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Abstract

The ways the threshold parameter can be modified after the setup

of a secret sharing scheme is the main theme of this work. The con-

siderations are limited to the case when there are no secure channels.

First we motivate the problem and discuss methods of threshold change

when the dealer is still active and can use broadcasting to implement
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the change required. Next we study the case when participants them-

selves initiate the change of threshold without the dealer’s help. A

general model for threshold changeable secret sharing is developed and

two constructions are given. The first generic construction allows the

design of a threshold changeable secret sharing scheme which can be

implemented using the Shamir approach. The second construction is

geometrical in nature and is optimal in terms of the size of shares. The

work is concluded by showing that any threshold scheme can be given

some degree of threshold change capability.

1 Introduction

A (t, n)-threshold scheme is a method of splitting a secret piece of informa-
tion among n participants in such a way that any t of the participants can
together recover the secret. They do this by pooling together their shares,
which are secret values securely transmitted to them by a dealer on ini-
tialisation of the threshold scheme. Threshold schemes [1, 15] are special
examples of secret sharing schemes, which allow more general combinations
of participants to collectively engage in recovery of the secret [17]. Secret
sharing schemes, and in particular threshold schemes, have become an indis-
pensable basic cryptographic tool in any security environment where active
entities are groups rather than individuals [6]. The group of participants
involved in a threshold scheme is not necessarily static over time. The num-
ber of participants and the threshold parameter may fluctuate reflecting
the current structure of the organisation to whom the participants belong
and the sensitivity of the secret. New participants may enter an organisa-
tion and need to be incorporated into the security structure (enrolment).
Current participants may leave the organisation, their shares may become
compromised, or their access to the secret may be withdrawn for security
reasons (disenrolment). A high threshold parameter established on initiali-
sation due to a high degree of mutual distrust among the participants may
be relaxed as the participants mutual trust grows over time (threshold de-

crease). Alternatively mutual trust may decrease over time, perhaps due
to organisational problems or security incidents, and hence the threshold
parameters may require tightening (threshold increase). The longer the life-
time of a secret, the greater the chances that any of these alterations to
the security policy in place on scheme initialisation are to occur, and hence
the greater the likelihood that the threshold parameters may need to be
changed. Such a need is related, but quite distinct, to the notion of proac-
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tivity [10], where shares are refreshed at regular time intervals for security
reasons, but where the threshold parameters do not change after each share
refreshment. This motivates our interest in considering the problem of how
to change the parameters of a (t, n)-threshold scheme after it has been ini-
tialised. In other words, how to obtain a (t′, n′)-threshold scheme from a
(t, n)-threshold scheme. We assume that the secret is not reconstructed by
the participants before the change of parameter. An obvious method of
conducting such a change is for the dealer to issue new shares to all the
participants in the new threshold scheme. This is an inefficient, and often
impractical, solution as it involves the use of a secure communications from
the dealer to each participant which may not be possible at the time the
change of threshold is required. A possible method of enabling a change in
the parameters of a threshold scheme is to conduct a secret redistribution.
This technique was investigated for general secret sharing schemes in [7, 14].
A redistribution of the secret is conducted by the participants of the original
scheme, and involves them communicating information among themselves,
and among any new participants in the new scheme. Secret redistributions
have two notable advantages in that they do not involve the dealer and that
they can be conducted without any prior knowledge that a change of thresh-
old parameters is required. However in general a redistribution requires the
existence of secure communication links between the threshold scheme par-
ticipants, which may be impossible or undesirable in many applications.
In this paper we investigate how to change the parameters of a threshold
scheme in the absence of either a secure link from the dealer to participants,
or secure links between participants themselves. We restrict our attention
to the cases of threshold increase and threshold decrease. Disenrolment in
the absence of secure links has already been subject to investigation [2, 13].
It does not seem likely that enrolment is possible in the absence of any se-
cure links (unless enrolling participants have already been issued with some
advance information and have been operating as “sleeping” participants,
which arguably does not count as fresh enrolment). In the following discus-
sion we note that procedures for changing threshold can be classified by the
amount of preparation for change that is made on the initialisation of the
original threshold scheme. We will consider cases where the exact change of
threshold parameter is known on initialisation, where only knowledge that
a change (but not which change) is known on initialisation, and where no
advance preparation for change is made. The new threshold will be agreed
upon by sending messages over public channels. We distinguish two cases:
the case that the original dealer is still active and the case that the original
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dealer is no longer in existence and shareholders decide on the new thresh-
old themselves. We assume that after such an agreement shareholders will
behave honestly with respect to their agreed threshold and submit correct
shares in reconstruction phase. A good example of a situation that change
of threshold under the above conditions is required is when communication
channels of t shareholders in a (t, n) threshold scheme are tapped by an en-
emy and hence an attempt to reconstruct the secret will enable the enemy
to find the secret. By raising threshold to t′ > t, the enemy will remain
completely uncertain about the value of the secret. A second example is
for distributing authority among a group of n participants and requiring
two levels of collaboration, t and t′, for two levels of security. This kind
of multilevel security may also be seen as an option given to participants
so that for more sensitive decisions a higher degree of agreement could be
used. We also note that in some cases it may be desirable for the value of
the secret to change when the threshold parameter changes. In general this
is simply a matter of choice for threshold decrease. For threshold increase
however, after the change of parameters certain sets that could previously
access the secret may no longer be desired to. The paper is organised as
follows. In Section 2, threshold schemes are introduced. Section 3 discusses
general techniques for changing threshold by dealer broadcast. Section 4
introduces the model, derives bounds and proposes constructions for chang-
ing threshold without dealer assistance. Section 5 includes ideas on how an
arbitrary threshold scheme can be made threshold changeable and Section
6 concludes the paper.

2 Threshold Schemes

Let P = {P1, . . . , Pn} be a group of n participants. Let S be the set of
secrets and let the share of Pi come from set Si. A (t, n)-threshold scheme is
a pair of algorithms: the dealer and the combiner. For a given secret from S
and some random string from R, the dealer algorithm applies the mapping

Dt,n : S × R → S1 × . . . × Sn

to assign shares to participants from P. The shares of a subset A ⊆ P of
participants can be input into the combiner algorithm

Ct,n :
⋃

Pi∈A

{Si} → S,
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which will return the secret if the set A ⊆ P and |A| ≥ t, otherwise it
fails. Each instance of the threshold scheme (pair (s, r), s ∈ S, r ∈ R)
thus indexes a distribution rule and threshold scheme can be combinatorially
represented by a matrix whose rows form the distribution rules, and columns
are indexed by the secret and the participants. If we associate a probability
with each s ∈ S then a threshold scheme can also be described information
theoretically using the entropy function [12]. More precisely, if |A| ≥ t then
H(S|A) = 0, and if |A| < t then H(S|A) 6= 0. A threshold scheme is perfect

if H(S|A) = H(S) for any |A| < t (in other words groups of less than t
participants learn no more information about the secret than is publicly
known). Perfect threshold schemes with H(Si) = H(S) for all i = 1, . . . , n
are said to be ideal. In general it can be assumed that in an ideal threshold
scheme Si = S for each i = 1, . . . , n. A consequence of the definition of a
perfect threshold scheme is that the the size of shares is at least the size of
the of the secret, that is H(Si) ≥ H(S) [5]. If we reduce share size below
that of the secret then it necessarily follows that the perfect property must
be sacrificed. An example of threshold scheme that are not perfect are the
so called ramp schemes [3, 9] which offer a compromise between security and
share size. A (c, t, n)-ramp scheme is a (t, n)-threshold scheme such that:

1. If A ⊆ P and |A| ≥ t, then H(S|A) = 0;

2. If A ⊆ P and c < |A| < t, then 0 < H(S|A) < H(S);

3. If A ⊆ P and |A| ≤ c, then H(S|A) = H(S).

In [9] a (c, t, n)-ramp scheme with the property that H(Si) = H(S)/(t−c) for
each i = 1, . . . , n is shown to be optimal (where an optimal ramp scheme is
a ramp scheme where H(S|A) = ((k−r)/(k−c))H(S) for |A| = r, c ≤ r ≤ t,
and shares are of minimal size). Such schemes have nice properties and are
easily constructed (see [9] for details).

3 Changing Threshold by Dealer Broadcast

In this section we assume that the original dealer of the threshold scheme
is still active, but no longer able to use the secure links that were used to
initiate the scheme. All messages from the dealer must thus take the form
of broadcasts, where we assume that a broadcast message is an insecure
communication that can be read by all participants and any outsiders to
the scheme. There are two general techniques that can be used to change
threshold by means of a broadcast message.

Appeared in Proceedings of the 4th Australasian Conference on Information Security and
Privacy (ACISP 1999), Lecture Notes in Computer Science 1587, J. Pieprzyk,

R. Safavi-Naini, and J. Seberry (eds.), Springer-Verlag, pp. 177–191, 1999.
c©1999 Springer-Verlag



6

1. Advance key technique. The dealer gives each participant a secret
key as well as their share on initialisation. When the time comes to
change threshold parameters, the dealer broadcasts new shares of the
new threshold scheme, but encrypted under the secret keys issued to
each participant. Unconditional security can be maintained by using
a one-time pad to encrypt the information on this insecure channel.

2. Advance share technique. The dealer gives each participant shares in
two different threshold schemes on initialisation. When the time comes
to change threshold parameters, the dealer broadcasts specific shares
of the second scheme that have the effect of changing the threshold
parameters as required (see below).

The advance key technique would appear to be a somewhat trivial solution
to the problem of changing thresholds by dealer broadcast. It does however
suffer from the disadvantage that the size of the broadcast message is directly
proportional to the number of participants in the scheme. The advance share
technique can be used to reduce the broadcast size. A general example of the
advanced share technique can be derived from techniques in [4, 13]. In this
case, as well as their initial share in a (t, n)-scheme, on initialisation each
participant is given a share in an (n + 1, 2n)-scheme, which is defined on
the n real participants, and n imaginary (dummy) participants. To realise
a (t′, n) scheme the dealer broadcasts n − t′ + 1 shares of the (n + 1, 2n)-
scheme belonging to n − t′ + 1 dummy participants. The resulting scheme
is an (n + 1, 2n)-scheme, contracted at n − t′ + 1 participants: that is a
(t′, n + t′ − 1)-scheme. However, t′ − 1 of the shareholders are dummy
participants and so the effective scheme is a (t′, n)-scheme. The following
comments apply to the two general techniques:

1. Both general techniques can be used when it is known on initialisation
that a change of the threshold parameters may be needed, but not
exactly what change will be necessary.

2. If the value of the secret changes when the threshold changes (i.e.
the shares of the (n + 1, 2n)-scheme correspond to a different secret
than the original shares) then both threshold increase and decrease
are possible using these techniques. If the value of the secret stays
the same then in the case of threshold increase, participants must be
trusted to move onto the new shares and not use their original ones
(see comments in Section 1).
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We can refine the advance share technique for threshold decrease if it is
known on initialisation exactly what change in threshold parameter may be
required. Let t′ < t. . Let m = max (n, n′) + (t − t′). On initialisation,
the dealer issues shares of a (t, n + t− t′)-scheme to the n participants. The
remaining t − t′ shares correspond to dummy participants and hence the
resulting scheme is a (t, n)-scheme. To change this to a (t′, n)-scheme the
dealer broadcasts the t − t′ shares belonging to dummy participants. The
resulting scheme is a (t, n + t− t′)-scheme, contracted at t− t′ participants:
that is, a (t′, n)-scheme. The advantages of this refinement are that it is
no longer necessary to issue an extra share in advance to each participant,
and the broadcast message will usually be much shorter than for the general
techniques.

4 Changing Threshold without Dealer Assistance

For the rest of this paper we assume that the dealer is no longer able to
provide assistance in changing the threshold parameter. In the absence of
both an active dealer and any secure channels between participants it is clear
that participants can only use the information sent to them on initialisation
of the original scheme. Hence the original “shares” must contain the in-
formation necessary for deriving both the shares of the initial (t, n)-scheme
and the shares of the future (t′, n)-scheme (we refer to these two derived
shares as subshares). Such a system is therefore restricted in its application
to situations where participants are trusted to operate “honestly” in the
sense that during a reconstruction of the secret they only use the subshare
that is relevant to the threshold in current use (see Section 1). A number
of trivial solutions to this problem exist. If it is known in advance exactly
what threshold change will be required then the initial share given to each
participant could consist of one subshare corresponding to a share in the
original (t, n)-scheme, and a second subshare that consists of a share in the
later (t′, n)-scheme. In this naive construction the required storage for each
participant is 2H(S) (assuming the two systems are ideal). In general the
size of the stored shares for each participant grows linearly with the number
of required threshold which makes this method very inefficient. Another
possible solution is to use the broadcast techniques of Section 2 and rely on
a publicly accessible directory containing transcripts of the relevant broad-
cast messages for certain types of threshold change. Since participants are
required to behave with a degree of honesty then they can be trusted to read
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the relevant broadcast message at the appropriate time. These solutions do
also generally involve more than one subshare being stored securely. We
are thus interested in solutions that minimise the amount of information
that each participant must store in order to derive both a (t, n) and (t′, n)-
scheme. The approach we will take is to construct (t, n)-schemes that can
be changed into (t′, n)-schemes through manipulation of the original shares.
We will assume that t′ > t (threshold increase) and note that the schemes
proposed could also be used for threshold decrease. For such schemes at least
some advance knowledge of the future threshold change should be known
on initialisation, since the schemes are designed to permit change. Later we
consider some options for the much more difficult task of achieving some de-
gree of change to an arbitrary threshold scheme (with no inbuilt mechanism
in place to allow threshold change).

4.1 A Model for Threshold Change without Dealer Assis-

tance

In this section we consider a basic model for schemes that permit thresh-
old change without dealer assistance. We also discuss possible efficiency
measures and then provide some constructions for such systems.

Definition 1 A perfect (t, n)-threshold secret sharing with a dealer algo-

rithm

Dt,n : S × R → S1 × · · · × Sn

is called threshold changeable to t′ if there exist publicly known functions

hi : Si → Ti = hi(Si), for 1 ≤ i ≤ n, such that H(S|TA) = 0 for any

|A| ≥ t′, and H(S|TA) < H(S) for any |A| < t′ where A ⊆ {1, . . . , n}.

¿From this definition, if we combine the dealer algorithm Dt,n with the
functions hi, we obtain the function

D′ : S × R → T1 × · · · × Tn

defined by D′ = (h1 × · · · × hn)Dt,n. It has the obvious properties

H(S|TA) =

{

0 if |A| ≥ t′;
H(S) if |A| < t,

for any A ⊆ {1, . . . , n}. Thus we may regard D′ as a new dealer algorithm for
a secret sharing scheme with n participants. In this model the subshare used
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in the (t, n)-threshold scheme consists of the entire original share, and the
subshare used in the (t′, n)-threshold scheme is determined by the functions
hi.

4.2 Efficiency measures

We denote the (t, n)-threshold scheme by Π and the (t′, n)-threshold scheme
by Π′. The following lemma is fairly obvious.

Lemma 1 Let Π be an ideal (t, n)-threshold scheme threshold changeable to

t′ > t. Then the resulting (t′, n)-threshold scheme Π′ is not perfect.

Proof. By contradiction. Assume that the scheme Π′ is ideal and perfect and
any t′ shares determine the secret. Thus H(Ti) = H(Si) = H(S). As the
function h is deterministic we know that H(Ti|Si) = 0. Since

I(Si; Ti) = H(Si) − H(Si|Ti) = H(Ti) − H(Ti|Si),

H(Ti) = H(Si) and H(Ti|Si) = 0, then H(Si|Ti) = 0. This means that
there is a one-to-one correspondence between shares from Π and Π′. This
also says that the threshold of Π′ must be t′ which gives us our requested
contradiction.

The efficiency of a perfect (t, n)-threshold scheme that is threshold change-
able to t′ can be measured by

1. the maximum and average size of the share which needs to be stored,
given by H(Si), for 1 ≤ i ≤ n,

2. the amount of information which needs to be delivered to the combiner
at the pooling time expressed by

∑

i∈A H(Ti) for A ⊆ {1, . . . , n} where
|A| = t′,

3. the size of subshares to be sent to the combiner, given by H(Ti), for
1 ≤ i ≤ n.

Theorem 2 Let Π be a perfect (t, n)-threshold scheme that is threshold

changeable to t′ using functions H = {hi}1≤i≤n. Then

1. H(Si) ≥ H(S) for 1 ≤ i ≤ n;

2.
∑

i∈A H(Ti) ≥
t′

t′−t+1H(S), for A ⊆ {1, . . . , n} with |A| = t′;
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3. max1≤i≤n{H(Ti)} ≥ 1
t′−t+1H(S).

Proof. Part 1. follows by definition of perfect threshold scheme. We next prove
part 3. Assume that A is a t′ subset of {1, . . . , n} and B is a subset of A
such that |B| = t − 1. We have

I(S; T(A\B)|TB) = H(S|TB) − H(S|T(A\B), TB)

= H(S|TB) − H(S|TA)
= H(S|TB)
= H(S).

On the other hand,

H(S; T(A\B)|TB) = H(T(A\B)|TB) − H(T(A\B)|TB, S)

≤ H(T(A\B)

≤ |A \ B|max{H(Ti; i ∈ A \ B})
= (t′ − t + 1)max{H(Ti; i ∈ A \ B},

proving part 3. To see part 2., let A be a t′ subset of {1, . . . , n}. For any
subset B of A with |B| = t − 1, from proving part 2. we know that

∑

i∈A\B

H(Ti) ≥ H(S).

Let F be the collection of all (t − 1)-subset of A. We show that
(

t′ − 1

t − 1

)

∑

i∈A

H(Ti) =
∑

B∈F

∑

i∈A\B

H(Ti).

Indeed, for each i ∈ A, we denote Fi = {B ∈ F ; i 6∈ B}. Then in the above

equation H(Ti) appears |Fi| =
(t′−1

t−1

)

times in the right-hand side for each
1 ≤ i ≤ n, and so the equation follows. We then have

(

t′ − 1

t − 1

)

∑

i∈A

H(Ti) =
∑

B∈F

∑

i∈A\B

H(Ti) ≥

(

t′

t − 1

)

H(S).

and obtain
∑

i∈A H(Ti) ≥
t′

t′−t+1H(S).

It is worth noting that item 2 shows that it is possible that the amount of
information which needs to be delivered to the combiner at the pooling time
is less than the original scheme (tH(S)) but of course the latter scheme is
not perfect.
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Definition 2 A perfect (t, n)-threshold scheme Π that is threshold change-

able to t′ is called optimal if the bounds in Theorem 2 are met with equality.

Corollary 3 If a perfect (t, n)-threshold scheme Π that is threshold change-

able to t′ is optimal then Π is ideal and Π′ is a (t − 1, t′, n) optimal ramp

scheme.

Proof. By definition Π is ideal and Π′ is a (t − 1, t′, n) ramp scheme. ¿From
Theorem 2 (Part 2.) it follows that H(Ti) = 1

t′−t+1H(S) for all 1 ≤ i ≤ n,
and hence that the ramp scheme is optimal (see Section 2).

4.3 A general construction from a ramp scheme

As noted earlier a naive (and very inefficient) method of allowing sharehold-
ers to choose among a number of thresholds is to give them independent
subshares for each scheme. In this section we describe a much more efficient
method of constructing a threshold scheme which can have a number of pos-
sible thresholds and has the property that original scheme is ideal. We give
a general construction and then give the detail of an implementation based
on Shamir polynomial scheme.

Theorem 4 If there exists an optimal ((t − 1)v, tv, nv)-ramp scheme, then

there exists a (t, n) threshold scheme that is threshold changeable to k for

any integer k such that k|vt.

Proof. Let Λ be an optimal ((t− 1)v, tv, nv) ramp scheme. We can construct a
(t, n) ideal threshold scheme Π from Λ as follows. As their initial share, give
each participant in Π v different shares in Λ (we call these component shares.
Since Λ is optimal, it is easy to verify that Π is a (t, n) ideal threshold scheme.
We further define the conversion H = {hi}1≤i≤n by letting the subshare of
the (k, n)-scheme be formed by taking any vt/k component shares from the
share of participant Pi (who has v component shares) for each 1 ≤ i ≤ n. It
is clear that k of these subshares will now be necessary to reconstruct the
secret.

Let u denote the number of integer k such that k|vt. The reduction in the size
of storage for each shareholder compared to the naive method is (u−1)H(S).
A conceptually useful way of constructing ramp schemes suitable for use

in Theorem 4 is to recall that by Theorem 9 [9], we know that if there
exists a (tv, nv + v − 1) ideal threshold scheme then there exists an optimal
((t − 1)v, tv, nv) ramp scheme. A simple construction method is thus to
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start with a Shamir threshold scheme [15], interpreted as a ramp scheme.
Assume that S = GF (q)v is the set of shares and secrets.

Construction

1. Let q ≥ nv. To share a secret s = (s1, . . . , sv) ∈ GF (q)v The dealer
randomly chooses a polynomial F (x) of degree at most tv − 1 such
that F (x) satisfies

(F (1), . . . , F (v)) = (s1, . . . , sv).

More precisely, F (x) can be chosen in the following way. First select
at random a vector (sv+1, . . . , stv) ∈ GF (q)(t−1)v and then use the La-
grange interpolation to compute the unique polynomial F (x) of degree
at most tv− 1 satisfying (F (1), . . . , F (tv)) = (s1, . . . , stv). Notice that
the randomness of (sv+1, . . . , stv) results in the randomness of F (x).

2. The dealer choose nv distinct numbers x1, . . . , xnv in GF (q)\{1, . . . , v}.
Each participant Pi is assigned a subset Ai ⊆ {x1, . . . , xnv} of v el-
ements. Ai are public and unique for the participant Pi. Let Ai =
{xi1 , . . . , xiv}. The share of Pi is Si = F (Ai) = (F (xi1), . . . , F (xiv))

3. At the pooling time, any t out of n participants can use the Lagrange
interpolation to compute the polynomial F (x) and so recover the secret
(F (1), . . . , F (v)).

The following comments apply to the above construction (and any other
construction obtained using Theorem 4):

• Initially the scheme is clearly a (t, n)-threshold scheme. Any t − 1
participants have no information about which of the qv candidates for
the secret has been selected.

• Any k participants, each submitting (vt/k) parts of their share can
reconstruct the secret.

• Any k − 1 participants A, each submitting (vt/k) parts of their share
are left with H(S|A) = (t/k)H(S), by definition of the ramp scheme.

• With respect to the bounds in Theorem 2, we have H(Si) = H(S),
but H(Ti) = (t/k)H(S). Thus such schemes will only be optimal in
the degenerate case that t = 1.

• Each shareholder has v log q secret bits which is the same as the secret
size.
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4.4 An optimal geometrical construction

The previous construction is conceptually simple and easy to implement.
It is not however optimal. We now give an example of an optimal perfect
(t, n)-threshold scheme that is threshold changeable to t′. This construction
is described in terms of projective geometry, a technique first used for secret
sharing schemes in [16]. For background information on projective geometry,
see [11].

X1 Y1

Y2

X2

P2

P1

M1

M2

L

Figure 1: An optimal (2, 7)-scheme that is threshold changeable

to 3

First note that (1, 3, n)-ramp scheme can be constructed in finite projec-
tive space as follows.

1. Let Π be a publicly known plane and let each line contained in Π
represent a possible secret.

2. Pick another plane Π1 that meets Π in a line L.

3. Pick n points on Π1, but not on L, such that no three of the points
are collinear. Give one point to each participant as their share of the
secret.
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Any three shares consist of three non-collinear points, and thus knowledge
of three shares is enough to generate the plane Π1. Plane Π1 can then be
intersected with the public plane Π to recover the secret line L. Any two
shares X1, Y 1 consist of two points which define a line 〈X1, Y 1〉. This line
meets L in a unique point P1. Since it takes knowledge of two points on
L to define L, it follows that knowing two shares only reveals “half” of L.
Finally, any one share consists of one point not on L, the span of which is
naturally just that point and thus defines no points on L. Hence knowledge
of one share reveals nothing about the secret line L. To see that such a
configuration results in a set of mappings that fits the definition of ramp
scheme in Section 2, see [8, 17]. Essentially there is one mapping for each
plane Π1 that meets plane Π in a line. Each secret line is represented by two
points that generate that line. In each mapping, the share of a participant is
one point, and the secret is two points, and hence H(Si) = H(S)/2. In other
words, the ramp scheme is optimal. We now extend this idea to construct
an optimal perfect (2, n)-threshold scheme that is threshold changeable to
3.

1. Construct an optimal (1, 3, n)-ramp scheme on planes Π and Π1 as
before.

2. Pick another plane Π2, distinct from Π and Π1, that meets Π1 (and
Π) in line L.

3. Construct an optimal (1, 3, n)-ramp scheme on plane Π2. Each share-
holder now holds a share that consists of two points, one on Π1 and one
on Π2. The points of this second scheme must be allocated to share-
holders in such a way that for any pair of shareholders, the unique
point on L generated by their two points on Π1 is distinct from the
unique point on L defined by their two points on Π2. Such an alloca-
tion of shares to shareholders is always possible (see closing remark in
this section).

The resulting configuration is illustrated in Figure 1. Note that Π is not
illustrated. In Figure 1 the share of participant X consists of points X1 and
X2 (equivalently, line 〈X1, X2〉), and the share of participant Y consists of
points Y 1 and Y 2 (line 〈Y 1, Y 2〉).

• Initially, shareholders use both their points to reconstruct the secret.
Thus if shareholders X and Y try to reconstruct the secret then they
can each use their point in each of the planes to generate the lines
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〈X1, Y 1〉 and 〈X2, Y 2〉, which meet Π in points P1 and P2 respec-
tively. Since P1 and P2 are distinct, the two shareholders use these
points to generate the secret L. Further, each of the lines 〈X1, X2〉
and 〈Y 1, Y 2〉 are skew to L and hence one shareholder can not gen-
erate any points of L. Thus the initial configuration can be used to
generate a perfect (2, n)-threshold scheme.

• If shareholders just use their points on plane Π1 then the result is
the configuration of a (1, 3, n)-ramp scheme, as described previously.
Hence any three participants can generate the secret, any two learn
“one half” of the secret, and one shareholder learns nothing about the
secret.

• The conversion of such a configuration into a scheme satisfying Defi-
nition 1 is identical to the conversion process described in [8, 17] for
geometric secret sharing. The function hi is simply the function that
extracts the point on Π1 from the pair of points allocated to the ith
shareholder.

• The secret is represented by a line (two points). Each shareholder
has a share consisting of two points. If the threshold is changed to
three, then each shareholder only submits one point, exactly one half
of their share. Thus with respect to the bounds in Theorem 2, we have
H(Si) = H(S), and H(Ti) = H(S)/2. The scheme is thus optimal.

The above scheme generalises to a configuration for an optimal perfect (t, n)-
threshold scheme that is threshold changeable to t′ as follows:

1. Replace each plane Π by a space of projective dimension t′ − 1.

2. Take t′ − t + 1 of these spaces (instead of just two in Figure 1) such
that all the spaces Πj meet in a subspace L of projective dimension
(t′ − t).

3. On each space Πj choose n points such that no t′ points lie together
in a subspace of projective dimension (t′ − 2). This defines a (t −
1, t′, n)-ramp scheme on Πj. When the threshold is increased to t′,
shareholders will submit only their points on space Π1.

4. Any t points on any Πj define a subspace of projective dimension
t − 1 that meets L in a point. By labelling the points on the spaces
Πj carefully (see below) we ensure that the t′ − t + 1 points on L
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defined by any t shareholders (one point on L for each space Πj) are
all distinct, and hence together define L. Thus the original scheme is
a (t, n)-threshold scheme.

5. Each subshare is one point, the secret (and each share) is defined by
t′ − t + 1 points, and hence the scheme is optimal.

It remains to describe how to allocate the points on each space to share-
holders in order to ensure the “distinctness” property described above. A
summary of how this is done is as follows:

1. Let ξ be a Singer cycle on L (ξ permutes the points of L in a cycle
whose length is the number of points on L).

2. Extend ξ to an automorphism φ of Π1.

3. Let the points on Π2 be a projection of the points on Π1. If shareholder
i received point Xi on Π1 then give shareholder i the projection of
point φ(Xi) on Π2.

4. More generally, let the points on Π(j +1) be a projection of the points
on Π1. If shareholder i received point Xi on Π1 then give shareholder
i the projection of point φj(Xi) on Πj.

The linearity relationships between the points on Π1 are preserved by the
automorphism φ and so the resulting configuration on Π2 has the same
properties as that on Π1. Further, as φ restricted to L is ξ, we are guaranteed
that the there are no points on L fixed by φ. Hence (considering the simple
example) if points X1, Y 1 generate point Z1 on L, then points φ(X1), φ(Y 1)
generate line φ(Z1) on L, with φ(Z1) distinct from Z1. A similar argument
applies to the other spaces Πj since φj is also an automorphism of Π1 that
fixes L. It is interesting to note that the optimal geometrical construction
can be used to reduce the amount of information which needs to be delivered
to the combiner if we allow the threshold of participants who submit their
(partial) shares to be increased. For example, in our optimal (2, n) threshold
changeable scheme, if two participants want to reconstruct the secret, they
have to send their full shares (two points for each) to the combiner and
the total amount of information is 2H(S). If three participants send their
partial shares (one point for each), they can still recover the secret, but the
total information delivered to the combiner is reduced to 1.5H(S).
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5 Changing Threshold of an Arbitrary Threshold

Scheme

We close by considering the problem of changing the threshold parameter
of an arbitrary (t, n) threshold scheme, without dealer assistance or secure
links. Thus we cannot guarantee that subshares can be deterministically
derived from the original shares, as in the previous section. In reality this
problem seems very difficult to solve with any degree of satisfaction, however
we suggest two possible methods which could be further developed in a
search for a solution. Both techniques involve releasing information about
shares, instead of shares themselves.

5.1 Changing Thresholds via Probabilistic Shares

Instead of submitting shares to a combiner, this first idea is that participant
give away some “hints” about their shares. This hint specifies a subset
of values to which the share belongs (specification of particular bits, for
example). Thus the information provided by Pi about the share si takes
the form of a set Bi such that si ∈ Bi. One approach to reconstruction is
as follows. When trying to reconstruct the secret, each Pi submits their
set (hint) Bi (i = 1, . . . , ℓ) to the combiner. The combiner groups the sets
into collections of size t, and from each such collection derives the set of
all possible secrets corresponding to all the possible share allocations using
these share hints. Using the following hints, and the corresponding possible
secret sets Si,

B1, . . . ,Bt−1,Bt → St

B1, . . . ,Bt−1,Bt+1 → St+1

...

B1, . . . ,Bt−1,Bℓ → Sℓ

the combiner can then precisely recover the secret if |St∩St+1∩ . . .∩Sℓ| = 1.
It is however clear that such a solution cannot guarantee the precise new
value of the threshold. An open problem is thus to determine methods of
selecting hints in order to be able to specify within a certain probability that
the secret can be reconstructed uniquely.
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5.2 Combiner Assisted Threshold Change

To avoid the uncertainty of the probabilistic method it is necessary to find
a deterministic analogue of the probabilistic sharing idea. This may be
possible if information about shares in a threshold scheme can be deter-
ministically released in some manner. An idea is to negotiate a common
encoding for delivery of information about participants’ shares. The follow-
ing provides an illustration of how this might work. Assume the original
scheme is a (t, n) Shamir scheme based on polynomial f(x) over GF(q) of
degree at most t − 1. As usual a participant Pi; i = 1, . . . , n is assigned a
public co-ordinate xi and a share si = f(xi). The secret is s = f(0). It
is well-known that any t participants can collectively recover the secret as
they can write t linearly independent equations and solve them. Let these t
participants be P1, . . . , Pt, then they (or the combiner) can write

s1 = f(x1) = a0 + a1x1 + . . . + at−1x
t−1
1

...

st = f(xt) = a0 + a1xt + . . . + at−1x
t−1
t

Let the combiner impose the encoding scheme such that every integer ci ∈
GF (q) is represented as a vector of k co-ordinates so

ci = ci,0 + bci,1 + b2ci,2 + . . . + bk−1ci,k−1 = (ci,0, . . . , ci,k−1)

where b is the base (for binary representation b = 2). We assume that the
representation is one to one. Note that if we encode si and aj ; j = 1, . . . , t−1
then from the equation

si = f(xi) = a0 + a1xi + . . . + at−1x
t−1
i

we get a system of k independent and equivalent equations related to the
corresponding co-ordinates. Now the combiner can ask participant Pi to use
the base b to determine the required representation of their share. If the new
threshold is t′ (t′ > t), the combiner requests α subshares si,j ; j = 1, . . . , α
such that

t′ × α = t × k

and the system of linear equations has a unique solution for vectors ai =
(ai,0, . . . , ai,k−1). The combiner must get t× k linear equations and all t× k
unknowns ai,j (i = 0, . . . , t−1 and j = 0, . . . , k−1) must be “covered”. The
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role of the combiner is to ask the participants for “right” subshares so the
combiner can cover all unknowns. The presented method can be applied in
all linear secret sharing schemes. The encoding may be based on any vector
space.

6 Conclusions

In this paper we considered the problem of changing threshold when there
is no secure channel to be used for the purpose of threshold change. One
of the main motivation for this study was to provide robustness in a system
where communication channels to the combiner have been tapped. We gave
a number of constructions of threshold changeable schemes, including one
that is optimal with respect to storage and communication costs. We made
some initial remarks on the interesting problem of enabling the threshold of
an arbitrary threshold scheme to be changed. Finding efficient and practical
solutions to this latter problem remains open. We acknowledge useful dis-
cussions with Christine O’Keefe and Peter Wild concerning the design and
correctness of the geometric construction.
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