
Changing the Perception of Computer Science: 
A Visual, Activity-Based Curriculum 

Ali Fatolahi Cate Huston 
University of Ottawa Google Waterloo 

Abstract 

The number of students to enroll in computer 
science (CS) as well as the quality of the outcome of 
the selection process is expected to be associated 
with outreach programs. A successful outreach 
program needs to address students with different 
levels of knowledge and a variety of interests. It 
needs to balance being exciting with the educational 
aspect. Instructors of such programs, being seen as 
role models, must be strong in practical CS skills 
and communicate effectively. In this paper, a visual 
activity-based curriculum to introduce high school 
students to CS is presented. The curriculum is 
successfully tested in the context of CS outreach 
programs at the University of Ottawa and the results 
are so far extremely positive. 

1. Introduction

Although Computer Science (CS) enrolment has
declined in recent years, the last two years have 
shown a positive trend in the US Error! Reference 
source not found.. At the same time, universities 
have started realizing the necessity of effective 
outreach programs. More and more universities 
consider CS outreach important in order to recruit 
students. For outreach to be successful, it is 
important to focus on students who may not be 
considering taking CS, but would likely be 
successful at it. This includes students who have no 
prior programming experience, but may be strong in 
related fields, such as mathematics, and especially 
female students. We view it as important to break the 
stereotypes about CS students and give candidates a 
more exciting view of what their work would look 
like if they take CS at university, whilst remaining 
realistic. 

The increase of enrollment has had its own 
problems partly because many students, who enroll 
in CS lose their interest in the upcoming years. This 
can lead to more students dropping off the program 
causing difficulties for universities when planning 
their hiring strategies. Again, a well-executed 
outreach program can lead students to a proper 
understanding of CS and hence to involve 
appropriate candidates to the program. In this paper, 
we propose a visual activity-based curriculum to 
introduce CS to high school students.  

We also present our experience of developing and 
running an outreach workshop Error! Reference 

source not found. using this curriculum. The 
workshop was designed to engage the interest of 16-
18 year-olds in taking CS at university. The 
workshop is one day in duration; typically students 
receive around 4 hours of programming time and 
instruction. This presents the challenge of balancing 
our two goals. We want to give students an idea of 
what they would do in a CS course but we also hope 
to inspire them with what it is possible to create and 
more importantly to make it interesting. 

In order to avoid the effect of the imbalanced 
prior experience of different students, several 
examples ranging from elementary to advanced were 
created with a variety of flavors such as gaming, 
math, artwork and image processing. Since no grade 
was given in the workshop, an end result was defined 
for the students, which was to create something 
“awesome” from their individual point-of-view. 

The workshop is a part of a wider program called 
CONTACT Error! Reference source not found., 
designed to attract high school students to 
engineering through hands-on experience at the 
University of Ottawa. The hosting university also 
offers workshops in Chemical Engineering and 
Robotics, guest lecturing from professors and 
graduate students, as well as one-week mini-courses 
on a variety of topics. 

In this paper, we will outline the key design 
choices made in the creation of this workshop, and 
our experiences in running it. Results suggest the 
workshop is having a positive impact - in post-
workshop surveys, the students report an increased 
interest in evaluating CS at their college/university-
level of study. This is in accordance with results 
from the university that projects an increase in 
enrollments in CS in comparison to other programs. 

The paper is organized as follows. In Section 2, 
we present the history of the workshop. In Section 3, 
we review the related work. Section 4 contains a 
discussion of design choices made. Section 5 
provides an analysis of the curriculum. Section 6 
summarizes the results. Finally Section 7 concludes 
this paper with a focus on the future work. 

2. Background

The spark of this idea came when one of the
authors was teaching programming (using the Java 
programming language) in the US at the technology 
summer camp, IDTech Camp. Students taking the 
other project-based courses were taking home video 

International Journal for Cross-Disciplinary Subjects in Education (IJCDSE), Volume 2, Issue 3, September 2011

Copyright © 2011, Infonomics Society 430



 

 

games, (sometimes even 3D ones!), after weeklong 
courses. The programming classes were disappointed 
to take home a text-based hangman. The difficulty 
was that creating a Graphical User Interface (GUI) in 
Java (using the Swing libraries) is prohibitively 
difficult to introduce to beginners. 

As a result, a prototype curriculum was developed 
based on a design that students and instructor had 
created together. A programming framework was 
produced, with the GUI coded by the instructor, and 
the students coded the inner workings themselves. 

Additional frameworks were developed the 
following summer, and subsequently the existing 
curriculum was overhauled with a more visual focus. 
Early concepts were introduced using Processing 
Error! Reference source not found. (a language 
and editor for teachers and artists that makes it 
simple to create visual applets) as a library used 
within Eclipse development environment. Students 
had the option of a final project created using 
Processing, or with a Java graphical user interface 
(GUI) framework provided. This curriculum was 
taught to approximately 6,000 students aged 12-18 
participating in summer programming courses across 
the US and in Shanghai. The Programming course 
became one of the most popular in the 2009 season. 

The workshop discussed here builds on this 
experience. Early programming concepts such as 
variables and assignment, conditional logic and loops 
are introduced in an entirely visual way, using what 
we describe as an “activity-based” curriculum - 
inspired by Don Norman’s ideas about “activity-
centred design” Error! Reference source not 
found.. A low ratio of students to TAs is maintained 
to allow students autonomy in tasks and to enable 
students to take on more challenging creations. 

Due to the short timeframe of the workshops, we 
opt to use the simpler Processing editor (shown in 
Error! Reference source not found.) rather than 
Eclipse. Eclipse is an extremely complex and 
powerful program and has a steep learning curve, 
hence the popularity of simplified environments such 
as “Dr. Java” for the first year programming courses. 
The Processing editor is preferred for its simplicity. 
 It also removes some of the detailed syntax 
necessary to create an applet. 

 
3. Related Work 
 

The need to change teaching methods of computer 
science (CS) with regard to programming languages 
has been raised by many educators. Harvey Mudd 
credit curriculum redesign as one of the three 
promising practices that they have used to 
dramatically increase the number of women in their 
CS program [6]. According to Papp-Varga et al. [7], 
there is a methodological uncertainty in teaching 
methods of programming languages and none of the 
existing teaching methods are based on the 

expectations of the learners. Blum [8] mentions that 
the curriculum model for CS at Carnegie Mellon 
favored male students, those with prior experience, 
and was focused on the coding rather than the end 
result. This agrees with the fact that more parents 
encourage their daughters to be actresses than 
engineers [9] – suggesting that much work is still 
needed to change perceptions of Computer Science. 

Papp-Varga et al. Error! Reference source not 
found. mention a number of methods for teaching 
the programming skills, among which the “Sample 
task-based” is the closest one to ours because it 
allows students learn by example but a major 
difference is that by presenting a limited set of 
examples it misses the component of different levels 
of skill and different interest groups. We make a 
variety of examples available so that students, once 
familiar with basic examples, are free to choose 
examples that best suit their level and interest. 

Successful experiments reported by Patton Error! 
Reference source not found. are based on different 
types of curriculum for different groups of students 
based on their interest, and that teaching 
programming must be based on reading rather than 
writing; students are given partially-written programs 
at the beginning to aid them in the process of 
learning. According to Patton Error! Reference 
source not found., users of programming languages 
are changing from people who have problems to be 
solved using computers to those who want to 
program computers. This demands interactive 
teaching methods that help students understand what 
they can do with a programming language rather 
than knowing the details of a programming language. 
This study affirms our choice of methods and 
techniques. 

Ragonis et al. Error! Reference source not 
found. study approaches in teaching CS and thus 
conclude the importance of teaching methods and 
techniques as a challenge in teaching CS especially 
with regard to students recently graduated from high 
school. The authors suggest that the variety of 
programs and teaching methods in teaching high 
school students makes it difficult to propose a unique 
CS teacher preparation approach. The authors 
confirm that high school students come from a 
variety of levels of interests and skills in computer 
science and once joined in a university-level 
program, it is essential to employ curricula targeting 
multi-level students especially in first and second 
year courses. 

Yadav et al. Error! Reference source not found. 
verify the difficulty of incorporating computation in 
problem solving and suggest more active learning 
should be involved for teaching computational 
thinking in different programs. The authors agree 
that conventional CS teaching methods focusing on 
programming concepts should be changed toward 

International Journal for Cross-Disciplinary Subjects in Education (IJCDSE), Volume 2, Issue 3, September 2011

Copyright © 2011, Infonomics Society 431



 

 

training problem solvers that are able to interact with 
computers effectively and efficiently. 

Liu et al. [13] report efforts to teach CS to 
students and educators. They asked teachers to 
develop CS teaching curriculum and taught students 
using game/animation development tools. They also 
mention the importance of quality TAs assigned to 
every student. Their students complained not being 
able to work on their material from their own 
residence, which asserts the importance of respecting 
the open-source and remotely accessible curricula 
that allows students working from home as well. 

Bell and Lambert Error! Reference source not 
found. indicate a large distance between the fields of 
CS and education, which requires more practice to 
create working CS curricula in accordance with 
educational theories. The authors suggest reducing 
paper-based and textual contents for teaching CS. 
The authors also mention the importance of active 
learning and involving skilled TAs. 

Drake and Sung Error! Reference source not 
found. encourage the usage of games for teaching 
programming. This is especially true board, card and 
dice games. These games need less effort from the 
instructor to teach background and have relatively 
simple UI. The authors also report the 
overwhelmingly male nature of CS enrollment. They 
agree that teaching CS should be objective and 
focused on problem-solving rather than being 
concept-oriented. 

Sael et al. Error! Reference source not found. 
report that most of problems in teaching CS are 
related to the fact that a programmer 1) needs to 
understand a problem as a machine would do and 2) 
have to come up with a solution as a human would 
do. Once this is done, the even harder step is to 
communicate the human-made solution with the 
machine. An effective suggestion is to avoid students 
being involved with syntax difficulties by choosing a 
simple language. For example, a simple framework 
such as Processing may be used in place of Java. 
Carlos et al. Error! Reference source not found. 
address the same problem from a more technical 
point-of-view by building an environment to help 
students avoiding low-level syntax errors and focus 
on algorithmic features instead. 

Guzdial Error! Reference source not found. 
explains how the enrollment in CS has dramatically 
increased at Stanford in past two years. This has 
caused the need to create new faculty positions and 
requires more innovative and flexible CS curriculum. 
Because the large number of students comes from 
different levels, a portion of enrolments are from 
those who have a job in an area but would like to 
increase their chance to apply for internal jobs 
requiring CS knowledge. Other students are only 
joining university in light of the economic 
difficulties in hope a CS degree will help them 
finding a job.  

A well-directed outreach program can also help 
students make the right choice and help better 
planning for CS courses of the 3rd and 4th years. As 
Cain Miller puts it, the need to redesigning 
curriculum by focusing on applications rather than 
concepts is inevitable Error! Reference source not 
found.. 
 
4. Design Principles 
 

Our workshop aims to incorporate the elements 
for Motivation 3.0 Error! Reference source not 
found. - autonomy, mastery, and purpose, 
particularly autonomy, through self-directed 
learning. Based on the lessons learnt from different 
rounds of the workshop as well as best practices 
suggested by the related work, we have set up a 
framework based on the following principles: 
Entirely Visual, Activity Based, Open Source, 
Effective TAs, Self Directed, Multi-Level and Multi-
Interest. 
 
4.1. Entirely Visual 
 

Every exercise has a visual outcome, examples 
are shown in Appendix A. Students can compare 
what they produced to the one in the instructions. 
This provides a visual honesty lacking in text-based 
programming applications that, in the experience of 
the authors, students find frustrating and 
discouraging. By working visually, we turn the 
program from a "black-box" where the student often 
does not understand the relationship between the 
input and output, into a colourful one. 

 

4.2. Activity-Based 
 

When teaching programming, the following 
pattern often occurs: (1) Introduce concept. (2) 
Provide contrived example. Programmers do not 
normally follow this method for writing code. 
Programmers typically write code as follows: (1) 
Evaluate problem. (2) Apply solution, which could 
be known, looked up or invented depending on the 
experience of the programmer, and the complexity of 
the problem. 

Contrived examples are boring, and patronizing to 
the student. In our curriculum, we instead present 
things that the student might want to do, for example 
- “repeat things” (loops), or “sometimes do one 
thing, sometimes do another” (conditionals), or using 
a grid (arrays, shown in Figure 2), and provide code 
with an explanation. For a one-day workshop, we 
cannot expect the students to memorize concepts and 
it is unreasonable to expect them to be interested to. 
Our focus is on showing them how we can solve 
problems programmatically and why that is fun. 

 

International Journal for Cross-Disciplinary Subjects in Education (IJCDSE), Volume 2, Issue 3, September 2011

Copyright © 2011, Infonomics Society 432



 

 

4.3. Open Source 
 

Everything about our workshop is Open-Sourced. 
The content is licensed under a Creative Commons 
Attribution-Non Commercial license. Similarly, the 
Processing library is licensed under the LGPL. Thus, 
students and teachers can distribute their code 
without concern, and more importantly - students 
and their teachers can download the software at 
home or at school free of charge, and continue to 
explore the modules in their own time. We have also 
documented the experiences on blogs for feedback 
on the design and content. 

 

4.4. TAs 
 

A low ratio of students to TAs (4 students to each 
TA) is important. Being stuck, and having to wait, is 
extremely frustrating to a student. Also, more one-
on-one help from a TA makes it possible for students 
to tackle more challenging projects. TAs were 
interviewed and asked both technical questions and 
experience questions. Requirements were: (1) Fast 
problem solving; and (2) Good, clear, 
communication of their solution. 

Communication is really important - firstly, a 
more effective communicator will teach students 
faster. Secondly, better communicators are more 
likely to break the stereotype of CS students as 
socially inept and not fun to hang out with. We look 
for TAs who are talented programmers but also can 
be good role models for the students. This includes 
hiring undergraduates, not just graduate students, 
who sometimes code infrequently. 

 

4.5. Self-Directed 
 

Related to the low ratio of students to TAs, was 
the self-directed nature of the workshop. The 
curriculum is available online, thus there is no need 
to share printed copies, or wait for an instructor to 
explain. The early modules give students familiarity 
with Processing, however students with prior 
programming experience can quickly skip ahead to 
more advanced examples, such as the fractal shown 
in Figure 3. Where possible the modules are written 
to be stand-alone, so no specific path is necessary. 
Having a good selection of modules and an open-
ended project description (“make something 
beautiful and/or interesting”) means that students 
don’t have to work on the same "final" thing as their 
friends, if they don’t want to. 
 
4.6 Inclusive of Interests and Levels 
 

Processing is designed as a tool for artists, and 
there are several modules involving creating fractals 
and showing students how to create patterns. 
Creating games is often used to engage children and 

teenagers in wanting to learn to code, but by 
allowing this alternative, artistic track, we hope to 
broaden the reach of our workshop. However, for 
students interested in games, there is a framework for 
a simplified game of Pac-Man1. We plan to add more 
games, such as Brick Breaker. 

We have a mix of modules of varying challenges; 
for example, the most tricky parts of the fractals and 
patterns is the mathematics, so students less 
comfortable writing code can work on those. An 
open-ended attitude means that there are always 
additional challenges, for example - animation! 
Students with prior knowledge will often define their 
own challenge, or even look elsewhere on the 
Internet and explore the 3D capabilities of 
Processing. 

We deliberately construct an open learning 
environment - students are free to search elsewhere 
and are directed to resources like the reference on the 
Processing site, and Wikipedia. We have found that 
this encourages them to use alternative resources on 
the Internet to create things outside the curriculum, 
in a way which we hope will continue their interest 
in exploring Processing, and programming in 
general, after the workshop. Students proud of their 
projects are welcome to upload pictures of them to 
Facebook or other Social Networks, spreading our 
message that programming is awesome. 

 
5. Analysis 
 

In this section, we review our principles and 
verify if the curriculum contributes to those. This 
analysis is performed with regard to three principals 
that students have declared as their most favourite 
aspects of the workshop. These are 1) Entirely 
Visual, 2) Activity-Base and 3) Multiple 
Levels/Interests.  
 
Entirely Visual: We had to accompany some code 
or provide algorithmic guidelines to embark the 
thinking process. Nevertheless, all examples are 
accompanied by a visual output and even the ratio of 
lines of code per example is also kept at a very 
minimum level that is thirteen lines per each 
example in average. Table 1 lists the lines of code 
per every visual output. 
 
Activity-Based: The curriculum keeps introducing 
concepts along activities. Concepts are only 
introduced if necessary to help understanding the 
problem or designing the solution. Table 2 shows the 
ratio of concepts introduced for every example. 
According to Table 2, every example introduces 
roughly one new concept, while creating an 

                                                           
1 Pac-Man is a trademark of Namco Bandai Games 
Inc 

International Journal for Cross-Disciplinary Subjects in Education (IJCDSE), Volume 2, Issue 3, September 2011

Copyright © 2011, Infonomics Society 433



 

 

impressive visual output and solving a realistic 
problem, not a contrived one. 
 
Multiple Interests/Levels: Table 3 shows how 
examples vary from different levels. According to 
Table 3, as the level of difficulty increases the 
number of examples of each level decreases because 
more advanced problems take longer to be solved. 
Students at advanced levels are also encouraged to 
look for new concepts on the Internet. With funding, 
we hope to increase the number of examples 
available at every level. 
 

Table 1. Lines of Code per Visual Output 
Example Code Lines 
Create an Applet 0 
Size and Background 5 
Drawing Shapes 5 
Saving Things for Later 12 
Making the Image Change 15 
Sometimes Do This/That 18 
Repeating Things 20 
Responding to Mouse Clicks 4 
Responding to Keyboard Input 28 
Saving Lots of Values 22 
Working with a Grid 31 
Applet to Web Page 0 
Pretty Web 4 
Marble Fractal 18 
Sierpinski Triangle 13 
Average 13 

 
Table 2. New Concepts per Visual Output 

Example Concepts 
Create an Applet Applet vs. Canvas 

(1) 
Size and Background Brackets, RGB (2) 
Drawing Shapes Drawing Shape (1) 
Saving Things for Later Variables (1) 
Making the Image Change Framing (1) 
Sometimes Do This/That Conditions, MOD 

(2) 
Repeating Things Iteration (1) 
Responding to Mouse Clicks Mouse Clicks (1) 
Responding to Keyboard Input Keyboard (1) 
Saving Lots of Values Array, Type Cast 

(2) 
Working with a Grid 2D Arrays (1) 
Applet to Web Page HTML Applet (1) 
Pretty Web 0 
Marble Fractal Recursion (1) 
Sierpinski Triangle Square Root (1) 
Average 1.13 

 
 
 
 
 
 
 
 
 
 
 

Table 3. Levels of Examples 
Example Concepts 
Create an Applet Basic 
Size and Background Basic 
Drawing Shapes Basic 
Saving Things for Later Basic 
Making the Image Change Intermediate 
Sometimes Do This/That Basic 
Repeating Things Basic 
Responding to Mouse Clicks Intermediate 
Responding to Keyboard Input Intermediate 
Saving Lots of Values Intermediate 
Working with a Grid Intermediate 
Applet to Web Page Basic 
Pretty Web Advanced 
Marble Fractal Advanced 
Sierpinski Triangle Advanced 
 
6. Results 
 

The workshop was held three times with roughly 
90 students in total. At the end of each workshop, the 
students fill in a survey about their experiences. 
Overall, the response has been extremely positive. 

The objective of the workshops was to encourage 
students to choose CS/engineering as their future 
program of study. Results from workshops based on 
the evaluation forms filled out by students show that 
more than 85% indicate they would be interested in 
participating in the events and programs organized 
by the Faculty of Engineering. Of this 85%, 55% 
have expressed their interest to be contacted about 
the program, while of the 45% who have said they 
would not be interested in being communicated with 
11% have mentioned distance as the reason. More 
specifically, 62% have said they either liked it or 
loved it. This may seem low but the reader should 
not that students were randomly selected and 
assigned to workshops by the school administration 
and not based on their own interest. 

According to the comments given in the feedback 
forms, what students enjoyed most was the 
interactive context of the workshop. They discover 
working with objects and formulas could be easy and 
that they can really see what they have developed. 

 To 14% of students the workshop seemed not be 
helpful and for 24% of them the workshop was 
interesting but did not encourage them specifically 
towards programming. 60% have said the workshop 
encouraged them to consider CS as their future 
university program. 

Reports of the hosting university show the 
number of applications increased by 4.22% and 
4.41% for Software Engineering and Computer 
Science, respectively compared to the previous year. 
The interesting statistic is the acceptances, which 
increased by 116.67% and 104.55% for Software 
Engineering and Computer Science, respectively. It 
is also understood that this is not a Faculty wide 
trend, since the increase for the other programs is far 

International Journal for Cross-Disciplinary Subjects in Education (IJCDSE), Volume 2, Issue 3, September 2011

Copyright © 2011, Infonomics Society 434



 

 

less than the one of CS. In time, the university will 
be able to see how much of this increase resulted 
from the workshops and how mush is caused by 
other components of the CONTACT program as well 
as other factors including external ones. 

 
7. Conclusion 
 

We introduced a visual activity-based curriculum 
for teaching CS to high-school students in this paper. 
The curriculum is designed to motivate students to 
consider CS as their university-level program. This is 
in line with the increased focus of universities in 
extending and improving their outreach programs. 
    The curriculum follows several principles to 
involve students actively and to let them work 
individually toward a visual goal. Students can 
choose among a variety of examples based on their 
level of skill and their interests. The content is 
available online and the tools used are open-source. 
Results show that the workshop has encouraged the 
majority of students to consider CS as their future 
program. This is aligned with the official statistics of 
the hosting university that suggest over 100% 
increases in CS acceptances over the past year. 

The future work is focused on developing more 
examples and content. Also, we aim at creating a 
more effective strategy to create a network of 
students involved in workshops and continue 
interacting with them. Finally, it would be interesting 
to see if a similar approach could also help reducing 
the number of 3rd and 4th year drop-offs. We have 
demonstrated that by revising a non-activity-based 
CS curriculum to an activity-based one, we can 
appeal to a wider variety of people, there are an 
increasing number of examples of this (e.g. Carnegie 
Mellon and Harvey Mudd). Outreach should be just 
the beginning. 
 
8. Acknowledgements 
 

The authors would like to thank Professor Marcel 
Turcotte of the School of Electrical and Computer 
Science of the University of Ottawa for supporting 
the workshop and the research process associated 
with it. 
 
10. References 
 
[1] Peter Harsha, “CRA Taulbee Report: CS Enrollments, 

New Majors Up For 2nd Straight Year”, Computing 
Research Policy Blog, March 24th, 2010 

[2] Cate Huston, (2010), “Processing Workshop”, 
http://www.catehuston.com/workshop. (Access date: 
13 March, 2011). 

[3] uOttawa, (2010), CONTACT program, 
http://www.engineering.uottawa.ca/en/contact. 

[4] Processing, (2010), http://www.processing.org. 
(Access date: 13 March, 2011). 

[5] [10] Don Norman, (2010), “Activity-Centered 
Design: Why I like my Harmony Remote Control”, 
http://jnd.org/dn.mss/activity- 

[6] Christine Alvarado and Zachary Dodds.  “Women in 
CS: An Evaluation of Three Promising Practices.” In 
Proceedings of ACM Technical Symposium on 
Computer Science Education (SIGCSE). March, 2010 

[7] Zsuzsanna Papp-Varga, Péter Szlávi, László Zsakó, 
“ICT teaching methods – Programming languages” 
Annales Mathematicae et Informaticae 35 (2008) pp. 
163–172 

[8] Lenore Blum, “Transforming the Culture of 
Computing at Carnegie Mellon” in Computing 
Research News, vol. 13, No. 5, November, 2001, p.2. 

[9] Denise Dubie, “Mommas don't let their babies grow 
up to be engineers”, IT World, February 9th, 2009. 

[10] Peter C. Patton, “New Methods for Teaching 
Programming Languages to both Engineering and 
Computer Science Students”, In Proceedings of 
Midwest Instruction and Computing Symposium 
2004. 

[11] Noa Ragonis, Orit Hazzan and Judith Gal-Ezzar, “A 
study on attitudes and emphases in computer science 
teacher preparation” in the Proceedings of the 42nd 
ACM technical symposium on Computer science 
education 2011, pp 559-564. 

[12] Aman Yadav, Ninger Zhou, Chris Mayfield, Susanne 
Hambrusch and John T. Korn, “Introducing 
computational thinking in education courses”, in the 
Proceedings of the 42nd ACM technical symposium 
on Computer science education 2011, pp 465-470. 

[13] Jiangjiang Liu, Cheng-Hsien Lin, Ethan Philip 
Hasson and Zebulun David Barnett, “Introducing 
computer science to K-12 through a summer 
computing workshop for teachers”, in the Proceedings 
of the 42nd ACM technical symposium on Computer 
science education 2011, pp. 389-394. 

[14] Tim Bell and Lynn Lambert, “Teaching Computer 
Science majors about teaching Computer Science”, in 
the Proceedings of the 42nd ACM technical 
symposium on Computer science education 2011, pp. 
541-546. 

[15] Peter Drake and Kevin Sung, “Teaching introductory 
programming with popular board games”, in the 
Proceedings of the 42nd ACM technical symposium 
on Computer science education 2011, pp. 619-624. 

[16] Mara Sael, Jacob Perrenet, Wim M. G. Jochems and 
Bert Zwaneveld. “Teaching Programming in 
Secondary School. A Pedagogical Content 
Knowledge Perspective”, Informatics in Education, 
2011, Vol. 10, No. 1, pp. 73-88. 

[17] Carlos R. Jaimez-González, Christian Sánchez-
Sánchez, J. Sergio Zepeda-Hernández, A Web 
Platform for Creating and Administering Interactive 
Online Tutorials, In Proceedings of International 
Canada Education Conference 2011, pp. 88-92. 

[18] Dangers of Escalating Enrollements, 
http://computinged.wordpress.com/2011/04/13/guest-
post-eric-roberts-on-the-dangers-of-escalating-
enrollments/, June 23, 2011. 

[19] Hollywood Spurs Surge in Computer Science, 
http://www.nytimes.com/2011/06/11/technology/11co
mputing.html, June-28-2001. 

[20] Daniel Pink, “Drive: The Surprising Truth About 
What Motivates Us”, Riverhead, 2009. 

International Journal for Cross-Disciplinary Subjects in Education (IJCDSE), Volume 2, Issue 3, September 2011

Copyright © 2011, Infonomics Society 435



 

 

Appendix A – Sample Outputs 
 

 
Figure 1. Pretty Web 

 
 

 

 
Figure 2. Grid 

 
 
 

 
Figure 3. Fractal 

 
 

 
 

International Journal for Cross-Disciplinary Subjects in Education (IJCDSE), Volume 2, Issue 3, September 2011

Copyright © 2011, Infonomics Society 436


