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Abstract

Empirical evidence for large-scale abrupt changes in ecosystems such as lakes and

vegetation of semi-arid regions is growing. Such changes, called regime shifts, can lead to

degradation of ecological services. We study simple ecological models that show a

catastrophic transition as a control parameter is varied and propose a novel early warning

signal that exploits two ubiquitous features of ecological systems: nonlinearity and large

external fluctuations. Either reduced resilience or increased external fluctuations can tip

ecosystems to an alternative stable state. It is shown that changes in asymmetry in the

distribution of time series data, quantified by changing skewness, is a model-independent

and reliable early warning signal for both routes to regime shifts. Furthermore, using

model simulations that mimic field measurements and a simple analysis of real data from

abrupt climate change in the Sahara, we study the feasibility of skewness calculations

using data available from routine monitoring.
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I N T R O D U C T I O N

Studies indicate that ecological systems occasionally undergo

rapid shifts from one stable state to an alternative stable

state with dramatically different properties, often accompa-

nied by degradation of ecosystem services and attendant

economic losses. Such abrupt transitions that occur without

large external shocks but only with gradual changes in

external conditions have been termed �catastrophic regime

shifts� (Scheffer et al. 2001). Well-studied examples of such

drastic changes include lake eutrophication, marine ecosys-

tems, changes in states of coral reefs, collapse of vegetation

in semi-arid ecosystems, preferential states of soil moisture

and trophic cascades (Knowlton 1992; Steele 1996; Hare &

Mantua 2000; Scheffer et al. 2001; D’Odorico & Porporato

2004; Schroder et al. 2005; Daskalov et al. 2007; Narisma

et al. 2007). Simple mechanistic models have provided useful

insights into both feedback mechanisms that stabilize

alternative stable states and the occurrence of critical

thresholds beyond which regime shifts occur. However, to

translate this theoretical insight into practically useful

predictions we must calibrate the model parameters. This

needs a detailed understanding of ecological processes, a

formidable task beyond our current abilities. It is therefore

important to devise model-independent indicators that can

be obtained from data collected with routine monitoring

and use them as warning signals for impending catastrophic

transitions. Such warning signals can have enormous impact

on managing ecosystems by identifying the threatened

systems permitting initiation of suitable management strat-

egies.

Several indicators that can potentially determine the

proximity to a transition point have been recently suggested

in simple models. These models exhibit bifurcations, i.e.

sudden changes in the topology of the long-time behaviour,

such as the number of possible stable states when small,

smooth changes occur in a parameter value. Kleinen et al.

(2003) consider the power spectrum of the dynamical

variable, i.e. its intensity (squared amplitude) per unit

frequency interval and show that there is a �reddening� near

the threshold. Increases in the system variability, i.e. the

amplitude of oscillations, near a bifurcation point have

been observed in variety of ecological models (Strogatz

1994; van Nes & Scheffer 2003; Obórny et al. 2005;

Carpenter & Brock 2006). In a spatial population model,

Obórny et al. (2005) found that even as the average density
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decreases as the threshold is approached its variance over a

large spatial region increases in a scale-invariant manner

and this can serve as an indicator of a potential species

extinction on large spatial scales. In addition, several

indicators based on patch formation in spatially extended

models have been suggested (Rietkerk et al. 2004; Obórny

et al. 2005; Kéfi et al. 2007). In a relatively complex, but

non-spatial model of lake eutrophication, Carpenter &

Brock (2006) showed that increases in variance near a

bifurcation can be observed in the presence of exogenous

noise. Reddened spectrum and the rise in the variance near

a threshold arise from the flattening of the potential (often

referred to as the landscape picture or the ball in a cup

picture; Scheffer et al. 2001) that determines the dynamics

as the bifurcation point is approached in one-variable

models. Additionally, this flattening leads to a substantial

reduction in the recovery rate of the system from a

perturbation. This is a generic phenomenon observed near

all threshold points and is related to �critical slowing down�
in physics literature (Ma 1976; Strogatz 1994). Signatures of

critical slowing down near a threshold have been reported

in ecological model systems as well (Wissel 1984; Rietkerk

et al. 1996; Gandhi et al. 1998; Held & Kleinen 2004; van

Nes & Sheffer 2007). Various studies have suggested that

increase in the recovery time can be used as an indicator of

a nearby transition (Wissel 1984; Held & Kleinen 2004; van

Nes & Sheffer 2007).

As one approaches a regime shift, the landscape picture

of the ecosystem dynamics exhibits a pronounced asymme-

try around the stable state, in addition to flattening of the

potential landscape, i.e. decrease in curvature. In contrast to

the flattening of the landscape which is obtained by a linear

analysis, the asymmetry arises due to nonlinear effects and

hence presents a new way of devising an early warning

signal. In this paper, we exploit the impact of large external

fluctuations and asymmetry in the landscape on the

dynamics of the ecosystem and show that a changing

skewness (a measure of the changing asymmetry) of the time

series probability distribution can be an effective early

warning signal of a regime shift. In general, regime shifts can

occur either due to the approach to a threshold point as an

external parameter is varied (studied traditionally in the

theory of dynamical systems and in various ecological

studies mentioned above) or due to increased width of the

external noise distribution (Scheffer et al. 2001; Guttal &

Jayaprakash 2007). Whereas the existing set of indicators can

serve as warning signals typically only for the former

scenario, it is shown that a changing skewness is a promising

indicator for both routes to regime shift. We show these

results demonstrating the utility of skewness as an early

warning signal by studying different model systems includ-

ing a parameterized lake eutrophication model where we

simulate a plausible scenario for collection of field data and

show that a trend of changing skewness can be detected

several years in advance of an impending regime shift. We

provide an intuitive understanding of these results and

discuss the issues related to the feasibility of computing

skewness in empirical data sets by analysing data from

climatic shift in the Sahara and total phosphorus concen-

tration data from a tributary to Lake Erie.

M O D E L S A N D M E T H O D S

We consider three well-studied ecological model systems

showing alternative stable states and regime shifts: two of

vegetation collapse in semi-arid regions and another, a

parameterized model of lake eutrophication (Noy-Meir

1975; May 1977; Carpenter 2005; Guttal & Jayaprakash

2007). Table 1 lists the models along with brief definitions

of the various symbols used. A short description of the

models and the ecological motivation for various terms is

presented in the Appendix S1 in Supplementary Material. A

common aspect of all the models is that they show a regime

shift via a saddle node bifurcation in which a stable fixed

point disappears by merging with an unstable fixed point as

we vary one of the model parameters. Saddle node

bifurcations are widely employed to model regime shifts in

ecology. These three models, however, differ in the nature

of the noise and in the details of ecological feedback

mechanisms. This allows us to check the utility of

asymmetric indicator in different contexts and at different

levels of modelling approximations.

We do a variety of numerical and analytical calculations to

establish the changing skewness as an early warning signal.

The stochastic differential equations (eqns T1–T6) are

solved numerically by a simple Euler algorithm which is first

order accurate in time assuming the rules of Ito calculus

(Risken 1984; Gardiner 2003). The solution for a particular

time sequence of noise values obtained by our numerical

simulation corresponds to the time series data of the

ecological variable collected in field. Simulations were

performed using the MATLAB and C++.

The skewness, denoted by c, is a dimensionless measure

of the degree of asymmetry of a probability distribution.

Given a probability distribution P(x), with mean l and

standard deviation r, the skewness is defined as the scaled

third moment about the mean:

c ¼
R
ðx � lÞ3PðxÞdx

r3
ð1Þ

The skewness vanishes for distribution symmetric about the

mean and is positive or negative for an asymmetric distri-

bution with a tail above or below the mean respectively. For

the vegetation models, we calculate skewness for a time

series of length 2000 time units. We then average the

skewness over 100 such realizations.
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In all of our calculations, we choose the parameters so

that the skewness is zero when the system is far from a

regime shift. Thus we choose the magnitude of the skewness

(for a single time series data) or the magnitude of the

average skewness (for repeated simulations of time series

data) denoted by | < c > |, as a measure of proximity to a

Table 1 Description of models and parameters

Models and/or parameters Description and/or values

dV

dt
¼ rV 1�V

K

� �
� c

V 2

V 2 þV 2
0

þ rV gV ðtÞ ðT 1Þ Ref: Noy-Meir (1975), May (1977)

V Vegetation biomass; the dynamical variable

r Growth rate, r ¼ 1

K Carrying capacity, K ¼ 10

c Maximum grazing rate; the control parameter (range: 1–3)

V0 Biomass at which the grazing rate is half maximum, V0 ¼ 1

rV SD of external noise (range: 0–1)

gV(t) Uncorrelated Gaussian noise, i.e. ÆgV(t)gV(t ¢ )æ ¼ d(t)t ¢ )

dw

dt
¼ R � aw � kwB þ rwgwðtÞ ðT 2Þ Ref: Guttal & Jayaprakash (2007)

dB

dt
¼ qwB 1� B

wBc

� �
� l

B

B þ B0

þ rBgBðtÞ ðT 3Þ Coupled dynamics of water and vegetation

B Vegetation biomass; dynamic variable of interest

w Soil water

R Rainfall rate; control parameter (range: 0–3)

a Rate of soil water loss; a ¼ 1.0

k Consumption rate of water by biomass, k ¼ 0.12

rw SD of fluctuations in rainfall rate R (range: 0–1)

q Maximum biomass growth rate (for w ¼ 1), q ¼ 1

Bc Carrying capacity of biomass (for w ¼ 1), Bc ¼ 10

l Maximum grazing rate, l ¼ 2

B0 Biomass at which the grazing rate is half maximum, B0 ¼ 1

rB SD of external noise (range: 0–1)

gw(t),gB(t) Uncorrelated Gaussian noise, i.e. Ægi(t )gj(t ¢ )æ ¼ dijd(t)t ¢ )

where i, j ¼ w or B.
dP

dt
¼ l � ðs þ hÞP þ rMRðPÞ þ rrgrðtÞrMRðPÞ þ rlgl ðT 4Þ Ref: Carpenter & Brock (2006)

dM

dt
¼ sP � bM � rMRðPÞ � rrgrðtÞrMRðPÞ ðT 5Þ Lake eutrophication model

RðPÞ ¼ Pq

P
q
0 þ Pq

ðT 6Þ Recycling term

P Phosphorus density in water; g m)2

M Phosphorus density in sediments; g m)2

l Phosphorus loading rate; control parameter (range:

0.5–1.0 g m)2 year)1)

s Phosphorus sink rate, s ¼ 0.7 year)1

h Outflow rate, h ¼ 0.15 year)1

r Recycling rate, r ¼ 0.019 year)1

b Permanent burial rate, b ¼ 0.001 year)1

P0 Phosphorus concentration at which recycling rate is

half maximum; P0 ¼ 2.4 g m)2

q Hill coefficient, q ¼ 8

rl SD of fluctuations in loading term l; rl ¼ 0.01

rr SD of fluctuations in recycling rate r; rr ¼ 0.01

gl(t),gr(t) Uncorrelated Gaussian noise, i.e. Ægi(t )gj (t ¢ )æ ¼ dijd(t)t ¢ )

where i, j ¼ l or r
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regime shift and hence we show that an increase in the

magnitude of skewness is a potential indicator of regime

shift. More generally, however, it is the change in skewness

which acts as an early warning signal of an impending

ecological transition. Depending on the ecological system

under consideration, the change can be from zero skewness

to either positive or negative values or from one sign of

skewness to the other.

We explain the origin of asymmetry in one-variable

stochastic models using the concept of effective potential.

Consider a model of an ecosystem governed by the

stochastic differential equation _x ¼ f ðxÞ þ gðxÞgðtÞ
where g(t) is an uncorrelated Gaussian noise with standard

deviation of r. The intuitive ball in a potential landscape

picture can be rendered mathematically precise by defining

the effective potential U(x) in terms of f and g. The steady-

state time series distribution is then given by

PsðxÞ / expð� 2
r2 U ðxÞÞ. These results are obtained by

solving the Fokker–Planck equation for the evolution of

probability density of the dynamical variable x (see

Appendix S2 and Horsthemke & Lefever (1984)). For

May’s model, we have calculated the skewness by

performing the integration (eqn 1) in the region R ¼
(xl, xm) around the stable fixed point x* such that xl ¼
x*)5rV and xr is determined by solving the equation

Ps(xr) ¼ Ps(xl). We compare this analytical result with the

results of numerical simulations. No such potential U(x)

can be obtained for the two variable models we have

studied and hence they were studied through numerical

simulation alone.

R E S U L T S

We begin this section by showing that qualitative changes in

the shape of the distribution are observed in the time series

of the state variable as one approaches a threshold point.

We illustrate this using the results of numerical simulations

of the one-variable vegetation model of eqn T1. The

bifurcation diagram for the deterministic limit of the model

is shown in Fig. 1. As the maximum grazing rate c is

increased the system goes from a (stable) high-density

vegetated state, to a bistable region with coexisting bare and

vegetated states for 1.8 < c < 2.6. For c > c* ¼ 2.6 the

system collapses to a single low-density vegetated state. We

are interested in predicting the vegetation collapse that

occurs as we approach the bifurcation at c* ¼ 2.6. So we

consider values of c < c* with the system in the desirable

state of high vegetation biomass and move towards the

bifurcation threshold by varying c keeping the strength of

the external noise (i.e. its variance) constant. The plots of

time series of the state variable, the vegetation biomass

density, and the corresponding probability distributions are

shown in Fig. 1. The distribution is symmetric at c ¼ 1.5 far

from the threshold. As the threshold value is approached,

the distribution develops a visible asymmetric tail. For this

specific model, substantial asymmetry is observed even at

c ¼ 2.1, relatively far away from the bifurcation ((c*)c)/

c*»20%).

In the rest of this section we present detailed results

exploiting this asymmetry to find a warning signal of an

impending regime shift. The calculated skewness increases

Figure 1 The plot at the bottom of the

panel shows the bifurcation diagram for

May’s single-variable model (eqn T1) of

vegetation collapse due to increase in graz-

ing. The thick lines indicate stable ecological

states whereas the dotted line represents the

unstable equilibria. Four subplots at the top

of the panel show representative numerical

simulation results for the time series and its

probability density (i.e. histogram) when the

ecosystem is far from and close to the

threshold of collapse (c* ¼ 2.6). The asym-

metry in the distribution that is clearly visible

underlies the indicator of regime shift

proposed in the paper. Simulations were

started with the vegetation in the high

density state. We choose rV ¼ 0.75, a time

step of dt ¼ 0.01 for numerical integration

and rest of the parameters are as in Table 1.
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in the two routes to a regime shift discussed in the

introduction: (i) approaching the ecological threshold by

changing a parameter with fixed external noise distribution

and (ii) increasing the variance of the external noise holding

the other parameters fixed so that in the deterministic limit

the system is far from the bifurcation. By studying a

plausible field measurement scenario as simulated in the lake

eutrophication model parameterized for Lake Mendota

(Carpenter 2005), we show that changing skewness is a

useful measure of proximity to a regime shift. We report on

our analysis of real data sets of sediment in the Sahara and

total phosphorus concentration from a tributary to Lake

Erie.

Skewness as a measure of asymmetry and an indicator
of a regime shift

We compute the skewness from the time series for the

model of eqn T1. In Fig. 2, we plot the absolute value of the

average skewness in the two scenarios corresponding to

different routes to a regime shift. In both the plots, the solid

line represents the analytical calculations obtained by a

direct evaluation of skewness of the corresponding station-

ary probability distributions. The open circles represent the

average values of skewness obtained by numerical simula-

tions.

In the first scenario the variance of the external noise is

held constant and the grazing rate c is varied. The skewness

of the time series distribution as a function of the

bifurcation parameter c, shown in Fig. 2a, increases slowly

up to c ¼ 2.0. However, as the grazing rate is tuned closer to

the threshold value from c ¼ 2.0 to 2.6, the skewness

increases substantially. Thus, an increase in skewness

foreshadows the vegetation collapse and serves as an early

warning signal of the regime shift.

In the second route, increasing the external noise by

increasing the standard deviation, r, of the Gaussian noise

distribution, leads to a regime shift even if the system is far

from the bifurcation (Guttal & Jayaprakash 2007). In Fig.

2b, we plot the skewness, with a fixed grazing rate at c ¼
2.0, as r is varied. Clearly, the skewness increases as the

noise level increases. This is an intrinsic dynamical effect as

the noise distribution is Gaussian and symmetric. We do

not show data for r > 0.8 in Fig. 2b because the

significant reduction in the average collapse time to low-

density vegetation precludes an accurate estimate of the

skewness. We have studied this more carefully as follows:

Starting from the vegetated state the system will eventually

make a transition to the bare state in the presence of

Gaussian noise. In a random process with a given initial

condition the first occurrence of an event such as reaching

a specific value is known as the �first passage time�
(Gardiner 2003; Drury 2007). The mean first passage time

in our problem is the average time interval over which the

system remains in the vegetated state. In all of our

calculations if the mean first passage time is smaller than a

certain length of time interval we have chosen (2000 time

units for May’s model), we do not compute skewness. For

details on the mean first passage time calculations, see

Appendix S3.

We have checked that the features reported above hold

for the model with no additive noise but noise in either the

growth rate r or the grazing rate c. In the former case the

skewness though large far from equilibrium, increases

substantially as the bifurcation is approached, thus serving

as an early warning signal. We also check the applicability of

our proposal in a more complex ecological model of

vegetation dynamics described in eqns T2–T3. See Appen-

dix S4 for detailed results. We comment on the limitations

imposed by the nature of the noise on using skewness as an

indicator in the Discussion section and present details in

Appendices S7–S9.

Figure 2 Increase in skewness as the ecosystem approaches regime

shift via different routes for May’s model of vegetation collapse

considered in Fig. 1. The thick line is the analytical result obtained

directly from the stationary probability distribution. The open

circles are the average values of skewness obtained by the

numerical simulations. Note that we have plotted the absolute

value of the average skewness. (a) Approaching the threshold of

vegetation collapse by increasing the grazing pressure with fixed

external fluctuations rV ¼ 0.25. (b) Approaching regime shift by

increasing (noise) fluctuations in the system at c ¼ 2.0 (far from

threshold). We choose dt ¼ 0.1 and rest of the parameters are as in

Table 1.
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Skewness calculations for a parameterized lake model

In this section we consider a parameterized lake eutrophi-

cation model and mimic a plausible scenario of field

measurements. We show that a trend of increasing skewness

can be detected well in advance of a regime shift despite

constraints of sparse data availability. Our results allow us to

make useful observations and provide insights on the

analysis of real data sets.

We choose a slightly modified version of the lake

eutrophication model which has been parameterized for

Lake Mendota, Wisconsin (see eqns T5–T6 and Carpenter

2005). Appendix S5 contains the bifurcation diagram and

the results for the skewness. We consider a scenario in

which the mean nutrient inputs increase as a function of

time which can occur with economic growth. We perform a

dynamic simulation to see if we can observe a trend of

increasing skewness under such conditions. In our numer-

ical calculations the mean nutrient loading is increased from

0.5 to 1.28 g m)2 year)1 in 40 years time with constant

increments every year and kept constant thereafter. We

solve eqns T5–T6 to obtain the phosphorus concentration

and compute a simple moving average skewness from the

data for the previous 5 years.

The results of the model calculations are presented in Fig.

3a,b. The phosphorus concentration data indicates that a

regime shift occurred around year 45. Moving average

skewness shows an increasing trend starting from year 34

and by the beginning of year 40 the trend is unmistakable

(around 100% increase) and hence, this can serve as an early

warning signal nearly 5 years in advance. We added a

practical constraint of limited data sets by comparing the

results of a dense data set (100 water phosphorus

measurements per year) with those for a sparse data set of

33 measurements per year. We find that thinning the data

set had negligible effect on the trend of changing skewness,

thus providing confidence in its utility as an early warning

signal. We note that for a specific set of parameters values

(nutrient loading taken to be constant at 1 g m)2 year)1

with the initial conditions P0 ¼ 1 g m)2 and M0 ¼
800 g m)2), the skewness failed to detect a regime shift in

nearly 30% of the cases.

More importantly, these model calculations suggest that

skewness can fluctuate for short time periods and then relax

to the background value; such behavior, observable far from

a regime shift, should not be misinterpreted as signalling an

impending transition. However, significant changes on a

time scale larger than the background fluctuation time scale

act as reliable early warning signals of an impending regime

shift.

Analysis of Sahara data

We consider a well-dated record of terrigenous sediment

deposition at Ocean Drilling Program Site 658C off Cap

Blanc, Mauritania which indicates an abrupt termination of

North African (Sahara region) humid periods resulting in

collapse of vegetation and desertification (deMenocal et al.

2000). See Appendix S6 for the analysis of the complete

Sahara data set from 25 000 years before present (BP) to the

present. An abrupt change in the sediment concentration

corresponding to the most recent regime shift in Sahara is

found around year 5500 BP as shown in Fig. 4a. Our interest

is to determine whether skewness of the data showed any

reliable trends prior to the regime shift. We note that the

data are relatively sparse and have errors both in the

determination of the time and the sediment. Nevertheless, in

an effort to illustrate the difficulties encountered in the

prediction of regime shifts from available data we have

performed a simple analysis of the data. The moving average

skewness (calculated for the previous 10 data points) up to

the year of the shift is shown in Fig. 4b. An increasing trend

of moving skewness is clearly identifiable and occurred

around 1000 years prior to the collapse. However, we need

Figure 3 The figures show that changes in the skewness (denoted

by c) can be detected well in advance for a model system which

mimics a field measurement scenario. These results are obtained by

numerical simulation for the lake model (eqns T4–T5) when the

nutrient inputs are increased as a function of time towards the

eutrophication threshold as described in the text. All parameters

are defined in Table 1; the initial conditions P(t ¼ 0) ¼
0.58 g m)2 & M(t ¼ 0) ¼ 410 g m)2 and a time step of dt ¼
0.01. The moving average skewness has been calculated from data

for the previous 5 years. The dense and the sparse data sets

correspond to 100 and 33 measurements of lake water phosphorus

concentration (P) per year respectively.
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to establish that this change is statistically significant in

order to interpret it as an early warning signal. To do so we

perform a simple diagnostic test based on the idea that an

AR(1) process defined by x(t + 1) ¼ bx(t )+rg(t ) (where

g(t ) is a Gaussian white noise) acts as a null model for

measuring changes in skewness. This is reasonable because

an AR(1) process follows from a linear analysis around the

fixed point and therefore, yields zero (long-time average)

skewness. For finite-sized time series, the moving skewness

of an AR(1) process can therefore act as a reference to

measure changes in skewness near a bifurcation.

We fit the data prior to the regime shift to the AR(1)

process to obtain coefficients b and r to be 0.59 and

1.51 units respectively. We then generated 100 time series

each of length comparable to the real data (66 data points)

and computed the moving skewness. In a typical simulation

we find, unfortunately, that the changes in skewness are

comparable to those in the Sahara data set. Hence we are

unable to conclude that the changes in skewness observed in

the Sahara data set arise from the proximity to a regime

shift. These results however do not mean that the indices of

regime shifts will always fail, but indicate the limitations

involved in applying to an extremely sparse data set such as

this one. A possible reason could be the lack of finer

resolution data. As we show in the Appendix S6, with a finer

resolution data such as the phosphorus concentration data

available from Sandusky Bay (Heidelberg-College 2007) one

can calculate changes in skewness more reliably. We further

note that we have not considered a variety of statistical data

analysis issues such as missing data, effects of seasonality,

obtaining confidence intervals and detrending the data. One

may also need to consider a dynamic AR(1) model in which

parameters b and r are time-varying. See Discussion section

for issues with analysing real data sets.

O R I G I N O F A S Y M M E T R Y

In this section, we explain the origin of the asymmetry and

the rise in skewness as the transition is approached based on

the ball in a potential landscape picture (Scheffer et al. 2001).

In general, the ecosystem evolves towards the local

minimum of the potential, analogous to a ball rolling

towards the bottom of a cup. For an ecosystem with

alternative stables states the potential contains multiple

minima.

Figure 5 shows how the asymmetry arises in two

different routes to regime shift. As one approaches the

vicinity of the transition point, two noteworthy changes

occur in the qualitative nature of the effective potential.

The basin of attraction shrinks and flattens and the

asymmetry in the bowl becomes pronounced. Therefore,

for a fixed small variance of an additive noise term the

measured asymmetry will increase. On the other hand,

consider the case in which the system is relatively far from

the threshold. For small noise, the system explores a

relatively narrow region which is symmetric around the

minima. However, as the external fluctuations increase, the

asymmetric effects of the effective potential on the

dynamics can become measurable.

Next, we argue that the asymmetry in the effective

potential leads to asymmetry in the time series distribution

of the state variable. Using the analogy of a ball rolling in a

landscape with minima, if we include external noise the ball

fluctuates in the region around a minimum. The time spent

in the vicinity of different minima depends on the curvature

of the potential and the strength of the external fluctuations.

The system is more likely to explore the flatter regions in the

cup than the steeper parts. Thus for an asymmetrically

shaped landscape the ball spends more time in the flatter

directions resulting in an asymmetry in the probability

distribution of the time series. The probability distribution

can be calculated exactly by solving the Fokker–Planck

equation to obtain PsðxÞ ¼ N expð� 2
r2 U ðxÞÞ, where N is

a normalization constant. This formula clearly shows that an

asymmetric potential, U(x), leads to an asymmetric station-

ary time series distribution.

Figure 4 Analysis of terrigenous sediment data indicating climatic

shift in Sahara (a) Time series of terrigenous sediment percentage

record from Site 658C off Cap Blanc, Mauritania (deMenocal et al.

2000). Circles represent data while connecting line is meant to

guide the eye. Note the regime shift which occurred around

5500 years before the present day (BP). (b) The moving average

skewness: for any given time, skewness is calculated from the

previous 10 data points. Squares represent computed skewness

values with the connecting line meant to guide the eye.
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A linear analysis around the fixed point yields a symmetric

potential and flattening landscape near the threshold.

Indicators such as reddened power spectrum, increase in

the variance and recovery time rely on this feature of the

landscape. They do not include the effects of asymmetry

discussed in this paper. However, for the system to explore

the asymmetric part of the landscape the external fluctua-

tions should be sufficiently large. We have exploited the fact

that ecological systems are often influenced by large

environmental variations in conjunction with the contribu-

tion of the nonlinear terms to devise a measure that serves

as a warning signal for a nearby regime shift. It is to be

noted that such asymmetry in time series distribution has

been employed as an indicator of nonlinearity in studies of

climate and forecasting (Sugihara et al. 1999).

In case of two-variable systems an effective potential does

not exist in general (it does not in the models described by

eqns T2–T6). It is nevertheless possible to devise an

intuitive understanding of how the asymmetry arises by

considering the vector field that represents the �forces� that

determine the rate of the change of the dynamical variables

(see Appendix S7).

D I S C U S S I O N

Our analysis of simple ecological models shows that changes

in the asymmetry, quantified by changes in the skewness of

the time series data, can be a generic indicator of an

impending regime shift. We have shown that the skewness

of the time series data increases as we approach a regime

shift in one-variable and more complex ecological models.

Although we have illustrated the case of skewness increasing

from zero to non-zero values, in general, changing skewness

(from non-zero skewness to even larger skewness, etc.) can

serve as an indicator of regime shifts. The origin of

asymmetry lies in the contribution of nonlinear terms to the

dynamics of the system and hence changing skewness may

be referred to as a �nonlinear indicator� of regime shift; in

contrast variance, recovery time and reddened power

spectra can be derived by a linear analysis, and constitute

�linear indicators� of regime shift.

We discuss the utility of skewness in understanding

ecosystem stability in the context of �resilience� (Holling

1973), defined as the maximum shock an ecosystem can

absorb without undergoing a regime shift. As the external

conditions affecting ecosystems (such as nutrient inputs and

rainfall) gradually change, systems move closer to a

threshold of instability. Such ecosystems are prone to

regime shifts even when stochastic events of moderate

amplitude affect them and hence, are said to have low

resilience. Both the linear and nonlinear indicators can be

used to identify this reduction of resilience. Many empirical

studies indicate frequent shifts between alternative stable

states (Blindow et al. 1993; Hargeby et al. 2007) and

theoretical studies indicate that persistent stochastic events

of large magnitude can cause such shifts even when the

system is far away from threshold (Guttal & Jayaprakash

2007). This route to regime change due to increased

amplitude of the external noise is often ignored and is not

easily detected by the previously proposed set of indicators

(see Appendix S8). We have shown that rise in skewness can

be an indicator for both routes to regime shifts making this

a potentially more versatile indicator.

We present scenarios in which skewness fails as an early

warning signal of a regime shift. If the regime shift occurs

too rapidly then skewness fails to provide an early warning

just as other indicators fail. In this case the observed

increase in skewness reflects the regime shift itself rather

than being an early indicator. Next we discuss a less obvious

example of a model situation in which skewness does not

perform well. Consider the two-variable vegetation model

with increasing variance of the fluctuations in the rainfall

rate. Our results show that in this route to a regime shift,

Figure 5 The panels of figures show how the asymmetry in the

potential landscape picture evolves in the different pathways to

regime shifts. At the centre of the plot is the bifurcation diagram

for May’s model of vegetation collapse in semi-arid regions. The

top row shows the change in landscape potential as one approaches

the threshold (for fixed additive external fluctuations rV in eqn

T1) by varying the control parameter c. The bottom row of figures

shows the alternative route to regime shift in which increase in the

additive external fluctuations rV, for fixed c, causes a regime shift

to occur. As r increases, the extent of the region around the

minimum explored by the system widens leading to asymmetry in

the time series distribution.
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there is no detectable increase in skewness (see Appendix

S9). In general, it is difficult to provide advance warning of

regime shifts caused by increasing noise. Our results have

shown that even in such cases, though not in all cases as

evidenced by the example cited above, skewness can be

useful as an early warning signal.

A recurrent issue in ecology is the lack of sufficiently

long and finely resolved data sets for many ecosystems. We

have explicitly demonstrated this drawback for indicators

using data from Sahara climatic shift. One may wonder

whether model calculations yielding as long and finely

resolved a series as needed are representative of real

systems. We emphasize that even in model calculations the

system undergoes a regime shift (for the parameter values

considered in this study) on finite time scales: thus, only

time series of limited length is available even for

theoretical calculations. In addition, for all of the model

calculations presented in this paper, the skewness has been

calculated for a time span less than the mean escape time

to an alternative regime. Furthermore, our calculations

demonstrate that even when the driving force (nutrient

concentration) is changing as a function of time and the

data available are made sparse the necessary skewness

calculations are feasible and can be useful. A finely

resolved and long data set (for example, the total

phosphorous concentration data from a tributary to Lake

Erie) can yield reliable evaluation of indicators.

An important assumption in our calculations is that the

stochastic dynamics of the model systems are a complete

representation of the ecological data. Real ecological data

are prone to multiple sources of errors including external

and observational errors in addition to the uncertainty

involved in identifying and modelling the dynamical

processes. One possible pitfall is that the observed

changes in asymmetry in the time series do not necessarily

imply proximity to a regime shift as it may not be due to

intrinsic dynamics but due to asymmetry in the exogenous

noise, for example. Technically, this means that modelling

all the uncertainties and errors by a simple Gaussian white

noise is an oversimplification. This problem has to be

addressed on a case-by-case basis by various statistical

methods: If data are available for the noisy external

variable that drives the system (such as nutrient input and

rainfall data), we can remove associated trends from the

time series of the state variable. It has been shown that

one can successfully separate true variance from other

sources of noise by using dynamical linear modelling

techniques of time series data (Carpenter & Brock 2006)

and such a calculation, at least in principle, can be

extended to extract true skewness as well. More generally,

the problem of detecting regime shifts as well as

distinguishing environmental fluctuations from the true

dynamics of the system is an issue of immense practical

importance and has also been addressed by other

techniques (Ives 1995; Held & Kleinen 2004; Mantua

2004; Rodionov 2004; Hsieh et al. 2005; Mayer et al. 2006;

Rodionov 2006).

C O N C L U D I N G R E M A R K S A N D F U T U R E

D I R E C T I O N S

In summary, given the growing evidence for the existence

of tipping points in many large-scale ecosystems as well

as climatic and complex social systems (Rial et al. 2004;

Schroder et al. 2005; Brock 2006), devising a set of early

indicators is clearly valuable. No single indicator is likely

to be sufficient due to different limitations and sources of

uncertainty thereby making it necessary to have multiple

indicators. Our work makes an important contribution by

devising a new indicator of an impending transition based

on nonlinearity and large external fluctuations influencing

ecological systems, establishing its effectiveness and

identifying situations in which it can fail. Future research

work on the theoretical analysis of skewness under non-

stationary conditions, the statistical issues of estimation

and errors and developing simple methods to extract true

skewness from an error-prone data are needed which

make this indicator further useful for practical applica-

tions. Other indices of nonlinearities such as S-maps and

anisotropic variances in the time-1 return map (Sugihara

et al. 1999) can also be explored as measures of changing

asymmetry. Another area for future investigations is the

study of early warning signals in spatially explicit models

of regime shift and elucidating the relative merits of

different indicators.
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