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Abstract Tectonic drivers of degassing and weathering processes are key long-term controls on atmos-

pheric CO2. However, there is considerable debate over the changing relative importance of different car-

bon sources and sinks. Existing geochemical models have tended to rely on indirect methods to derive

tectonic drivers, such as inversion of the seawater 87Sr/86Sr curve to estimate uplift or continental basalt

area. Here we use improving geologic data to update the representation of tectonic drivers in the COPSE

biogeochemical model. The resulting model distinguishes CO2 sinks from terrestrial granite weathering,

total basalt weathering, and seafloor alteration. It also distinguishes CO2 sources from subduction zone met-

amorphism and from igneous intrusions. We reconstruct terrestrial basaltic area from data on the extent of

large igneous provinces and use their volume to estimate their contribution to degassing. We adopt a

recently published reconstruction of subduction-related degassing, and relate seafloor weathering to ocean

crust creation rate. Revised degassing alone tends to produce unrealistically high CO2, but this is counter-

acted by the inclusion of seafloor alteration and global basalt weathering, producing a good overall fit to

Mesozoic-Cenozoic proxy CO2 estimates and a good fit to 87Sr/86Sr data. The model predicts that seafloor

alteration and terrestrial weathering made similar contributions to CO2 removal through the Triassic and

Jurassic, after which terrestrial weathering increased and seafloor weathering declined. We predict that

basalts made a greater contribution to silicate weathering than granites through the Mesozoic, before the

contribution of basalt weathering declined over the Cenozoic due to decreasing global basaltic area.

1. Introduction

Atmospheric CO2 is thought to have fluctuated considerably over geologic time, with solar, biological and

tectonic forcing factors all having an effect. Models of the long-term carbon cycle aim to capture these vari-

ous drivers, alongside the key processes, in order to predict past changes in atmospheric CO2 [Arvidson

et al., 2006; Bergman et al., 2004; Berner, 1991, 2006a]. Model predictions can be tested against CO2 proxy

estimates [Park and Royer, 2011], which become more frequent toward the present day. During most of the

Mesozoic and Cenozoic the climate has been warmer than today, with proxy estimates suggesting generally

elevated atmospheric CO2. Existing models suggest tectonic factors were a key driver of CO2 fluctuations

during this interval [Berner, 2006b; Li and Elderfield, 2013], with increased degassing input producing higher

atmospheric CO2 during the Mesozoic, and then a combination of declining degassing and increasing

weatherability of the land surface (due in particular to mountain building [Raymo and Ruddiman, 1992])

causing CO2 to decline during the Cenozoic. However, the pattern and magnitude of variation in tectonic

forcing factors is uncertain, and correspondingly there is considerable disagreement over the varying contri-

bution of different CO2 source and sink processes over Mesozoic-Cenozoic time.

Existing models generally use indirect methods to estimate variations in tectonic forcing factors such as

degassing rates and the supply of easily weathered volcanic rocks [Berner, 2006b]. However, recent advan-

ces now make it possible to estimate these variations in forcing more directly from geological and geophys-

ical data. Notably, Van Der Meer et al. [2014] have produced a reconstruction of combined arc and ridge CO2

degassing over the last 230 million years based on the length of subduction zones reconstructed from geo-

physical ‘‘imaging’’ of subducted plates. Compared to earlier work, the result is markedly increased degass-

ing through much of the Mesozoic. The authors use their new degassing function to force a version of the

GEOCARBSULF geochemical model [Berner, 2006a]. They find that bringing CO2 predictions back into agree-

ment with proxy data for the Mesozoic is possible but requires an enhancement of the CO2 sink via silicate

weathering, which is achieved by tuning a parameter that represents the contribution of continental basalt
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weathering [Berner, 2006b], such that it is at its maximum permissible value. However, the contribution of

basalts to continental weathering is also amenable to more direct estimation from geologic data regarding

the timing and extent of large igneous provinces and the rate of material subduction driving island arc

basalt production.

Motivated by this, here we revisit how tectonic drivers of the long-term carbon cycle have changed over

Mesozoic and Cenozoic time. We seek to build an internally consistent forward model, by updating the tec-

tonic forcing factors in our existing ‘‘COPSE’’ biogeochemical model [Bergman et al., 2004] and elaborating

the different weathering sinks for CO2 from granites, basalts, and seafloor alteration—a carbon sequestra-

tion process that has been incorporated into models for Precambrian climate [Sleep and Zahnle, 2001; Hayes

and Waldbauer, 2006] but has not been assessed fully over the Phanerozoic. We reconstruct terrestrial basal-

tic area from data on the extent of large igneous provinces and plate subduction rates, and use LIP volume

to estimate their contribution to degassing. We also adopt the new reconstruction of degassing by Van Der

Meer et al. [2014] and revise the uplift forcing in the model (so that it is independent of the strontium iso-

tope record, which the model now seeks to predict). We address whether the resulting model of changes in

atmospheric CO2 is in broad agreement with proxy data for both the Van Der Meer et al. [2014] and original

GEOCARB degassing scenarios, examine which processes most likely acted to counter the high CO2 degass-

ing rates reported in the former, and how the contribution of each CO2 sink has changed over the Mesozoic

and Cenozoic.

2. Tectonic Controls on the Long-Term Carbon Cycle

The inorganic side of the long-term carbon cycle involves a balance between degassing sources of CO2

from volcanic and metamorphic processes and weathering sinks of CO2, which involve the liberation of

Ca21 and Mg21 ions from silicate rocks and their deposition in carbonate rocks along with oceanic CO22
3 .

These sources and sinks of CO2 are affected by changes in tectonic processes, which hence can exert a

major control on atmospheric CO2 concentrations over geologic time.

Key long-term sources of CO2 are metamorphic degassing from carbonates (and organic matter) and direct

injection of CO2 from the mantle. Metamorphic degassing is driven by subduction of oceanic crust at conti-

nental margins, and input of mantle CO2 is associated with crustal production at mid-ocean ridges and with

the emplacement of large igneous provinces. LIP emplacement in continental settings also results in con-

tact metamorphism of carbon reservoirs in the adjacent crust [Svensen et al., 2009].

The long-term sinks of CO2 involve the weathering of subaerial granites and basalts [Dessert et al., 2003],

and the carbonatization of seafloor basalts [Gillis and Coogan, 2011]. Uplift of the continents provides a fresh

supply of (primarily granitic) material for terrestrial silicate weathering. Subduction-driven arc volcanism

and the emplacement of continental LIPs provide basaltic material, which undergoes more rapid silicate

weathering. Additionally, seafloor spreading provides a fresh supply of basaltic ocean floor for seafloor

carbonatization/alteration, which occurs when warm seawater flows through the crust.

2.1. Degassing: Metamorphism, Ridge, and LIPs

We show in Figure 1 a comparison between the recent calculation of global degassing rate based on scaling

combined arc and ridge CO2 degassing to inferred subduction zone length [Van Der Meer et al., 2014] and

that previously employed in carbon cycle models, which is based on inversion of paleo-sea level records

[Gaffin, 1987] prior to 150 Ma and measurements of trench convergence [Engbretson et al., 1992] since 150

Ma to estimate global spreading rate.

In addition, eruption of large igneous provinces is accompanied by massive CO2 input over a geologically

short time scale (<106 years). If input was sufficiently rapid, geochemical box models have predicted very

large CO2 increases (e.g., around a doubling of pre-LIP atmospheric CO2 concentration for the Siberian traps

and Central Atlantic Magmatic Province (CAMP) emplacements, assuming input times between 30 and 500

kyr [Beerling and Berner, 2002; Berner, 2002]). Stabilization of climate occurs in these models after �2 Myr,

but the background forcing scenarios we will consider (i.e., altered degassing rates, weathering regimes,

and burial rates) and large weatherable area of some of the LIPs may affect both peak CO2 concentrations

and stabilization times. Shorter term effects such as contact metamorphism of organic sediments and
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methane release [Svensen et al., 2009]

may have led to larger increases in

CO2 and global temperatures follow-

ing LIP emplacements [Belcher and

Mander, 2012].

2.2. Silicate Weathering: Granites

and Basalts

Dependency of silicate weathering

rates on local temperature and runoff

allows the carbon burial flux from sili-

cate weathering and carbonate depo-

sition to vary in response to changes

in atmospheric CO2, resulting in neg-

ative feedback which balances the

long term carbon cycle [Walker et al.,

1981]. As well as changes in tempera-

ture, there are many other factors

that influence the long term global

silicate weathering rate and resulting

marine carbonate burial flux.

Enhancements of the weathering flux

may be brought about by increases in global erosion rates [Dixon et al., 2012] (which may lead to changes

in climate dependence of weathering [West, 2012]), the presence of land plants (which introduce organic

acids as well as physically breaking apart rock) [Berner, 1997], or changes in the hydrological cycle [Maher

and Chamberlain, 2014] including the paleolatitude and relative positioning of the continents [Godd�eris

et al., 2014]. Altering these factors changes the global terrestrial ‘‘weatherability’’—the total silicate weather-

ing rate under a given CO2 concentration. A higher weatherability means that the carbon cycle will stabilize

with a lower concentration of atmospheric CO2, providing the CO2 degassing rate is unchanged [Kump and

Arthur, 1997]. Essentially, the long term stable concentration of CO2 is determined by a combination of the

global degassing rate and the weatherability of terrestrial silicates (and the ocean floor).

An important factor that influences terrestrial weatherability is the type and area of silicate rock available

for weathering. Mafic silicates like basalt weather considerably more rapidly than felsic granites; less than

10% of the global silicate area is basaltic yet this contributes around one third of the silicate weathering flux

today [Dessert et al., 2003]. This means that changes in past global basaltic area may have led to significant

changes in terrestrial weatherability, and therefore atmospheric CO2 concentration.

2.3. Reconstructing Basalt Weathering

Current reconstructions of volcanic rock weathering (Figure 2) are produced by inversion of the marine
87Sr/86Sr and 187Os/188Os signatures [Berner, 2006b; Li and Elderfield, 2013]. The predominant sources of

ocean Sr and Os are the weathering of terrestrial rocks, and there are no fractionation effects associated

with weathering and burial of these species. This means that the seawater value, as recorded in sediments,

reflects the contribution from different weathering sources and mantle inputs. 87Sr/86Sr and 187Os/188Os of

fresh basalt reflects the value of the mantle source rocks, and decay of 87Rb and 187Re, respectively, causes

the 87Sr/86Sr and 187Os/188Os of older granitic lithologies to be higher than the mantle value.

Berner [2006b] sets 87Sr/86Sr values for bulk volcanic and nonvolcanic silicates to obtain an expression link-

ing the Phanerozoic seawater 87Sr/86Sr curve to the fraction of silicate weathering that was from volcanic

sources (denoted Xvolc). Li and Elderfield [2013] model the coupled Sr, Os, and C isotope systems to recon-

struct long term carbon cycle fluxes from weathering and burial over the Late Cretaceous and Cenozoic.

Both studies suggest a decreasing trend in basalt weathering over most of the Cenozoic. Li and Elderfield

[2013] propose that weathering of (island) basalts has decreased in response to an uplift-driven increase in

weathering of continental nonbasalt silicates.

However, there are several difficulties in using radiogenic isotope tracers to reconstruct terrestrial weather-

ing regimes. The 87Sr/86Sr of nonvolcanic silicates [Berner, 2006b] and sedimentary carbonates [Boucot and

Figure 1. Global CO2 degassing. Black line shows relative CO2 degassing rate

assumed in previous models GEOCARB [Berner, 2006a] and COPSE [Bergman et al.,

2004], among others. Blue shaded area shows recently calculated degassing param-

eter taking into account subduction zone length [Van Der Meer et al., 2014].
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Gray, 2001] varies greatly due

to age and composition of

weathered material, ruling out

a straightforward link between

ocean 87Sr/86Sr and fraction of

volcanic weathering. Uncer-

tainty in total rates of terrestrial

weathering, mantle input and

seafloor alteration also make

the 87Sr/86Sr signal difficult to

link directly to the volcanic

fraction of weathering. Inter-

pretation of the marine
187Os/188Os record is no less

straightforward: preferential

weathering of ancient shield

rocks may result in a very

radiogenic signal [Peucker-

Ehrenbrink and Blum, 1998],

similarly the weathering of

more ancient basalts may

impart a significantly more radiogenic signal than their younger counterparts [Gannoun et al., 2006]. Addi-

tional Os isotope variation may be associated with spatial heterogeneity in seawater, or by extraterrestrial

Os sources such as impact events [Peucker-Ehrenbrink and Ravizza, 2012].

The Sr-derived curves for basalt weathering fraction have a large uncertainty due to the range of possible

values for nonvolcanogenic Sr [Berner, 2006b], although predicted values for the Mesozoic are generally

higher than the present day, and a decline in volcanic weathering over the Cenozoic is robustly predicted,

due to continually rising 87Sr/86Sr ratios. Volcanic weathering reconstructions for the last 100 Myr using con-

straints from both Sr and Os isotopes [Li and Elderfield, 2013] show a general decline from 100 Ma to

present.

Attempts have also been made to reconstruct the relative exposure of volcanics from rock abundance data.

Using the historic volcanic rock volumes of Ronov [1993], Berner [2004] normalizes against an exponential

loss curve to obtain an estimate of the rate of volcanic eruption over time. This shows above-present-day

values for the Cretaceous, but lower-than-present values during the Triassic and Jurassic. However, this

interpretation is not directly linked to the exposed area of volcanics to weathering, and the low values

reported for�200 Ma are not easy to reconcile with eruption of the massive Central Atlantic Magmatic Prov-

ince (CAMP) at this time—which is thought to have emplaced an area of basaltic rock of comparable size to

the entire present-day volcanic area [Knight et al., 2004; Marzoli, 1999].

Bluth and Kump [1991] have produced historical land area for different rock units over the Phanerozoic.

Assuming that the total area of silicates can be represented by total land area minus the area of carbonates,

an expression for the fraction of exposed silicates that are of volcanic origin can be calculated [see Berner,

2006b]. The result is a slight increasing trend from the early Triassic to the present day.

The area of volcanics exposed to weathering during the Mesozoic is therefore very uncertain, with isotope-

derived methods generally predicting areas in excess of the present day while rock abundance methods

predict values that are lower. Interpretation of rock abundance data is however extremely difficult—normal-

izing via a single decay curve [Berner, 2004] or by noncarbonate area [Berner, 2006b] necessarily represent

generalized preliminary approaches.

2.4. Seafloor Weathering

Low temperature hydrothermal alteration of mid-ocean ridge basalts (or ‘‘seafloor weathering’’) is a signifi-

cant long-term carbon sink. If the oceanic crust provides the alkalinity source (via Ca21 release), rather than

riverine input (as Ca, or via Mg or K followed by cation exchange) [Alt and Teagle, 1999; Coogan and Gillis,

2013], then this operates independently from silicate weathering.

Figure 2. Reconstructions of volcanic weathering. Xvolc (left axis) is the fraction of terrestrial

silicate weathering that is volcanic (note that this includes contribution from island and arc

basalts, which are included under ‘‘terrestrial silicates’’ in our analyses), calculated from

inversion of the 87Sr/86Sr and 187Os/188Os curves [Berner, 2006b; Li and Elderfield, 2013]. Plot-

ted here against relative abundance of volcanic rocks (right axis) [Berner, 2004; Bluth and

Kump, 1991; Ronov, 1993].
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As with continental silicate weathering, it has been proposed that the rate of carbon uptake by the ocean

crust is linked to atmospheric CO2 concentration, resulting in negative feedback on climate. There is no

clear direct link [Caldeira, 1995], but two indirect feedback mechanisms have been proposed. In the first,

higher atmospheric CO2 results in increased bottom water temperature, which increases rates of fluid-rock

reaction [Brady and Gislason, 1997]. Second, potassium reacts with igneous plagioclase to form K-feldspar

and liberate Ca from the oceanic crust (with stoichiometry 7 Ca21:2 K1, i.e., the oceanic crust providing the

majority of the alkalinity [Coogan and Gillis, 2013]). Therefore, increased atmospheric CO2 should drive

increased riverine K input (from continental weathering), ultimately resulting in enhanced seafloor weather-

ing rates [Coogan and Gillis, 2013].

Drill core analysis has confirmed that more carbon is added to the ocean crust under warmer bottom water

temperatures [Gillis and Coogan, 2011] and that high K-feldspar abundances are coincident with large fluxes

of carbon into the ocean crust [Coogan and Gillis, 2013]. The majority of carbon added to the ocean crust is

deposited within 20 Myr of crust formation [Gillis and Coogan, 2011], supporting the assumption that the

rate of seafloor weathering is linked to the rate of ocean crust production at mid-ocean ridges through

material availability [Sleep and Zahnle, 2001]. However, these feedback relationships are still very uncertain,

and the strength of the feedback on CO2 concentration is unknown. Recent studies investigating seafloor

weathering [Hayes and Waldbauer, 2006; Sleep and Zahnle, 2001] assume a simple power law relationship

between atmospheric CO2 and the rate of carbon uptake, based on the laboratory results of Brady and Gisla-

son [1997] for the bottom water temperature feedback. It is possible that the feedback may be substantially

stronger or weaker than this.

The rate of seafloor weathering over the Phanerozoic is also unknown. A major complicating factor is that

not all of the alkalinity deposited in ocean crust basalts has been weathered from the rock itself, it is possi-

ble that over 70% of the calcium may come from seawater [Alt and Teagle, 1999], meaning that much of the

CaCO3 deposited in the crust is linked instead to terrestrial weathering. However, the ocean crust alkalinity

budget of Coogan and Gillis [2013] supports a major contribution from seafloor weathering. As indirect sup-

port, carbon abundances in the upper ocean crust [Coogan and Gillis, 2013; Gillis and Coogan, 2011] are sub-

stantially higher in the late Mesozoic than in the Cenozoic (up to five times higher wt. %), which is

consistent with the hypothesis that higher material input from seafloor spreading [Van Der Meer et al., 2014]

and atmospheric CO2 concentrations [Park and Royer, 2011] drove increased seafloor weathering rates.

Berner and Kothavala [2001] add an expression for seafloor weathering to the ‘‘GEOCARB 3’’ model, linking

the rate only to seafloor spreading rates, not to CO2 concentration. Seafloor weathering does not contribute

greatly to the carbon cycle in this model as the rate is assumed not to be affected by the high CO2 concen-

trations, and the material supply from spreading centres is assumed to be low for much of the Mesozoic, in

contrast to recent data [Van Der Meer et al., 2014]. Previous attempts to reproduce the Phanerozoic 87Sr/86Sr

curve using a forward model rely on seafloor weathering being a more powerful carbon sink in the past,

thus reducing the weathering contribution of the continents [Francois and Walker, 1992].

3. Methods

3.1. The COPSE Model

To analyze tectonic effects on climate we use an updated version of the COPSE model [Bergman et al.,

2004]. For full model equations see supporting information, for discussion of the original model see the

2004 paper. COPSE is an extension of the GEOCARB [Berner, 1991, 2006a] models that employs a process-

based representation of the marine and terrestrial biosphere [Lenton and Watson, 2000] to calculate organic

fluxes of carbon and sulphur over Phanerozoic time. The philosophy behind COPSE is to use mechanistic

approximations, rather than inversion of isotope records, to calculate geochemical fluxes. This parallels our

approach here of reconstructing changes in weathering regimes from primary data rather than ‘‘weathering

tracers’’ such as 87Sr/86Sr and 187Os/188Os.

Changes in the global reservoir of atmospheric and ocean carbon (A) are represented by the following dif-

ferential equation summing CO2 sources from degassing of carbonates (ccdeg), organic material (ocdeg), LIP

degassing (LIPdeg), carbonate weathering (carbw), and oxidative weathering of organics (oxidw). Sinks are

the burial of organic carbon in the marine (mocb) and terrestrial (locb) environments, carbonate burial

(mccb), and weathering/alteration of the seafloor (sfw)
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dA

dt
5ccdeg�1ocdeg�1oxidw1LIPdeg��1carbw

2mocb2locb2mccb2sfw��

(1)

We calculate marine carbonate burial from steady state marine alkalinity balance, assuming the carbonate

cycle is at equilibrium, and including the coupling of the oxidative sulphur cycle to alkalinity [Torres et al.,

2014]:

mccb5 silw1 carbw2 pyrw1mpsb (2)

where mpsb is pyrite sulphur burial, and pyrw is pyrite sulphur weathering (in mol S yr21).

Substituting for mccb in (1) leads to the net equation:

dA

dt
5ccdeg�1ocdeg�1oxidw1LIPdeg��2mocb2locb2silw�

1 pyrw2mpsbð Þ2sfw��
: (3)

Here * refers to fluxes that are updated in this paper while ** shows fluxes that have been added to the

model for this work.

The addition of sulfide oxidation and sulfate reduction in the carbon cycle [Torres et al., 2014] has little effect

in our model, as steady state for the ocean alkalinity is assumed. A more complete ocean model is required

to analyze the effects of possible transient CO2 emissions in a global context.

3.2. Modeling CO2 Input From Metamorphism and Degassing

Our first model runs will consider the metamorphism and ridge contribution of Van Der Meer et al. [2014],

which is added to COPSE alongside an explicit representation of LIP CO2 release. Relative global degassing

rate, D, acts as a multiplier for the rates of degassing for organic (ocdeg) and carbonate carbon (ccdeg)

ocdeg5 kocdeg
G

G0

� �

3D ; (4)

ccdeg5 kccdeg
C

C0

� �

3D3B; (5)

where kocdeg and kccdeg are the present-day rates, G, C represent the total crustal inventory of organic carbon

and carbonate carbon, respectively, and G0, C0 are their present-day sizes. B is the relative carbonate burial

depth forcing, which is inherited from COPSE and GEOCARB, and represents the evolution of pelagic calci-

fiers which increases the amount of carbonate entering subduction zones.

We follow Beerling and Berner [2002] by scaling total LIP CO2 release to the initial estimated basalt volumes.

The timing, initial areas, and tectonic environment (terrestrial versus submarine) of large igneous provinces

have been compiled by the Large Igneous Provinces Commission [Ernst and Buchan, 2001; Ernst, 2014] (Fig-

ures 3 and 4). We have updated this record where necessary (see supporting information and references

therein). Where LIP volumes are unknown, we calculate them by assuming an area-volume relationship

based on the more recent and well-preserved LIPs (see supporting information).

Figure 3 shows the volumes and CO2 release potentials for all LIPs from 230 to 0 Ma. By far the largest vol-

ume event over the model timeframe is the �125 Ma Ontong Java Plateau, with an estimated initial volume

of around 5 3 107 km3 [Neal et al., 1997]. This is 10 times the volume of the Siberian traps, which is itself

one of the most voluminous LIPs on record. Cumulative CO2 degassing from LIPs during the last 230 Ma is

estimated here as 1–5 3 1019 moles. This represents around 1% of global cumulative CO2 degassing over

this period, but the geologically short time scale of these degassing events may lead to significant climate

impacts.

For a maximum estimate of CO2 emissions, we assume each LIP degasses over a time scale of 200 kyr

[Berner, 2002] and assume the rate of degassing follows a Gaussian curve [Beerling and Berner, 2002].

Although 200 kyr is the ‘‘slow degassing’’ estimate from Berner’s work, more recent compilations suggest LIP

degassing time scales are somewhat slower, in the range 500 kyr–3 Myr [Courtilliot and Renne, 2003]. We

exclude here shorter term effects such as contact metamorphism of organic sediments and methane

release [Svensen et al., 2009] as they are difficult to quantify and analyze with our long term model.
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3.3. Modeling Basalt and Granite Weathering

To obtain estimates for the weathering flux associated with basalts, we include the relative basalt area

parameter as a time-dependant forcing in COPSE. The model calculates global silicate weathering rates

using the expressions described in the GEOCARB models [Berner, 1994], and is modified here by splitting

the silicate weathering term into ‘‘basalt,’’ representing volcanics, and ‘‘granite,’’ which represents all non-

mafic terrestrial silicates:

basw5 %bas0 3 ksilw 3 fCO2bas 3 PG3 pevol3 BA; (6)

granw5 12%bas0ð Þ3 ksilw 3 fCO2gran 3 PG3 pevol3GA3U; (7)

silw5basw1granw: (8)

Here basw and granw are the model fluxes for basalt weathering and granite weathering. U is normalized

uplift rate, which is assumed to affect granites but not basalts, which are presumed to be continually well

exposed. PG is the runoff modifier due to paleogeographic changes, the constant %bas0 is the present-day

fraction of silicate weathering that is basaltic, chosen as 0.35 [Dessert et al., 2003] (granite weathering is

assumed to make up the remainder of CO2 consumption via terrestrial sillicate weathering), ksilw is the

present-day rate of silicate weathering. BA is the relative basaltic area (calculated below and shown in Fig-

ure 5) and GA is the relative area of granites, which is calculated as the total silicate area minus that of conti-

nental basalts (see supporting information). pevol represents negative feedback on terrestrial weathering

due to evolution of land plants, including fire feedback, photorespiration, and CO2 fertilization as in the

original COPSE model. See supporting information and the COPSE paper for full details of the vegetation

model. fCO2bas and fCO2gran denote the climatic dependency of silicate weathering [Berner, 1994], which

incorporates plant-CO2 feedbacks, and the temperature dependencies fTbas and fTgran, which assume activa-

tion energies for basalt and granite weathering of 42 and 50 kJ/mol, respectively [Dupre et al., 2003]

fTbas5 e0:061ðT2T0Þ 110:038ðT2T0Þf g0:65; (9)

fTgran5 e0:072ðT2T0Þ 110:038ðT2T0Þf g0:65: (10)

Here T is global average surface temperature and T0 is present-day surface temperature.

The uplift/erosion forcing U is assumed to influence granite, carbonate and organic carbon (but not basalt)

weathering fluxes via supply rate of material. In earlier versions of COPSE, values for U over the Phanerozoic

are taken from the early GEOCARB models, and were calculated by inverting the strontium isotope record.

We follow Godde�ris and Francois [1995] and Berner [2006b] by replacing this with a cubic fit to sediment

abundance data [Ronov, 1993] in order that no fluxes in the system depend on input of isotope tracer val-

ues. We also introduce the expression, PG, representing relative changes to global runoff due to changing

paleogeography. PG is taken from published runs of the GEOCLIMtec model [Godd�eris et al., 2014] and is

assumed to affect all silicate and carbonate weathering fluxes.

Figure 3. Submarine and continental LIP emplacement CO2 emissions. Total moles of carbon degassed as CO2 during LIP emplacement.

Min and max estimates for CO2 degassing/volume relationship are from Leavitt [1982] and Gerlach and Graeber [1985], respectively (follow-

ing Beerling and Berner [2002]) and are denoted by darker and lighter colors, respectively.
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Aside from the rock area (BA, GA) forcings, uplift rate, and activation energies, weathering of granites and

basalts is assumed to follow the same dependencies. It is probable that factors such as plant cover, paleo-

geographic position and global runoff affect granite and basalt weathering in different ways. These effects

are potentially important, but involve a high degree of uncertainty and require the use of a spatial model to

accurately depict them [e.g., Taylor et al., 2012; Lefebvre et al., 2013]. Our modeling implicitly allows for the

more rapid weathering of basalts via a simple scaling relationship (i.e., the assumption that doubling the

area of exposed basalt will double the weathering flux from basalts).

3.4. Basaltic Area Reconstruction

We introduce a new method for calculating the past land area covered by basalts, which we reason must

be a key driver of the rate of global basalt weathering. The present-day basaltic area is contributed by large

igneous provinces, ocean island basalts, and island arcs. The total area has been estimated at 6.8 3 106 km2

[Dessert et al., 2003]. Of this, 2 3 106 km2 is contributed by ocean island basalt and island arcs [Allègre et al.,

2010], with the remaining area related to existing large igneous provinces [Dessert et al., 2003]. In order to

reconstruct total terrestrial basaltic area, we adopt an individual approach for each igneous emplacement.

Figure 4 shows the subaerial areas of LIPs emplaced during the Mesozoic and Cenozoic. The named events

in the figure are those with areas >106 km2, which contribute almost all of the total emplaced area, and

which we term ‘‘major events.’’ To construct the integrated LIP area exposed to subaerial weathering, we

assume exponential decay curves for individual LIPs, representing removal by erosion. We set decay con-

stants for each major event so that their present-day area is recovered (see supporting information for a list

of these areas). We set a single decay constant that applies to all of the minor events, which is chosen so

that present-day total LIP area is 4.8 3 106 km2 [Allègre et al., 2010; Dessert et al., 2003]. This constant falls

within the range applied to the major LIPs. Submarine LIPs are assumed not to influence terrestrial weather-

ing rates, but do contribute to CO2 release and may impact on seafloor weathering. Contributions to sea-

floor weathering from oceanic LIPs likely occur due to enhanced crustal production during emplacement

[i.e., Coffin and Eldholm, 1994], and thus occur on a similar time scale to CO2 degassing. We analyze LIP

degassing and seafloor weathering enhancements together later in the paper (see Figure 8).

The approach of using exponential decay to account for erosional loss follows Berner [2004], but we apply it

here to multiple individual events and to areas rather than volumes. We also trial an alternative approach

where decay in area begins 10 Myr after emplacement, representing an assumed 10 Myr volcanic activity

where basalt is being emplaced or replenished [Bryan and Ernst, 2008]. Of the present-day island arc and

ocean island basalts, 87% of the total area is contributed by island arcs [Allègre et al., 2010], which are driven

by crust subduction. We therefore assume that island basalt area (arc and ocean island) scales with the

global material subduction rate, which has been estimated for 230 Ma to present [Van Der Meer et al., 2014].

We assume a constant rate before 230 Ma in the absence of data.

The individual LIP decay curves, island basalt area scaling, and resulting global basalt areas are shown in

Figure 5. To account for difficulty in initial area estimation and incomplete preservation, we assume an

Figure 4. Initial subaerial areas of large igneous provinces. From an updated version of the Large Igneous Provinces Commission A10 data-

base [Ernst and Buchan, 2001; Ernst, 2014] (see supporting information). Note the inclusion of the Kerguelen plateau, which is not a conti-

nental flood basalt, but was initially exposed above sea level [Coffin et al., 2000; Mohr et al., 2002].
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uncertainty of 220% and 150% on initial LIP areas to construct the gray areas in Figures 5b and 5d. This

uncertainty window is based on the range of area estimates for well-studied LIPs (e.g., CAMP) [Ernst, 2014;

Ernst et al., 2005; Marzoli, 1999], and incorporates the tendency for areas to be revised upward over time.

Irrespective of the assumed LIP area and decay curves, the key features of the basalt area reconstruction are

a peak after emplacement of the Central Atlantic Magmatic Province around 200 Ma, and a general decline

from 200 Ma to present, with a two-stage decline throughout the Cenozoic. The ‘‘sawtooth’’ pattern is a

result of the geologically rapid emplacement of LIPs, and the assumed rapid initial decline in area as the

weatherable surface is removed. The �2–3-fold reduction in area between 200 Ma and present is due to

the smaller area of more recent LIPs, and a declining rate of material subduction (driving arc basalt

production).

The new reconstruction suggests that the global basaltic area was generally larger than the present day

during the Jurassic and Cretaceous, due to a series of very large basaltic emplacements that accompanied

the breakup phases of Pangaea. Highest values roughly coincide with the start of breakup (�175 Ma) and

subsequent smaller peaks are relatable to the later phases of breakup at �140 and �60 Ma.

A weakness of this approach for calculating basaltic area is the assumption of a constant decay regime over

time. It is more likely that decay rates were greatly affected by paleogeographic position and therefore local

climate. We believe that this method represents a reasonable first attempt to document integrated basalt

area over time from primary data, and expect this type of reconstruction to improve in future work, where

Figure 5. Reconstructed total basalt area for 300 Ma to present. Black decay curves show individual LIP areas, red dashed lines show total

island basalt area (ocean islands and island arcs, assumed proportional to ocean crust destruction rate). Gray areas show resulting recon-

struction for total basalt area, between 80% and 150% of the initial LIP areas shown in Figure 4 and inclusion of ocean islands and arcs,

black lines show the unmodified areas. (a) Exponential decay; (b) resulting total basalt area; (c) delayed exponential decay; (d) resulting

basalt area.
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the use of spatial models [Taylor et al., 2012; Lefebvre et al., 2013] can simulate local weathering, erosion,

and tectonic regimes—and thus more accurately simulate the removal rates of individual LIPs.

3.5. Modeling Seafloor Weathering

The expression for seafloor weathering follows a previous incorporation of this flux into COPSE [Mills et al.,

2014], which is based on the model of Sleep and Zahnle [2001]. The CO2 dependence of seafloor weathering

follows Brady and Gislason [1997], assuming that bottom water temperature controls reaction rate. The rate

is inferred here from atmospheric CO2 [Brady and Gislason, 1997] rather than that of the deep water—as

has been used by Godde�ris and Francois [1995]. Other indirect feedbacks on CO2 may exist [Coogan and Gil-

lis, 2013] but require quantification.

sfw5ksfw � Sprel � RCO2ð Þa: (11)

Here Sprel is the relative crustal generation (i.e., spreading) rate, RCO2 denotes the relative concentration of

CO2 in the atmosphere and ksfw51:7531012 mol/yr is the assumed present-day rate, taken between current

estimates [Alt and Teagle, 1999; Gillis and Coogan, 2011; Staudigel et al., 1989]. a5 0.23 represents the power

of the feedback strength of CO2 on seafloor weathering [Brady and Gislason, 1997], a5 0 (no feedback on

CO2) is also trialed. Ocean crust generation rate is assumed to follow the calculated degassing rate of Van

Der Meer et al. [2014], following the assumption that plate creation and destruction rates are equivalent

over long time scales. We note the limitations of this approximation and that both the present-day rate and

the response to CO2 concentration have large uncertainties attached (see supporting information Figure S1

for the effect of varying present-day rate on the model).

3.6. The Strontium Cycle and 87Sr/86Sr

We add to COPSE a strontium isotope system based on the work of Francois and Walker [1992] and Voll-

staedt et al. [2014]. Although we do not expect this model to reproduce the ocean 87Sr/86Sr record exactly

due to the reservations listed previously, it may be possible to correlate certain features of the record with

changes in terrestrial and seafloor weathering regimes. Ocean Sr sources are the weathering of terrestrial

granites, basalts and carbonates, and mantle input. The 87Sr/86Sr values of silicates are fixed (with an added

expression for increase due to Rb decay), whereas the values for carbonates are allowed to vary depending

on buried material. Model Sr sinks are the incorporation of strontium in carbonate sediments and altered

seafloor basalt. We stress that an arbitrary error envelope can be added to any model Sr curve due to heter-

ogeneity in terrestrial rock ages, which is not considered here. For full details of the Sr cycle see the SI.

4. Model Results and Discussion

4.1. Metamorphic Degassing and Weathering

Figure 6 shows COPSE model output for relative atmospheric CO2 concentration and ocean 87Sr/86Sr for

230–0 Ma when subject to the Van Der Meer et al. [2014] degassing rate. Figures 6a and 6b show results

when seafloor weathering is assumed to not be impacted by changing CO2 concentration (a5 0), Figures

6c and 6d show results when the feedback strength is assumed to be that of the bottom water temperature

mechanism only (a5 0.23 [Brady and Gislason, 1997]). LIP degassing is not considered here.

Running the default COPSE model (no consideration of basalt or seafloor weathering) with the addition of

the recent reconstruction for CO2 degassing results in high CO2 concentration for the entire timeframe

(dashed gray lines) and shows a poor fit to available proxy data, except for the late Cenozoic [Park and

Royer, 2011]. This is because the Van Der Meer et al. [2014] degassing reconstruction is significantly higher

than the GEOCARB/COPSE reconstruction over much of the model timeframe.

Adding seafloor weathering brings model CO2 predictions closer to proxy data (black dashed lines). This is

because we assume seafloor weathering is enhanced when the mid-ocean production rate is higher, mean-

ing that proposed high degassing rates over the Mesozoic may have been countered by an increase in car-

bon sequestration via seafloor weathering. Allowing seafloor weathering to also respond to changes in CO2

(a5 0.23; Figures 6c and 6d) results in stronger regulation and lower predicted CO2 concentrations. Under

the addition of basalt and seafloor weathering, predicted CO2 concentration is further reduced and now

reasonably in line with geologic estimates for a5 0.23. The larger basalt area in the Mesozoic acts to

increase global terrestrial weatherability, which leads to lower steady state CO2 concentration.
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The choice of LIP decay curves and uncertainty on initial LIP areas does not cause large variation in CO2 pre-

dictions—the majority of the variation comes from the uncertainty in the degassing rate. This is expected

as these modifications do not lead to large changes in the overall basalt area forcing (Figure 5). When LIP

area is increased, CO2 predictions are lower, as would be expected under increased terrestrial weatherabil-

ity. The largest changes to CO2 predictions between the different model setups are during the Jurassic and

Cretaceous, where there is assumed to be a large weatherable volcanic area, and a high global spreading

rate. Decline in basaltic area over the Cenozoic causes a reduction in terrestrial weatherability, which along

with the decreasing seafloor spreading rate, brings predictions closer to the unforced model. CO2 predic-

tions for 100–75 Ma do not fit well with proxy data for any scenario, indicating either an error in one of the

model forcings or mechanisms, or perhaps in the proxy data.

It appears that to counter high degassing rates during the Mesozoic may require some feedback between

seafloor weathering rate and CO2 concentration. Assuming no relationship between seafloor weathering

and CO2, we must assume very large areas for LIPs and minimum estimates for degassing in order to match

proxy data (Figure 6a). In the modification of GEOCARB by Van Der Meer et al. [2014], low CO2 is achieved

under the high Mesozoic degassing rate without the addition of seafloor weathering. This requires the

Figure 6. COPSE model output for 230–0 Ma when subject to basalt weathering and seafloor weathering. (a, c) Relative CO2 concentration.

(b, d) Predicted ocean 87Sr86Sr. Gray dashed lines show COPSE model with updated degassing forcing [Van Der Meer et al., 2014] but with-

out inclusion of basalt and seafloor weathering. Black dashed lines show inclusion of seafloor weathering only. The two lines represent the

upper and lower bounds of the degassing data in Van Der Meer et al. [2014]. Black lines show model solution space under inclusion of sea-

floor weathering and combined basalt areas from Figure 5. Pink areas show data for CO2 [Park and Royer, 2011] and ocean 87Sr86Sr [McAr-

thur et al., 2001].
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maximum basalt weathering forcing from GEOCARB (their scenario with NV5 0 corresponds to the very top

of the Xvolc distribution of Berner [2006b]).

The unforced COPSE model (gray dashed line, Figure 6) shows a very poor fit to ocean 87Sr/86Sr data, which

is to be expected as the 87Sr/86Sr ratio of terrestrial rock is fixed at the average crustal value. The trend in

this output therefore reflects the total terrestrial silicate weathering flux, and the gradually increasing
87Sr/86Sr values due to 87Rb decay. Adding seafloor weathering improves the fit very slightly by removing

some of the terrestrial source of radiogenic Sr, which has been shown previously [Francois and Walker,

1992]. Adding seafloor weathering and basalt weathering to the model results in improved prediction of

the 87Sr/86Sr record; increased weathering of low-87Sr/86Sr basalts over the Mesozoic lowers the curve signif-

icantly, and peaks followed by declining trends at �200 Ma, �130 Ma and �65 Ma are reproduced to some

extent—due to peaks in the basalt area forcing which result from emplacement of large igneous provinces

at these times. The peaks in the Sr prediction correspond to decreasing basalt area before LIP emplacement

events, poor replication of 87Sr/86Sr prior to 200 Ma may be related to the increased uncertainty on the

areas of older LIPs.

As with any Sr isotope model, the results depend greatly on the assumed values for 87Sr/86Sr of carbonates.

For all model runs we assume a starting value for carbonate 87Sr/86Sr of 0.714, which allows recovery of

present-day ocean 87Sr/86Sr in the baseline model. 87Sr/86Sr of carbonates is a dynamic variable in the

model, and reflects changes in the source and sink fractionations. Thus, over the model timeframe the
87Sr/86Sr of carbonates decreases due to burial of unradiogenic material to �0.7075 at the present day,

which is close to current values for carbonate weathering (0.7077) [Li et al., 2009]. However, our reasonably

Figure 7. Weathering fluxes over model timeframe for a5 0.23. (a) Terrestrial weathering of basalts (black) verses granites (red, assumed

to make up the rest of terrestrial silicates). (b) Fraction of carbon flux from terrestrial silicate weathering that is the result of basalt weather-

ing, compared to the same variable derived from isotope inversion models [Berner, 2006b; Li and Elderfield, 2013]. (c) Terrestrial silicate

weathering (brown) versus seafloor weathering (blue). (d) Organic carbon fluxes for burial (black), weathering (red) and degassing (blue).
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successful reproduction of ocean 87Sr/86Sr represents only one way of achieving this. Assuming different start-

ing values and changes in carbonate 87Sr/86Sr (i.e., due to heterogeneous weathering of rocks of differing

ages) could lead to accurate prediction of ocean 87Sr/86Sr under different tectonic and weathering regimes.

Our method does however show that the weathering regimes predicted by the model are not falsified by

strontium data, and we believe it also provides an encouraging hypothesis for changes in Mesozoic-

Cenozoic 87Sr/86Sr. Van Der Meer et al. [2014] have shown that the general long-term trend in the 87Sr/86Sr

curve may be related to weathering of volcanic rocks and mantle inputs associated with their degassing

reconstruction, we add to this that the finer-scale details may be attributed to the emplacement of large

igneous provinces. Even so, our model fails to completely capture the rapidity of the 87Sr/86Sr rise over the

last 40 Myrs. This may be attributed to extremely radiogenic Sr sources from Himalayan rivers [Galy et al.,

1999], which exceed our assumed 87Sr/86Sr of ‘‘granitic’’ rocks, or to a more rapid uplift effect than is used in

the model. However, model integrations under the more rapid Cenozoic uplift reconstruction of Hay et al.

[2006] do not show an improved fit to strontium or CO2 data (see supporting information Figure S2).

Figure 7 shows the shifts between basalt, granite, and seafloor weathering regimes as predicted by the for-

ward model. Results imply that that basalt was the greater contributor to total terrestrial silicate weathering

during the Triassic, Jurassic, and Cretaceous. During the Cenozoic, basalt weathering decreases significantly

while granite weathering increases somewhat, becoming the greater flux in the last �20 Myr. Total terres-

trial silicate weathering peaks around 100 Ma, driven by a very large basalt weathering flux at this time.

Comparing the model output for the volcanic fraction (i.e., basalt fraction) of terrestrial silicate weathering

(Xvolc; Figure 7b) to the same parameter calculated from isotope inverse modeling by Berner [2006b] shows

that we are at the upper end of Berner’s estimates over the model timeframe. A key point of agreement is

the middle to late Jurassic (�175–150 Ma), where Berner’s isotope inversion requires around 80–90% of sili-

cate weathering to come from basalts in order to match the extremely low 87Sr/86Sr values for this time.

Our model replicates the minimum in 87Sr/86Sr at this time under Xvolc � 0.8. Our predictions of Xvolc agree

well over the past 100 Myr with the inverse model inferences of Li and Elderfield [2013].

This work, Berner’s isotope inversion, and the multiple-isotope-inversion model of Li and Elderfield [2013] all

predict a reduction in the volcanic fraction of terrestrial silicate weathering over the Cenozoic. Our model

can assign a definite cause for this—the decrease in basalt area due to falling rate of high-area LIP emplace-

ment and falling subduction rates (driving arc volcanism). The decrease in Cenozoic Xvolc in our model is

comparable to these other approaches, consistent with a reasonable reproduction of the rise in 87Sr/86Sr.

Figure 7c compares weathering fluxes from total terrestrial silicates (all basalt1granite) with seafloor

weathering. The two fluxes generally follow the same pattern, which is expected as they both are depend-

ent on atmospheric CO2 concentration. However, the fluxes begin to diverge around 150 Ma, meaning that

for 230–150 Ma seafloor weathering is similarly important as terrestrial silicate weathering in the carbon

cycle, and for 150–0 Ma the terrestrial flux gradually becomes much more important. This shift is due to

enhancement of terrestrial weathering fluxes in COPSE-driven by increasing uplift rates and the evolution

of angiosperms on the land surface, and also driven by decreasing rates of ocean ridge production—which

weaken the seafloor weathering sink. These factors combine to shift the balance of CO2 sinks away from

seafloor alteration and toward terrestrial silicate weathering [Mills et al., 2014].

This supports the hypothesis, based on a fivefold decrease in calcite concentrations in the upper oceanic

crust, that seafloor weathering was a stronger climate regulator during the Mesozoic, and had a less impor-

tant role in the Cenozoic [Coogan and Gillis, 2013], although determining the source of calcite in seafloor

basalts still poses a problem. It also makes the suggestion that this switch was driven by a combination of

tectonic and biotic processes.

Figure 7d shows the model organic carbon fluxes, which are largely controlled by erosion rates, and thus

follow the uplift forcing, aside from organic carbon degassing at subduction zones, which scales with the

degassing forcing. Rapid emplacement of LIPs is predicted to drive spikes in organic carbon burial due to

additional nutrient delivery from fresh basaltic terrains.

In Figure 8, we revisit the degassing scenario used in the original GEOCARB and COPSE models (see Figure

1). The degassing curve is similar to the estimations of Van Der Meer et al. [2014] for 100–0 Ma but the GEO-

CARB approximation has much lower values, close to the present day, for 230–100 Ma. As would be
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expected, modeled CO2 concentrations for 230–100 Ma are now considerably lower than proxy estimates.

Under GEOCARB degassing, seafloor weathering remains smaller than terrestrial silicate weathering for the

whole model timeframe, and does not show significant step change between the Mesozoic and present

day. Granite and basalt weathering fluxes are also lowered for 230–100 Ma, as is required to balance the car-

bon cycle, but the volcanic fraction of weathering (Xvolc) remains similar.

Our modeling lends support to the degassing reconstruction of Van Der Meer et al. [2014], reasoning that

the large area of weatherable basalts expected during the early and mid-Mesozoic would imply much lower

Figure 8. COPSE model output for 230–0 Ma when subject to basalt weathering and seafloor weathering (a5 0.23), under original GEOCARB

degassing scenario (see Figure 1). (a) Relative CO2 concentration. (b) Predicted ocean 87Sr86Sr. (c) Weathering of basalts (black) and granites

(red). (d) Fraction of carbon flux from terrestrial silicate weathering that is the result of basalt weathering, compared to the same variable

derived from isotope inversion models [Berner, 2006b; Li and Elderfield, 2013]. (e) Terrestrial silicate weathering (brown) versus seafloor weath-

ering (blue). (f) Organic carbon fluxes for burial (black), weathering (red) and degassing (blue). Areas show model solution space under inclu-

sion of CO2 degassing scenarios, seafloor weathering and total basalt areas from Figure 5. Pink areas show data for CO2 [Park and Royer,

2011] and ocean 87Sr86Sr [McArthur et al., 2001].
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CO2 than suggested by proxies [Park and Royer, 2011], unless countered by higher degassing rates. Low

Mesozoic degassing would have to be accompanied by much smaller basalt and seafloor weathering fluxes

in order to reproduce CO2 proxies, which has been assumed in previous models, but we question here.

Although our modeling can reproduced CO2 proxies reasonably, many features of the proxy record are not

reproduced, such as high early Cenozoic CO2. It may be that using spatial paleogeographic reconstructions

will allow models to match these data, or there may be further important mechanisms that are missing

from current models.

4.2. CO2 Input and Seafloor Weathering Due to LIP Emplacement

Figure 9 shows model predictions for CO2 and
87Sr/86Sr when subject to LIP CO2 degassing alongside the

forcing factors in Figure 6 (a5 0.23 case). This scenario assumes the Van Der Meer et al. [2014] global

degassing curve and that each LIP degasses over 200 kyr. The result is a series of spikes in CO2 concentra-

tion, which cause small positive ‘‘humps’’ in 87Sr/86Sr due to increased terrestrial weathering as a result of

rising temperature. Assuming the minimum amount of CO2 per km
3 of basalt, the degassing does not signif-

icantly alter model predictions. Taking a maximum assumption here results in clear CO2 spikes, with the

atmosphere and ocean CO2 inventory almost doubling during eruption of the Ontong-Java plateau. Other

LIPs result in fairly modest long-term CO2 rises, even when taking a maximum estimate for the CO2-volume

relationship.

The CAMP emplacement results in only a minor increase in atmospheric CO2 concentration in our model, in

contrast to the �50% increase shown in the similar carbon cycle model of Beerling and Berner [2002] (the

model run in question assumes �13,000GtC emissions, roughly equal to our maximum of 1018 mol C). The

difference can be accounted for by our consideration of the weathering of CAMP basalts, which partially

nullify the CO2 rise by increasing global weatherability, eventually bringing CO2 to a steady state lower than

the pre-CAMP value. Additionally, COPSE includes negative feedback on CO2 via a nutrient-driven bio-

sphere, which responds to enhanced weathering by burying more organic carbon (Figure 9f). Our assump-

tion of higher background degassing (and therefore weathering) rates for the Mesozoic also reduces the

effectiveness of adding more CO2 (i.e., the fractional increase in CO2 input is less). We therefore propose

that unless injection is geologically very rapid (<105 years), the long term effects of CO2 emissions from

continental flood basalts may be substantially reduced by the associated highly weatherable rock areas that

are emplaced. This work however does not consider potential climate drivers from mass extinctions and

short term carbonate system feedbacks, which may have a substantial effect over shorter time scales. We

also do not consider the changing proportion of ocean/atmosphere carbon that is contained in the atmos-

phere, which may be boosted by rapid injection before equilibrium is reached.

Submarine LIPs are assumed to influence seafloor weathering rates via increasing crustal production rates,

which leads to damping of the associated CO2 spikes. In the 200 kyr degassing scenarios shown, seafloor

weathering rates are increased dramatically during the emplacement of Cretaceous ocean plateaux, and by

an order of magnitude during the Ontong-Java emplacement (125 Ma). Assuming the minimum CO2

degassing for the Ontong-Java leads to brief CO2 decrease in the model, as enhancement of seafloor weath-

ering outweighs the CO2 source. Our approach here is preliminary, but may help to reconcile apparent fall-

ing Cretaceous CO2 concentrations with such large CO2 injection events. It should be noted that short term

CO2 variations resulting from oceanic LIP emplacements require much more detailed study, and an

improved understanding of hydrothermal circulation within and around ocean plateaus to properly quan-

tify their contribution to seafloor weathering.

Degassing times for LIPs may be significantly longer than 200 kyrs. Model runs under longer (typically 0.5–3

Myr) emplacement times, as compiled by Courtilliot and Renne [2003], show a reduction in the magnitude

of CO2 spikes, and seafloor weathering enhancements (supporting information Figure S3). Although the

Ontong-Java plateau still causes a significant perturbation.

5. Summary and Conclusions

Our forward model reproduces Mesozoic and Cenozoic CO2 concentrations satisfactorily, and correctly pre-

dicts many of the aspects of ocean 87Sr/86Sr. It appears that recently-inferred high degassing rates during

the Mesozoic [Van Der Meer et al., 2014], if correct, would have been countered by increased rates of both
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seafloor weathering and basalt weathering over this era, and not by basalt weathering alone. Consideration

of the paleolatitude of LIPs and local hydrological regimes in future models could result in87Sr/86Sr predic-

tions falling even closer to the geologic record. While our model does include an increase in uplift during

the Cenozoic [Raymo and Ruddiman, 1992], this is not the dominant factor driving Cenozoic CO2 drawdown

or the modeled rise in 87Sr/86Sr. Instead, the drop in CO2 is dominated by declining degassing (see support-

ing information Figure S4 for a model run with constant degassing) and the rise in87Sr/86Sr is dominated by

decreasing area of basalts undergoing weathering (Figure 6).

Figure 9. COPSE model output for 230–0 Ma when subject to basalt weathering and seafloor weathering (a5 0.23), with LIP CO2 releases

over 200 kyr, and seafloor weathering rate dependent on LIP crustal generation. (a) Relative CO2 concentration. (b) Predicted ocean
87Sr86Sr. (c) Weathering of basalts (black) and granites (red). (d) Fraction of carbon flux from terrestrial silicate weathering that is the result

of basalt weathering, compared to the same variable derived from isotope inversion models [Berner, 2006b; Li and Elderfield, 2013]. (e) Ter-

restrial silicate weathering (brown) versus seafloor weathering (blue). (f) Organic carbon fluxes for burial (black), weathering (red) and

degassing (blue). Areas show model solution space under inclusion of CO2 degassing scenarios, seafloor weathering and all terrestrial

basalt areas from Figure 5. Pink areas show data for CO2 [Park and Royer, 2011] and ocean 87Sr86Sr [McArthur et al., 2001].
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Our model defines three climate modes: Pre-Cretaceous CO2 regulation is split almost equally between sea-

floor and terrestrial weathering, with basalt weathering exceeding granite weathering. During the Creta-

ceous, regulation begins to rely more heavily on terrestrial weathering, with basalt weathering still

exceeding granite weathering, and Cenozoic regulation is still primarily terrestrial, but sees granites taking

over from basalts. This distinction between weathering sources may be very important for the delivery of

the limiting nutrient phosphate, and resulting oxygenation through organic carbon burial. Seafloor weath-

ering does not result in P input [Mills et al., 2014] and phosphate availability differs between granites and

basalts [Porder and Ramachandran, 2013]. Our results are dependent on the assumed CO2 degassing curve:

predictions for Mesozoic CO2 concentration appear to support high degassing during this time [Van Der

Meer et al., 2014]; however, the notion of a definitive reconstruction of degassing rates is far from resolved.

We have reconstructed the global basaltic area from primary data and simple decay relationships. Modeled

basalt weathering under this constraint agrees well with the trends derived from isotope inversion methods

[Berner, 2006b; Li and Elderfield, 2013]. The shift from basalt to nonbasalt weathering during the Cenozoic

has been attributed to Himalayan uplift enhancing the nonbasalt flux [Li and Elderfield, 2013]. Here we con-

clude that a �50% reduction in basaltic area during the Cenozoic was a key factor in reducing the silicate

weathering flux from basalts over this time. The increased proportional weathering of granites over the

Cenozoic in our model is a response to decreased basalt weathering, as well as uplift of granites—thus the

‘‘seesaw’’ carbon cycle of the Cenozoic [Li and Elderfield, 2013] may be controlled by either basalt or granite

weathering enhancements.

Including additional isotope systems will enable these scenarios to be further tested. The Cenozoic lithium iso-

tope record [Misra and Froelich, 2012] shows a rise in d
7Li of�9&. This suggests [Misra and Froelich, 2012;

Froelich and Misra, 2014] a change in terrestrial weathering regime from a supply limited Paleocene to a less-

intense, kinetically limited present day, combined with a shift in seafloor sinks with an increase in removal by

reverse-weathering (removal into sedimentary clays) relative to altered basalt [Li and West, 2014]. This is

broadly consistent with our model results (with a decrease in temperature and increase in erosion over the

Cenozoic). The model here also suggests additional factors that may contribute: the shift from basalt (with

lower incongruent weathering [Misra and Froelich, 2012]) to granite weathering, and a decline in degassing

(reducing both terrestrial silicate weathering intensity and low-temperature seafloor basalt alteration).

Long term CO2 release from continental LIPs is countered in our model by the weathering effects of the

newly emplaced basaltic area, as has been established by individual studies of these events [Dessert et al.,

2001; Grard et al., 2005]. Large increases in CO2 concentration associated with LIPs require geologically rapid

CO2 injection, or rely on shorter-term processes such as emissions from intrusion into organic materials and

destabilization of methane hydrates [e.g., Beerling and Berner, 2002]. Similarly, CO2 input from oceanic LIPs

may be countered by increased seafloor basalt alteration.

The breakup phases of Pangaea are times of enhanced CO2 degassing, but also seem to correlate with high

proportions of weatherable volcanic area and enhancements of seafloor weathering. This seems plausible

given that both LIP emplacements and continental breakup may be driven to some extent by mantle

plumes and enhanced crustal production.

Recent spatial simulations of LIP locations for several time points during the Cenozoic [Lefebvre et al., 2013]

suggest that weathering of igneous provinces may have generally increased over this time as LIPs encoun-

ter different regional climates. This trend appears contrary to the results shown here (see supporting infor-

mation Figure S4 for a comparison), and does not show the decrease which we attribute to decay of LIP

areas. Future work must focus on incorporating both local climatic changes [Lefebvre et al., 2013; Kent and

Muttoni, 2013] and reconstructions of previous basalt areas into a dynamic model, in order to more accu-

rately represent changing tectonic drivers of climate.
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