, because of their sen-2txy

sitivities and covariances with other connections, reduce

(increase) the metapopulation growth rate when rare.

Dynamics When Abundant

When abundances are high, larval density dependence can-

not be ignored, and we revert to the original model (eq.

[1]), using the function to identify the number ofg(s )x

settlers that recruit to an adult population.

Under most conditions, deterministic metapopulation

dynamics eventually reach equilibrium (denoted by an as-

terisk), and the growth rate of each subpopulation be-

comes 0. At this point, the loss of adults due to natural

mortality is balanced by the gain of new recruits:

* * *n m p r p g(s ), (9)x x x

where is the number of larval recruits at subpopulation*rx

x at equilibrium. Hereafter, we assume equilibrium con-

ditions and drop the asterisk for the sake of brevity. It is

possible that certain deterministic functions of settlement

( ) could lead to cycles or chaos (e.g., if it is Ricker-g(s )x

like), but since natural mortality in nearshore populations

is small and adult longevity is high, it requires extreme

density dependence parameter values to achieve these

dynamics.

Under stochastic conditions, the variables (nx, sx, rx)

continue to vary in time, eventually reaching stationary

states. We compare stochastic stationary states with de-

terministic equilibriums by recasting equation (9) in terms

of the expected number of larval recruits at a given sub-

population over time:

E(r ) p E(g(s )). (10)x x

Then, by a second-order Taylor expansion around the

mean number of settlers, , we obtainE(s )x

E(r )x

′′g (E(s ))x′ 2
≈ E g(E(s )) " g (E(s ))[s ! E(s )] ! [s ! E(s )] .x x x x x x( )2

(11)

Here, many terms simplify, including the first-order term,

which, because , vanishes entirely. Ulti-E(s ! E(s )) p 0x x

mately, the expected number of recruits is approximated

as

′′g (E(s ))x
E(r ) ≈ g(E(s )) ! Var (s ), (12)x x x

2

and we see that, assuming that , the temporal′′g (E(s )) 1 0x

variability in settlement ( ) reduces the expectedVar (s )x

number of recruits at a given subpopulation and hence

subpopulation abundances (i.e., Jensen’s inequality; Ruel

and Ayres 1999). From the opposite perspective, if the

settlement variance is 0, then the expectation of the sto-

chastic stationary distribution is equal to the deterministic

equilibrium.

Metapopulation Simulations

Potential Connectivity in the Southern California Bight

Dispersing larvae were simulated as passive Lagrangian

particles within a regional ocean modeling system (ROMS)

solution for the Southern California Bight (Dong et al.

2009; Mitarai et al. 2009). The ROMS solution has 40
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vertical levels and a horizontal spatial resolution of 1 km,

with all eight islands in the Southern California Bight re-

solved. The model captures the complex circulation of the

Southern California Bight and shows strong correspon-

dence with observed ocean conditions (Dong et al. 2009;

Ohlmann and Mitarai 2010). Approximately 50 million

passive Lagrangian particles were released over the period

January 1, 1996–December 31, 2002, across 135 circular

patches (5 km in radius) distributed uniformly throughout

the nearshore (fig. 1a). Particles were released every 12 h

and, as they advected with ocean currents, their location

recorded every 15 min for 90 days or until they left the

domain (for more details, see Mitarai et al. 2009).

Lagrangian probability density functions (PDFs) were

then used to calculate the site-to-site transition probabil-

ities that define potential connectivity (Mitarai et al. 2009).

As an example, see figure 1a and 1b for Lagrangian PDFs

from two different years; Lagrangian particles were re-

leased from a particular nearshore patch during the period

August–October, 1996 (fig. 1a) and 1999 (fig. 1b), and

then were allowed to advect with the ROMS velocities for

20 days. Their locations after this advection time define

the Lagrangian PDF, and from this, the potential connec-

tivity between a given nearshore source and destination

patch is calculated (Mitarai et al. 2009). This was done for

a subset of 117 pairs of patches for every spawning month

triplet and year (t; January–December, 1996–2002) and

for a range of advection times, or pelagic larval durations

(1–90 days). The later two dispersal parameters identify

different modeled species. The patch subset was chosen to

minimize artificial demographic effects created by the do-

main edge (see fig. A1, available online), and the middle

month is used to identify spawning month triplets (e.g.,

September refers to the connectivity of August, September,

and October).

Assuming that nearshore marine species spawn once a

year, over a given monthly triplet, a set of seven indepen-

dent spawning years (1996–2002) was calculated for each

species (for a potential connectivity time series, see fig.

1c). Thus, species-specific potential connectivity between

all pairs of patches is a function of pelagic larval duration,

spawning month, and year. The range of pelagic larval

durations and spawning months allowed us to calculate

potential connectivity for a broad range of modeled spe-

cies, but we also focused our attention on two species with

contrasting dispersal parameters: a species that spawns in

the fall with a short pelagic larval duration (30 days) and

a spring spawning species with a long pelagic larval du-

ration (60 days). These parameter values represent two

common species in the Southern California Bight: kelp

bass Paralabrax clathratus and sheephead Semicossyphus

pulcher, respectively (Roughgarden et al. 1988; California

Department of Fish and Game 2009).

Metapopulation Simulations without Density Dependence

We numerically solved for deterministic and stochastic

metapopulation growth rates when rare for every modeled

species (i.e., for the potential connectivity associated with

every combination of pelagic larval duration and spawning

period). Using the linear model with no larval density

dependence (eq. [3]), values of f were chosen such that

the deterministic growth rate (l1) for each species was

equal to 1, and then stochastic growth rates (ls) were

calculated through simulation. Initially, subpopulation

abundances were equal and summed to 1; then, stochastic

dynamics were iterated forward in time by randomly se-

lecting a yearly potential connectivity matrix (Dxy(1996 ...

2002)), until a stationary distribution was reached (Morris

and Doak 2002). This typically took 2,000 iterations. The

stochastic metapopulation growth rate when rare was then

calculated using equation (6).

The spatial structure of t2—the quantity that changes

the metapopulation growth rate when rare (see eq. [8])—

was explored by first analyzing values. These identify2txy

the contribution of a given subpopulation connection to

t2. In order to reveal the geographic relationships between

values, we used a k-means clustering algorithm on the2txy

sensitivity-weighted variance/covariance matrix. The clus-

tering algorithm identifies groups of connections on the

basis of their weighted covariances with each other (eq.

[8]), and it requires that the number of clusters be spec-

ified. We chose five clusters, since this separated the South-

ern California Bight into geographically meaningful

groups. Last, we calculated , which identifies2
! txygroup

whether a particular group of subpopulation connections

increases or decreases t2 and the metapopulation growth

rate when rare.

Metapopulation Simulations with Density Dependence

We also examined the effect of stochastic potential con-

nectivity on equilibrium abundances, specifying the den-

sity dependence function:

gs (t)x
g(s (t)) p . (13)x

1 " bs (t)x

This Beverton-Holt functional form is commonly used to

describe postsettlement density dependence, where, be-

cause of larvae-on-larvae competition, only a fraction of

larvae survive to recruit to the adult population (Hilborn

and Walters 1992). Here, g is the density-independent

parameter quantifying the fraction of larvae that survive

settlement, and b is the parameter controlling the intensity

of density dependence. With this function, we are able to

specify the analytical approximation for the expected num-

ber of recruits at a given subpopulation (eq. [12]). First,
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the second derivative of the expected number of larval

settlers is

2gb
′′g (E(s )) p . (14)x 3[1 " bE(s )]x

Then, using the Taylor expansion, the expected number

of recruits is approximated as

gE(s ) b Var (s )x x
E(r ) ≈ 1 ! . (15)x 2{ }1 " bE(s ) E(s )[1 " bE(s )]x x x

Again, similar to the general case (eq. [12]), the temporal

variance in larval settlement ( ) decreases recruit-Var (s )x

ment and hence also equilibrium abundances. If it were

0, equation (15) would reduce to the deterministic case,

equation (13).

Both the expectation and the variance in settlement—

and , respectively—will be affected by the tem-E(s ) Var (s )x x

poral statistics of adult abundances and potential connec-

tivity. In order to understand which drives the changes in

equilibrium abundances, we made a further approxima-

tion that assumed that adult abundances were constant

over space (x) and time (t), or . Using the rulesn̄

, where a is a constant, andE(aX) p aE(X) Var (X) p

, we approximated the expectation and var-2 2E(X ) ! E(X)

iance in settlement using the statistics of the potential

connectivity alone:

¯E(s ) ≈ nf E D ,!x xy( )
y

2 2¯Var (s ) ≈ n f Var D , (16)!x xy( )
y

where expectations and variances are over time.

Numerical simulations of the density-dependent model

were made using realistic parameters. We set g equal to

1, m equal to 0.2, and the carrying capacity (K) equal to

100 (our results are insensitive to this value). Since in-

creasing f increases the number of settlers per adult, it also

increases the fraction of settlers that must be killed in the

density-dependent recruitment phase in order to ensure

that total recruitment matches adult mortality at equilib-

rium. Thus, we varied the fecundity ( , 2, 5) tof p 0.5

create different levels of density dependence, solving for

b, the density dependence parameter, given the relation-

ship , which comes from a non-b p (1/K)[(g/m) ! (1/f )]

spatial version of our model. Density dependence was

measured using the compensation ratio (Goodyear 1980),

defined as the ratio of the per capita settler survival rate

at very low densities to the per capita settler survival rates

at the highest possible density of settlers. Fecundities were

chosen to produce realistic compensation ratios, ranging

from 2.5 to 6 (varying with pelagic larval duration and

spawning season; Bode et al. 2006; California Department

of Fish and Game 2009).

Dynamics when abundant were simulated as follows.

Initially, for each species, deterministic metapopulation

dynamics were iterated forward in time using the annual

average potential connectivity ( ) until subpopulationDxy

abundances reached equilibrium. Then, stochastic meta-

population dynamics were explored by substituting the

average potential connectivity with randomly drawn an-

nual potential connectivity matrices (Dxy(1996 ... 2002)).

Stochastic dynamics were iterated forward in time until

subpopulation abundances reached stationary distribu-

tions. This was identified by inspecting the variance in the

mean of each subpopulation’s trajectory as the model pro-

gressed. Stationarity was achieved when all subpopulation

abundance means, calculated over a 75-year window, con-

verged to particular values (i.e., as standard errors dimin-

ished). We then compared deterministic equilibrium

abundances with expectations of the stochastic stationary

distributions for both the whole metapopulation and each

subpopulation.

Simulation Results

For every species, the coefficient of variation (CV) in time

for each potential connection (Dxy) was calculated. Taking

the mean CV over all x, y pairs then describes how much,

in general, that species’ potential connectivity varies with

time. Mean CV values ranged from 0.9 to 1.7, with most

values above 1 (fig. 2a). This highlights that the annual

variability in potential connectivity typically exceeds its

expectation (Siegel et al. 2008; Mitarai et al. 2009). Further,

the mean CV varied with the spawning period and pelagic

larval duration (fig. 2a). The greatest mean CV was found

in spring spawning periods (April–June) and at high pe-

lagic larval durations (150 days). This spawning period

coincides with the upwelling season in the Southern Cal-

ifornia Bight (Mitarai et al. 2009), revealing the depen-

dence of potential connectivity’s temporal dynamics on

the underlying ocean circulation of the Southern Califor-

nia Bight. Another area of parameter space with high mean

CV is at low pelagic larval durations across all spawning

periods.

Across species, stochastic potential connectivity reduced

metapopulation growth rates when rare relative to deter-

ministic dynamics (fig. 2b). Values of ls, the stochastic

growth rate, were 10%–30% lower than l1, the determin-

istic growth rate. The difference between ls and l1 varied

with spawning period and pelagic larval duration, with the

largest drop in growth rates occurring during the spring

months (February–May) and at high pelagic larval dura-

tions (150 days). This area corresponds with the spawning
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Figure 2: a, Mean across pairs of subpopulations of the coefficient of variation (CV) for the temporal variability in potential connectivity,
for all combinations of pelagic larval duration (PLD; X-axis) and spawning month (Y-axis). b, Difference between deterministic (l1) and
stochastic (ls) metapopulation growth rate when rare. The black and white crosses identify the pelagic larval duration and spawning months
of kelp bass (KB) and sheephead (SH), respectively. c, Relationship between ls derived from simulation and through Tuljapurkar’s ap-
proximation (eqq. [7], [8]; ).2R p 0.92

periods and pelagic larval durations that have the greatest

variability in potential connectivity (fig. 2a). Although spe-

cies with low pelagic larval durations have large variability

in potential connectivity, they did not show large changes

in growth rates when rare, implying that these species have

connections with low sensitivities (i.e., Zxy in eq. [8]).

The Tuljapurkar approximation (eqq. [7], [8]) showed

strong correspondence with simulation results (fig. 2c),

even though it was designed for systems with small

variance (Tuljapurkar and Orzack 1980). It is therefore a

useful tool to further explore which features reduced meta-

population growth rates. We made a further approxima-

tion, where off-diagonal elements of the covariance/vari-

ance matrix were set to 0. This isolates the explanatory

power of variance elements only and ignores the synchrony

(i.e., positive covariances) between connections. This re-

duced Tuljapurkar approximation did not reproduce the

simulated results or show any correspondence with the

original approximation, which included covariance ele-

ments (see fig. A2, available online). This confirms that

the temporal covariances between potential connections

are key to the reduction in metapopulation growth rates

when rare.

values identify the contribution of each subpopu-2txy

lation connection to the reduction in metapopulation

growth rates when rare. The top 1% of for sheephead2txy

and kelpbass (137 connections in total) are plotted in fig-

ure 3a and 3b, respectively. Although only a fraction of

the total number of connections, these few contributed to

15% and 61% of t2 for sheephead and kelpbass, respec-

tively. This highlights that only a few regional connections

are responsible for the drop in metapopulation growth

rates when rare.

Clustering the weighted variance/covariance matrix (eq.

[8]) revealed geographically distinct groups of subpopu-

lation connections. In figure 3c and 3d, we show two pairs

of groups for both our modeled kelp bass and sheephead

species, which contribute to a large portion of t2 and the

reduction in the metapopulation growth rate when rare.

These groups are ordered on the basis of the number of

connections in each group (first number in legend), and

each connection is colored by its group rank value. The2txy

second number in the legend is normalized by2
! txygroup

t2. This value identifies the fractional contribution of a

particular group to t2. Between species, these connection

groups correspond to different geographically regions.

Sheephead connections are groups around the islands in

the south of the domain, whereas kelp bass connections

are groups along the mainland. This highlights the large

differences in the spatial and temporal properties of each

species’ potential connectivity, a result of the different pe-

lagic larval durations and spawning periods (see the crosses

in fig. 2b), and oceanographic currents they experience

while dispersing. These connection groups also correspond

to the geographic distribution of the top 1% of subpop-

ulation connections (fig. 3a, 3b), indicating that these

groups are important to the reduction in metapopulation

growth rates when rare.

Temporal variability in potential connectivity also re-

duced metapopulation equilibrium abundances, with sta-

tionary distribution expectations lower by ∼5%–40% (fig.

4; eq. [15]). Abundances were reduced most during the



Figure 3: Top 1% of subpopulation connections (137 in total) contributing to t2, colored by their rank value, for our simulated sheephead2txy

(a; 60-day pelagic larval duration [PLD], spring spawning) and kelp bass (b; 30-day PLD, fall spawning) species. We omit the exact t2

values and use the colors merely to identify the different connections. c–f, Groups of subpopulation connections derived from their weighted
temporal covariances (eq. [8]) for sheephead (c, e; 60-day PLD, spring spawning) and kelp bass (d–f; 30-day PLD, fall spawning). Each
connection is colored by its rank value for its group; larger values are red, smaller values are blue. Panels are labeled by three numbers:2txy

(i) the number of edges in that group, (ii) the fractional contribution of a given groups’ edges to t2 (i.e., ), and (iii) the average2
! txygroup

value. Because values are positive, these groups reduce the metapopulation growth rate when rare.2 2t ! txy xygroup
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Figure 4: a, Fractional difference between the deterministic meta-
population equilibrium abundance and the stochastic stationary dis-
tribution expectation for fecundity p 2. Values are positive, indi-
cating a drop in abundances. Values vary with pelagic larval duration
(PLD; X-axis) and spawning period (Y-axis). b, c, Fractional drop in
subpopulation equilibrium abundances that result from the sto-
chasticity of potential connectivity for fecundity p 2 for our sim-
ulated kelp bass and sheephead species, respectively. Large values
identify subpopulations that are most affected by stochastic potential

connectivity. In general, sheephead subpopulation abundances re-
duce more than those of kelp bass, with the greatest change observed
in the Santa Barbara Channel (SB-Channel). In contrast, kelp bass
subpopulations on San Clemente island, in the south, drop the most.

spring spawning months (February–May) and at high pe-

lagic larval durations (150 days). This matches the spawn-

ing periods and pelagic larval durations that have the

greatest variability in potential connectivity (fig. 2a). Spe-

cies with low pelagic larval durations also have large var-

iability in potential connectivity (fig. 2a), but they did not

show large changes in equilibrium abundances. This in-

dicates that for these species, even though there is vari-

ability in potential connectivity, there is little variability in

the number of settlers at a given subpopulation. This oc-

curs because at low pelagic larval durations, a given sub-

population receives settlers from numerous neighboring

source subpopulations; hence, there is redundancy be-

tween connections. This redundancy mitigates the impact

of temporal variability in potential connections.

The drop in equilibrium metapopulation abundances

varied with the strength of density dependence, which was

modulated by the fecundity parameter (see fig. A3, avail-

able online). We found that at higher fecundities (stronger

density dependence), the difference between deterministic

and stochastic outcomes was smaller than at lower fecun-

dities (weaker density dependence). This is expected from

analyzing equation (16); larger fecundities lead to higher

levels of larval settlement ( ), which then reduces theE(s )x

impact of settlement variability, because is in theE(s )x

denominator of the term in parentheses. Therefore, the-

oretically there exists a high level of density dependence

(i.e., large f), where the difference between stochastic and

deterministic outcomes is negligible. However, we chose

fecundity values that created realistic levels of density de-

pendence (values were taken from California Department

of Fish and Game 2009; compensation ratios from 2.5 to

6), and this theoretical limit is likely far beyond what is

actually experienced in nature (Bode et al. 2006).

Subpopulations responsible for the drop in metapop-

ulation abundance were heterogeneously distributed

throughout the Southern California Bight, with large dif-

ferences between species (fig. 4b, 4c). Simulated kelp bass

subpopulations showed greatest reductions in the south

of the Southern California Bight (fig. 4b), whereas sheep-

head reductions were found mainly in the north of the

domain (fig. 4c). Furthermore, sheephead subpopulations

showed greater reductions in general (by a factor of 2 for

). This again highlights the interspecific variabilityf p 2

in nearshore species’ potential connectivity and metapop-

ulation dynamics.

The analytical approximation for the expected number



108 The American Naturalist

Figure 5: Relationships between various simulated and approxi-
mated metapopulation statistics at a medium level of density de-
pendence (fecundity p 2; for the relationships under low and high

levels of density dependence, see fig. A4, available online). a, Expected
number of recruits (eq. [15]; linear regression , slope p

2R p 0.88
0.87, intercept p 0.02). b, Expected number of settlers ( ; eq.E(s )x

[16]; linear regression , slope p 1.07, intercept p 0.08).2R p 0.96
c, Variance in the number of settlers ( ; eq. [16]; linear re-Var (s )x

gression , slope p 1.28, intercept p 0.19). Gray circles2R p 0.88
identify the relationship for all species and all subpopulations, and
red and green circles highlight the relationship for kelp bass and
sheephead, respectively. The blue dashed line identifies the one-to-
one line.

of recruits at a given subpopulation (eq. [15]) showed

strong correspondence with simulation results (fig. 5a).

This indicates that the variance in settlement is indeed

responsible for the drop in equilibrium abundances. The

further approximations for the expectation and variance

in settlement, which assumed that adult abundances were

constant through space and time (eq. [16]), also showed

strong correspondence with simulated results (fig. 5b, 5c).

These strong relationships confirm that it is the temporal

variability in potential connectivity that drives the reduc-

tions in equilibrium adult abundances. The correlations

within species (e.g., fig. 5, red and green circles) are stron-

ger than when aggregated over all species (all gray circles).

For the expectation and variance in settlement, the average

within-species R2 values were 0.99 and 0.98, respectively.

Therefore, the spread is explained by the variation among

species in the slope of the relationship. These relationships

were maintained as the strength of density dependence

was varied (see fig. A4, available online).

The further approximations for the expectation and var-

iance in settlement showed a bias to larger values. The

bias indicates that the covariances between adult abun-

dances and potential connections, which were ignored in

the further approximation, are negative. Further, the set-

tlement distributions through time were highly nonnor-

mal, and hence the truncation of higher moments in the

Taylor expansion contributed to the bias. However, be-

cause the overall relationships are so strong, the bias does

not invalidate the result: the temporal variability of po-

tential connectivity is the principal factor creating differ-

ences between deterministic and stochastic outcomes.

Discussion

Through analyzing a simple metapopulation model, we

showed that temporal variability in potential connectivity

alters both metapopulation growth rates when a species is

rare and equilibrium abundances. We further showed that

for a specific case—nearshore marine species in the South-

ern California Bight—these changes are negative, with de-

creases in both demographic quantities. Relative to deter-

ministic outcomes, where connectivity is constant through
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time, metapopulation growth rates when rare dropped by

∼10%–30% and equilibrium abundances dropped by

∼5%–40%, depending on the species. Metapopulation dy-

namics when rare and when abundant were both well

described by the Tuljapurkar (eqq. [7], [8]) and Taylor

expansion (eq. [15]) approximations, respectively. These

approximations revealed that it is covariances between

connections that drive changes in growth rates when rare

and that the variability in larval settlement drives changes

in equilibrium abundances. These changes are not small,

indicating that this form of environmental stochasticity

strongly influences nearshore metapopulation dynamics,

and as a result, it is an important consideration for anyone

seeking to understand and quantify the demographics of

nearshore marine species.

The Southern California Bight can also be divided into

geographically distinct regions on the basis of the sub-

population connection covariances and sensitivities of par-

ticular species (i.e., the weighted covariance matrix in Tul-

japurkar’s approximation; eqq. [7], [8]; fig. 3c–3f). These

regions varied in size and contribution to the reduction

in growth rates when rare and varied greatly between spe-

cies. This is a novel source of spatially explicit information

for fisheries managers and conservation scientists. For ex-

ample, these regions identify areas that would contribute

differentially to the recovery of an overexploited stock.

One could go further and analyze the components of Tul-

japurkar’s approximation and, for example, identify

regions with synchronized connections. Synchrony in

metapopulations has been studied extensively because it

has a strong effect on persistence. However, most attention

has been paid to the synchronizing effect of temporally

correlated disturbances (e.g., Day and Possingham 1995;

Johst and Drechsler 2003; Elkin and Possingham 2008).

Our results show that in nearshore systems, there is an-

other force promoting population synchrony: the seascape

itself, through the effect of ocean circulation on potential

connectivity.

These results highlight the influence of potential con-

nectivity’s temporal variability on metapopulation dynam-

ics. Yet, this form of environmental stochasticity is rarely

included in fisheries or conservation analyses (Bousquet

et al. 2008; Aiken and Navarrete 2011). For example, sur-

plus production models are a traditional first analytical

tool for stock assessment (Jensen 2002). A key quantity

typically addressed by these models is the maximum sus-

tainable yield, which is defined as the maximal possible

catch such that the population biomass can continue to

regenerate (Hilborn and Walters 1992). The maximum

sustainable yield remains a key parameter in many stock

assessment and harvest strategy models, and yet it is typ-

ically found using deterministic calculations (Bousquet et

al. 2008). Stochastic potential connectivity is exactly the

type of time-varying process that will affect determinations

of maximum sustainable yield and any management strat-

egy derived from it. Given the large changes in metapop-

ulation growth rates when rare and equilibrium abun-

dances, incorporating this source of stochasticity into

surplus production models will be a key step to generating

more accurate fisheries management plans.

Protected areas are a popular tool for conservation and

management on land and in the sea (Possingham et al.

2000; Lubchenco et al. 2003; Roberts et al. 2003; Botsford

et al. 2009; California Department of Fish and Game

2009). Metapopulation analyses contribute to the design

of protected areas by identifying critical habitat patches.

For example, there are many methods for identifying the

location of hub subpopulations, those that act as migratory

focal points (Ovaskainen and Hanski 2003; Bodin and

Saura 2010; Jacobi and Jonsson 2011; Watson et al. 2011b),

or source subpopulations, those that produce the most

new recruits (Bode et al. 2006). These critical subpopu-

lations contribute to metapopulation persistence and are

ideal candidates for protection from disturbance (Ovas-

kainen and Hanski 2003). What, then, does it mean that

a subpopulation is a good source or hub one year but not

the next? We do not attempt to answer this question here,

but the theory borrowed from stage-structured modeling

again lends insight. In these models, the stochastic repro-

ductive value (Caswell 2001) identifies the contribution of

each stage to the stochastic growth rate of the stage-struc-

tured population (i.e., ls). In our setting, this metric would

quantify the contribution of a given subpopulation to the

stochastic metapopulation growth rate, precisely what is

needed to identify critical regions for protection in a sto-

chastic world.

Stochastic potential connectivity can also be used to

inform management by identifying critical connections. In

our analysis of the Southern California Bight, we quan-

tified deterministic sensitivities (eq. [8]; ) and the!l /!C1 xy

contribution of each subpopulation connection to the dif-

ference in deterministic and stochastic growth rates when

rare (eq. [8]; ). Going further, one could calculate sto-2txy

chastic sensitivities (i.e., !ls with respect to either the mean

or the variance of Cxy; Tuljapurkar et al. 2003), which

identify those connections that are most important to the

stochastic metapopulation growth rate when rare (ls; Cas-

well 2001). Protecting these critical connections is another

way to secure metapopulation growth rates when rare and

offers an important management alternative to protecting

critical subpopulations (Hastings and Botsford 2006).

Temporal variability in connectivity is not the only

source of environmental stochasticity for natural systems

(Lande and Orzack 1988; Aiken and Navarrete 2011;

Gravel et al. 2011; Shelton and Mangel 2011). Another is

the amount of suitable habitat. For example, in the South-
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ern California Bight, kelp forests are the primary habitat

for nearshore marine species (Steneck et al. 2002; Graham

et al. 2007), with kelp forest size linked to larval production

and the strength of postsettlement density dependence

(White and Caselle 2008). Kelp forests are known to be

ephemeral, varying seasonally with winter storms and

summer regrowth. For example, Cavanaugh et al. (2011)

showed that at regional scales (∼100 km) in the Southern

California Bight, giant kelp biomass has a temporal co-

efficient of variation ∼1, yet in our analysis, we assumed

that suitable habitat was constant through time and uni-

formly distributed. Assessing the impact of this additional

source of environmental stochasticity will be another im-

portant step toward making more accurate determinations

of the population dynamics of nearshore marine species.

Marine systems are known to have large fluctuations in

the recruitment of new individuals (Shelton and Mangel

2011), and it remains a challenge to identify the most

influential forces causing populations to fluctuate in

abundance.

A limitation to our numerical approach is the short 7-

year connectivity time series we used. This is not enough

to capture decadal periodicities in the Southern California

Bight’s circulation, for example, those that result from the

Pacific Decadal Oscillation or the North Pacific Gyre Os-

cillation (Di Lorenzo et al. 2008). These oceanographic

features may produce time-varying deterministic dynam-

ics, in contrast to the purely time-varying stochastic dy-

namics we have addressed here. Indeed, periodic forcing

in marine environments may demand a whole different

class of analyses (e.g., Floquet theory; Klausmeier 2008).

Another limitation is that we assumed that larvae are un-

able to alter their own dispersal and that passive Lagrang-

ian particles simulate their dispersal. Considerable evi-

dence suggests that larval behavior, such as vertical

mobility or late-stage homing, can significantly alter the

spatial patterns of connectivity (Leis 2007; Pfeiffer-Herbert

et al. 2007). However, while the details of the spatial pat-

terns of potential connectivity might be affected by be-

havior, the relative importance of stochasticity probably

will not. Potential connectivity will vary in time, and de-

terministic analyses that ignore this source of environ-

mental stochasticity will overestimate growth rates and

abundances.

Regardless of these potential limitations, our general

conclusion holds: for certain nearshore marine species, the

temporal variance and covariances in dispersal probabil-

ities can be just as important as the spatial patterns they

describe. Hence, using time-averaged data or indeed data

from just 1 year’s worth of simulation, which is common,

is ill advised. This reasoning is not just applicable to the

nearshore for there are a number of other systems where

potential connectivity may have large temporal variability,

for example, riverine (e.g., Muneepeerakul et al. 2008),

wind-dispersed (e.g., Drake and Farrow 1989), and so-

cioecological systems (e.g., Bossenbroek et al. 2001). Sim-

ilar to nearshore metapopulations, modeling results for

these systems will likely be inaccurate if potential con-

nectivity is assumed constant.
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Spotted sunfish Enneacanthus guttatus. “So purely a mud-dwelling fish are they that we have frequently found them in water so shallow,
that they marked the mud with their pectoral fins in swimming, preferring such shallow water, with mud, to that which was deeper, to
which they had access, because it was over a stony bed.” From “Mud-Loving Fishes” by Charles C. Abbott (American Naturalist, 1870, 4:
385–391).


