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A basic tenet of economic theory is that choices are a reflection of the 
values that the decision maker places on the available options1, but it 
is well known that these values can change with experience, time and 
context. Research in psychology over the past century has focused on 
reinforcement as the main mechanism to influence value2,3, whereas 
research in behavioral economics has focused on factors such as the 
description of the decision problem (e.g., framing4–6). These studies 
have shown that choices are influenced by how options are described, 
how preferences are elicited and by the context of other available 
options5,7,8, but they have not attempted to directly perturb the under-
lying basic values of individual items. Other work has shown that 
choice itself influences preference9–11, and that preferences can also be 
modulated by mere exposure to items12,13 and by embodied approach/
avoidance responses14–16. Here we demonstrate a new mechanism by 
which value can be modulated in a lasting manner simply through 
cued approach to a stimulus using a combination of behavioral, eye-
tracking and functional-neuroimaging methods.

Our approach was influenced by previous research demonstrating 
that, by modulating the time spent viewing items17, manipulations  
of attention can influence choice18,19. It has likewise been shown  
that focusing attention at behaviorally relevant points in time, 
regardless of the attended item, can ‘boost’ memory for visual 
scenes20,21. We examined whether association of a food item with an 
irrelevant cue and motor response can modulate subsequent choices 
to consume the item.

In each of the studies reported below, we asked participants to fast 
for 4 h before visiting the laboratory. Upon arrival, they participated 
in an auction (the Becker-DeGroot-Marschak (BDM) procedure)22,23 
(Fig. 1a) that measured willingness to pay (WTP) for each of 60 snack 

food items; we informed participants that the auction would be played 
for real consumption at the end of the experiment. We sorted items 
based on WTP and split the items into sets of higher-valued and 
lower-valued items to allow assessment of differential effects based 
on individual item preferences. Participants underwent cue-approach 
training in which they observed images of individual food items pre-
sented for 1 s (Fig. 1b) and were instructed to press a button as fast 
as possible (before the image disappeared) only when they heard a 
tone (i.e., Go trials). We adjusted the tone-presentation delay using a 
staircase procedure to ensure that the task remained difficult. Sixteen 
items (8 high-value and 8 low-value) were consistently associated 
with a tone. There was no feedback to the participants regarding the 
success of the button press in the allotted time window. We presented 
the entire set of items 8, 12 or 16 times across the different studies. In 
each study we presented each item the same number of times, thus 
controlling for any potential mere-exposure effects12,13. In a probe 
phase that followed training, we presented participants with pairs of 
items that were matched (Supplementary Fig. 1) for the initial utility 
of the items (to allow isolation of the cue-approach effect, Fig. 1c) but 
differed by whether they had or had not been associated with a cue 
during training (i.e., one Go and one ‘NoGo’ item). We asked partici-
pants to choose one item per trial for a chance to consume that item 
at the end of the study. We randomly selected one trial and honored 
the choice on that trial. If training had no effect, participants should 
be indifferent between the two items and choose them equally often. 
After the probe phase, we repeated the initial auction (Fig. 1d) to test 
whether the expressed monetary value of individual items changed 
after training (both auctions were played out together such that only 
one bid was chosen).
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It is believed that choice behavior reveals the underlying value of goods. The subjective values of stimuli can be changed  
through reward-based learning mechanisms as well as by modifying the description of the decision problem, but it has yet to be 
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food items can be modulated by the concurrent presentation of an irrelevant auditory cue to which subjects must make a  
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RESULTS
Cue-approach binary-choice effects
We varied the length of training from the initial study (which included 
12 repetitions of all 60 snack food items) to test whether fewer  
(8 repetitions, study 2) or more (16 repetitions, study 4) repeti-
tions would have a different effect on choice. In all four independ-
ent samples (studies 1 through 4, total n = 102 participants, Fig. 2a 
and Supplementary Table 1), we found a consistent effect of cue-
approach training on choices during the probe phase for high-value 
item pairs: participants chose high-value Go items on 60–65% of trials 
(P = 0.00006–0.008; 63% across samples 1–4, P < 0.0001 two sided 
repeated measures logistic regression). There were no differences in 
this effect between the different samples (all pairwise comparisons, 
P values > 0.6, two sided repeated measures logistic regression). This 
occurred even though participants had never been presented with 
these items in pairs previously, nor were they externally reinforced 
for pressing the button during training. We did not find an increase 
of Go-item choices in low-value pairs (except for a marginally signifi-
cant effect in study 1 (58%, P = 0.054, two sided repeated measures  
logistic regression) and a weak effect across studies 1–4 (55%  
P = 0.032, two sided repeated measures logistic regression)).  

The increase in choice for Go items was significantly higher for  
high-value versus low-value pairs (P < 0.001 across the cue-approach 
studies 1–4, two sided repeated measures logistic regression). The fact 
that the effect was not consistent across high-value and low-value 
pair trials suggests that choosing Go items was not a general strategy 
adopted by participants at probe (e.g., owing to demand characteristic)  
but rather that cue-approach training was selectively more effective 
for higher-value items.

We should emphasize that all items used were palatable junk  
food items. In an additional study (study 7) in which all items were 
below the median auction value (Supplementary Fig. 2), we still 
observed a cue-approach effect (Supplementary Fig. 3) for the 
higher-valued items in this set, which suggested that the difference 
in cue-approach effects between high-valued and low-valued items 
may be relative to the overall distribution of value in the training set; 
alternatively, there may be a nominal value threshold below which 
the effect does not occur.

Repeat auction procedures as shown above

Auction 1
a

Training
b

Probe
c

Auction 2
d

Choice con�rmation:
1,500 ms –RT

1,500 ms total 
stimulus presentation

Jittered ITI (~3 s )

1,000 ms stimulus
presentation

 GSD after ~750 ms
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Jittered ITI (~3 s )
Jittered ITI (~3 s )
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Self-paced stimulus 
presentation Subject response

$0 $1 $2 $3
$0 $1 $2 $3 $0 $1 $2 $3
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+

+
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+
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Figure 1  Task procedure. (a) Participants were endowed with three dollars 
and told that after making a series of auction-based choices, they would 
have an opportunity to use these $3 to buy a snack. During the auction 
phase, participants were presented with 60 items, one at a time, on a 
computer screen. They bid by moving a mouse cursor along an analog 
scale that spanned from 0 to 3 at the bottom of the screen. The auction 
was self-paced, and the next item was presented only after the participant 
placed the bid. (b) During training, participants were instructed to  
press a button when they heard a tone (occurring after a variable delay 
based on a staircase) but before the image disappeared from the screen 
(1 s after it appeared). Images appeared on the screen one at a time, and 
~25% of items were associated with a tone. Trials were separated by a 
jittered intertrial interval (ITI) with a mean duration of 3 s. GSD, Go-signal 
delay. (c) During the probe, participants were instructed to choose one 
of two items that appeared on the screen to the right and left of a central 
fixation cross. Participants were told that a single trial would be selected 
and honored for real consumption, meaning they would receive the food 
item they chose on that particular trial. Participants had 1.5 s to make 
their choice, and trials were separated by a variable intertrial interval with 
a mean duration of 3 s. RT, reaction time. (d) The auction described in a 
was repeated at the end of the experiment. 
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Figure 2  Behavioral results for cue-approach and cue-avoidance studies. 
(a) Proportion of choices of the Go item in pairs of high-value Go 
versus NoGo and low-value Go versus NoGo items for each of the four 
cue-approach studies (1– 4) as well as for study 4 retest. Number of 
repetitions reflect number of individual stimulus presentations during 
training. Significance level reflects odds of choosing the Go versus NoGo item.  
(b) WTP before and after training for Go and NoGo separately for items  
in the probe high-value Go versus high-value NoGo pairs (top) and low-
value Go versus low-value NoGo (bottom) pairs. The sample includes  
all participants from studies 1– 4 of cue approach. Significance level 
reflects interaction for time by item type (Go or NoGo) in a repeated-
measures linear regression. n = 102 participants. (c) Proportion of choices 
of the Go item in pairs of high-value Go versus NoGo and low-value  
Go versus NoGo (light gray) items for the two cue-avoidance studies.  
(d) Proportion of total choice time during probe that gaze position was 
on the high-value Go or NoGo item in a pair for trials when Go or NoGo 
items were chosen separately. The sample is a subset of study 4 (n = 18 
participants). Eighteen participants had their eye positions recorded with 
an eye tracker while performing the cue-approach task. Significance levels 
reflect repeated measures linear regression. Effects for d are discussed in 
Results. Error bars, s.e.m. (a,c) and within-subject s.e.m. (b,d).  
***P < 0.0001, **P < 0.001, *P < 0.01, +P < 0.05 (two-sided tests).
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Cue-approach auction effects
As mentioned above, we repeated the initial auction (Fig. 1d) to test 
whether the expressed monetary value of individual items changed 
after training (both auctions were played out together such that only 
one bid was chosen). We found evidence that nonreinforced training 
influenced the value of individual items. We selected high-valued 
and low-valued items on the basis of their relatively extreme val-
ues in the initial auction, and thus both high-valued and low-valued 
items showed overall regression to the mean (Fig. 2b). Across samples 
1–4, the high-value Go items retained their value better (i.e., showed 
less regression to the mean) than the high-value NoGo items (delta 
between high-value Go and NoGo = 12.2 cents, P = 0.0006 combined 
across samples 1–4, two sided repeated measures linear regression). 
For the low-value items there was also regression to the mean for 
both Go and NoGo items (delta between low-value Go and NoGo =  
4.9 cents less, P = 0.12, two sided repeated measures linear regression). 
When we analyzed data for both auctions using repeated-measures 
linear regression with Go/NoGo and value (high/low) factors and 
a participant-grouping factor, there was a main effect of Go/NoGo  
(P < 0.0001, two sided repeated measures linear regression), and the 
interaction term of high/low by Go/NoGo was marginally significant 
for the second auction bids when accounting for the first auction bids 
(P = 0.053, two sided repeated measures linear regression).

This suggests that cue-approach training also influenced subjective 
values of Go versus NoGo items (as expressed by relative changes  
in WTP) differently for high-value and low-value items. Previous 
work has demonstrated effects of choice on preferences (see  
refs. 9,10 for the underlying neural mechanisms), which extend  
for long periods of time24. Thus, it is likely that the binary choices 
influenced the auction. In an additional sample collected without a 
probe phase (study 9) there was not a significant effect on the second 
auction (Supplementary Table 2). Direct comparison of this greater 
retention of the original values of high-value Go items compared to 
high-value NoGo items between the two samples that showed this 
effect (study 2 and study 4) with the no-probe study 9 showed a mar-
ginal difference for study 4 versus study 9 (P = 0.0592, two sided 
repeated measures linear regression) and for study 2 versus study 9 
(P = 0.0471, two sided repeated measures linear regression). When 
combining samples 1−4 and comparing them to study 9, the compari-
son was not significant (P = 0.1, two sided repeated measures linear 
regression). This hints that ‘pre-post’ auction differences might reflect 
the effects of choice during the probe phase. A fuller understanding 
of the factors that modulate these changes in value will require addi-
tional empirical work.

Cue-avoidance and cue without approach
To test the mechanism underlying the cue-approach effect, we ran two 
additional independent samples (Fig. 2c) on a cue-avoidance task, 
which is a functional mirror of the cue-approach manipulation. The 
entire procedure was identical to that described in Figure 1, except 
for the training phase. In this phase, rather than asking participants 
to press the button only when they heard the sound, we asked the 
participants to press the button every time they saw an image, unless 
they heard a sound. We titrated the timing of the sound using a lad-
der technique similar to that in a standard stop-signal task25. In this 
version, the cue appeared at exactly the same frequency as studies 1–4 
but served as an inhibition or avoidance cue rather than an approach 
cue, similar to the ‘automated inhibition’ version of the stop-signal 
task26,27. In a probe phase identical to that described above, we found 
no difference between choices of Go and NoGo items (for choice of 
high-value Go: 48% (P = 0.5, two sided repeated measures logistic 

regression) and 45% (P = 0.3, two sided repeated measures logistic 
regression) in studies 5 (with 12 repetitions of all items) and 6 (with 
16 repetitions of all items), respectively; for choice of low-value Go: 
52% (P = 0.7, two sided repeated measures logistic regression) and 
53%, (P = 0.4, two sided repeated measures logistic regression)). 
Furthermore, in a direct comparison between the pooled samples of 
the cue-approach version (studies 1−4, n = 102 participants) and the 
pooled sample of the cue-avoidance version (studies 5 and 6, n = 68 
participants), we found that the choices of the high-value Go items 
were significantly greater for the cue-approach task (P < 0.0001, two 
sided repeated measures logistic regression between subjects) but not 
for the low-value Go items (P = 0.28, two sided repeated measures 
logistic regression between subjects).

To test whether a motoric action is necessary for the cue-approach 
effect, we performed an additional study (study 8) in which we 
repeated the same procedure without requiring any motor responses. 
Participants heard the cue at times yoked to those of study 4 partici-
pants but were not required to make any motor responses. We did not 
find any effects during the probe phase (Supplementary Fig. 3) of 
study 8 (P values > 0.3, two sided repeated measures logistic regres-
sion). There was a significant difference for choices of high-value 
Go items between study 4 and study 8 (P = 0.002, two sided repeated 
measures logistic regression) but not for low-value Go items (P = 0.7, 
two sided repeated measures logistic regression). These results suggest 
that the motor response is crucial for the cue-approach effect.

Eye gaze during training
We examined whether the observed effects were due to greater  
observation times during training and thus modulation of the mere-
exposure effect28,29. We tested the gaze time during training on  
part of the samples for which sufficient eye-tracking data were  
collected: on 12 participants from the imaging sample (study 3), on 
all participants in the last run of the longer-training cue-avoidance 
study (study 6) and on all participants for the study with cues but no 
approach (study 8). We did not find any significant differences in gaze 
times (P values > 0.1, two sided repeated measures linear regression) 
across all of training nor on the last training run in any of these studies 
(Supplementary Table 3).

It should be noted that there were no significant behavioral-choice 
effects in any of these studies (nor within the subsample of 12 par-
ticipants from study 3), and thus these gaze data cannot entirely rule 
out an effect of gaze differences. To examine this question further, 
we performed a regression of gaze time for each item and subsequent 
choices for the corresponding item during probe for each of these 
studies. This was possible because there was variance in choices of 
individual items even though there was no mean difference in choices 
between Go and NoGo items. We found no significant effect of  
gaze time (P values range between 0.06 to 0.48, two sided repeated 
measures logistic regression; Supplementary Table 3) either for Go 
items and/or for the interaction of choices of Go versus NoGo items in 
any of these samples. Furthermore, the fact that participants observed  
the items for almost their entire presentation times in all of these  
studies (and for similar periods of time at the end of training) suggests 
that it is unlikely that the observed effects are driven by differences 
in gaze duration. Additional work is necessary to conclusively test 
whether gaze differences are related to choices during probe.

Eye gaze during probe
Recent work shows that participants spend more time fixating on  
an item before choosing it compared to unchosen alternatives17  
and that high-value items draw attention30, which reflects the role of 
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attentional mechanisms in value computation and choice behavior31. 
Eye-tracking data collected on a subset of sample 4 (16 repetitions, n = 18  
participants) during the probe phase was consistent with this.  
We calculated the proportion of time participants spent viewing a  
particular item as the total amount of time the gaze position was 
within the bounds of a food item on the screen, divided by the reaction 
time. In a repeated-measures linear regression comparing proportion 
of time spent viewing an item against Go/NoGo and chosen/unchosen 
factors (with two grouping factors of item presentations and par-
ticipants), we found a main effect of chosen/unchosen (P < 0.0001, 
two sided repeated measures linear regression) and Go/NoGo  
(P = 0.002, two sided repeated measures linear regression) (Fig. 2d). 
Thus, participants tended to spend a larger proportion of the total 
gaze time on the chosen versus unchosen item during the choice 
window regardless of whether it was a Go item (proportion = 39% 
versus 28%, P < 0.0001, two sided repeated measures linear regres-
sion) or NoGo item (proportion = 36% versus 32%, P = 0.01, two 
sided repeated measures linear regression) (Fig. 2d), consistent with 
the previous results17.

We found a significant difference in gaze time between unchosen 
Go versus NoGo items (P = 0.04, two sided repeated measures linear 
regression; Fig. 2d), which showed that cue-approach training drove 
attention toward the Go items in the subsequent decision-making 
phase even when participants did not choose these items. This may 
reflect increased salience of Go items32. In additional analyses we found 
a positive association between the pre-post training difference in bids 
and the proportion of time spent viewing an item during the choice 
phase (P = 0.029, two sided repeated measures linear regression), which 
linked the observed gaze bias18 directly to changes in preference.

Long-term behavioral maintenance
To examine the long-term maintenance of the cue-approach effect, 
we invited participants to return to the lab after their initial visit to 
perform a second probe phase. We found that, after an average of 
66 d (range 41−87 d), participants in the sample with the longest  
training (16 presentations) showed continued preference for the 
high-value Go over NoGo items (n = 20 participants, P = 0.04,  
two sided repeated measures logistic regression, proportion 60%). 

Long-term maintenance was also present in the eye-tracking data; 
an analysis of eye-tracking data during the follow-up probe showed 
a main effect of Go/NoGo (P = 0.0001, two sided repeated measures 
linear regression), though in this case the effect was only present for 
chosen items (Supplementary Fig. 4). This suggests that longer cue-
approach training may have effects that last over months. We found 
no such effect in any of the other samples with shorter training.

In an additional sample (study 7), we repeated the probe after  
1 week and 1 month (Supplementary Fig. 3); the cue-approach  
effect on choices remained significant (P values < 0.0001, two sided 
repeated measures logistic regression) at both delays for the higher-
valued items (which were below the median auction value in this 
sample). Further studies will be needed to verify how much additional 
training may be necessary to ensure long-term maintenance and for 
how long this effect lasts.

Imaging results during probe and training
The foregoing behavioral and eye-tracking results provide converging 
evidence that cue-approach training increased the subjective value 
of cue-associated Go items. To investigate the neural signature of 
this value change, we performed training and probe while partici-
pants were scanned with fMRI in study 3 (n = 21 participants, items 
presented for 12 repetitions). Previous studies23,33–35 establish that 
the ventromedial prefrontal cortex (vmPFC) is crucial for encoding 
decision values, and therefore we focused our analysis on this region 
during the probe phase. During the probe phase, we tested whether 
the greater preference for the chosen Go items was reflected in blood 
oxygenation level–dependent (BOLD) signals. The pairs during probe 
were matched for their pretraining preference; the effectiveness of 
this procedure is highlighted by the lack of difference in choices of 
Go and NoGo items in the cue-avoidance studies (studies 5 and 6) 
and no-approach study (study 8). We defined the post-training pref-
erence for each item as the number of times each item was chosen 
during the probe phase (out of eight presentations) and used this 
value as a parametric regressor for the chosen item on each trial (Go 
or NoGo). Consistent with the common involvement of the vmPFC 
and ventral and mediodorsal striatal regions in representation of sub-
jective value, activity in these regions was positively associated with 
number of times chosen for high Go items (Fig. 3a; for all activation 
peaks see Supplementary Table 4). Further, we found that the asso-
ciation between BOLD response and preference was stronger (more 

# high-value Go choice at probe b # high-value Go > NoGo at probe

x = –2 x = –2

a

z = 2.3 z = 3.3

Figure 3  Imaging results from the probe phase. (a) Parametric effect of 
the number of times each high-value Go item was chosen during probe. 
(b) The difference in the parametric effect of the number of times each 
item was chosen during probe between high-value Go and high-value 
NoGo items. This analysis was only run in an a priori mask of mPFC that 
encompassed the medial PFC by combining Harvard-Oxford atlas regions 
(frontal pole, frontal medial cortex, paracingulate gyrus and subcallosal 
cortex) falling between x = 14, x = −14 and z < 0. x-y-z values reported  
in standard Montreal Neurological Institute (MNI) space. Heatmap color 
bar ranges from z-stat = 2.3 to 3.3. Map in a was cluster-corrected at a 
whole-brain level. P < 0.05, two sided linear regression.

# Go last scan training runa b # NoGo last scan training run

x = –2 x = –2

z = 2.3 z = 3.3

Figure 4  Imaging results from the last training run. (a,b) Modulation  
of number of times each high-value Go item was chosen (a) and NoGo 
item was chosen (b) during probe. This analysis was only run in an 
extensive mask of mPFC that encompassed the medial PFC by combining 
Harvard-Oxford regions (frontal pole, frontal medial cortex, paracingulate 
gyrus and subcallosal cortex) falling between x = 14, x = −14 and  
z < 0. Heatmap color bar ranges from z-stat = 2.3 to 3.3. Maps were  
cluster-corrected within a priori mask of mPFC, as in Figure 3b. P < 0.05, 
two sided linear regression. 
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positive) in vmPFC for high-value Go items compared to high-value 
NoGo items during probe when we limited the analysis to an exten-
sive area of the vmPFC (Fig. 3b). Thus, the enhanced preference for 
high-value Go items was also reflected in the neural signature of a 
stronger relation between vmPFC activity and preference. A previous 
study36 involving real versus hypothetical choices shows that the sig-
nal in brain regions including vmPFC is amplified during real choices, 
which can be attributed to increased attention during real choices. We 
did not find any neural signature for a value change for the low-value 
Go items (versus either baseline or low-value NoGo items), consistent 
with the lack of a behavioral effect on the low-value items.

We also examined training-related changes in fMRI signals. There 
were no differences in stimulus-driven activations when we compared 
the fMRI activity related to onset of Go items at the end of training ver-
sus the beginning of training, which perhaps reflected the fact that no 
choices were required (participants simply pressed a button when they 
heard a tone). Previous studies show value-related activations in the 
absence of choice37 and therefore for all subsequent analyses we used 
as a parametric regressor the same preference indicator as in the probe 
phase, i.e., the number of times each item was chosen during probe. 
In the last run of training, vmPFC response (using the prehypoth-
esized anatomical mask for the region) was associated with number 
of choices on the later probe for both Go and NoGo items (sepa-
rately) (Fig. 4; for all activation peaks, see Supplementary Table 5).  
However, there were no significant differences between the preference- 
related effect for Go and NoGo items during the last run, and no 
preference-related effects for either item type during the first run of 
training. This suggests that the mere exposure to the items for both Go 
and NoGo items increased their values in a relatively similar way.

DISCUSSION
Previous research has focused on the roles of experience, time and 
context in modulating decision values2–6. The present work is, to our 
knowledge, the first to show that the subjective value of goods (mea
sured both by choice and by WTP) can be modified through simple 
cue-approach exposure without external reinforcement or any other 
explicit manipulation of value. Our converging results using behav-
ioral and neuroimaging methods provide insight into an automatic 
mechanism that directly perturbs the values of items by driving atten-
tion toward those items. We suggest that the cue-approach manipula-
tion enhanced the attention devoted to the processing of the items and 
thus amplified the value signals of the items. This is further exempli-
fied by the fact we obtained this effect only for the higher-valued items 
in the training set, even when these high-value items were below the 
median auction value (in study 7). We found that the auditory cue by 
itself was not sufficient for the behavior change and that the change 
was not due to viewing-time differences during training. It is plausible 
that a motor approach signal was activated during the probe phase, but 
the effect of training on auction responses, which required an entirely 
different response, speaks against this alternative. Results of the cue 
without approach and the lack of effects in the cue-avoidance studies 
all suggest that the cue-approach effect is not merely an attentional 
or salience effect but rather that it reflects the combination of the  
cue with the motor-approach response. Other researchers38,39 have 
managed to train participants to avoid choices of food items, albeit in 
a different experimental setup with close to 100% stopping rates. This 
suggests that the failed stop trials in our studies (which targeted 75% 
successful inhibition) may have obscured the effect. Additional studies 
will be needed to test this. Future studies will also need to test whether 
the choice effects reported here generalize from the specific trained 
pictures to other stimuli representing the same or similar items.

In conclusion, our findings suggest that cue-approach training can 
potentially serve as a ‘nudge’40 working at the level of enhancing atten-
tion to and memory for items in order to modify choices. This is espe-
cially important given the failures of many current interventions aimed 
at changing unhealthy habits based on effortful self-control41.

Methods
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Participants. 252 healthy subjects participated in nine studies using three  
versions of a task (see Supplementary Table 1 for sample details). No statistical 
test was run to determine sample size a priori. The sample sizes we chose are 
similar to those used in previous publications, and our replications used similar 
sample sizes after our first successful result.

All participants had normal or corrected-to-normal vision, no history of 
psychiatric diagnoses, neurologic or metabolic illnesses, no history of eating 
disorders, had no food restrictions and were not taking any medications that 
would interfere with the experiment. Additionally, participants who were scanned 
(study 3) were free of any metal implants or any other contraindications for MRI. 
Participants were told that the goal of the experiment was to study food prefer-
ences and were asked to refrain from eating 4 h before arrival to the laboratory23. 
All participants gave informed consent, and the study was approved by the inter-
nal review board at the University of Texas at Austin.

Experimental procedure. The general task procedure is presented in Figure 1. 
Participants first underwent an auction (Fig. 1a), then a training task (Fig. 1b),  
then a probe (Fig. 1c) and finally a repeat of the auction (Fig. 1d). Stimulus 
presentation and behavioral data acquisition were implemented in Pygame42 for 
the auction and Matlab (MathWorks) with Psychotoolbox43–45 for the training 
and probe phases.

Auction. First, participants took part in an auction22,23 (Fig. 1a) in which pho-
tographs of 60 appetitive junk food items23 were presented in random order. 
We followed the BDM procedure22,23 in which participants were endowed with 
three dollars and told that they would have an opportunity to use them to buy a 
snack at the end of the session. During the auction, participants were presented 
with one item at a time on a computer screen. They placed their bid by moving 
the mouse cursor along an analog scale that spanned from 0 to 3 at the bottom 
of the screen. The auction was self-paced, and the next item was presented only 
after the participant placed his or her bid. This procedure has been shown to reli-
ably provide a measure of WTP per item23. Two participants from cue-approach  
study 1, one from study 3 and two from study 4 were excluded because there was 
not enough range in bids for those participants to properly categorize the stimuli 
using the method explained in the next section. In the cue-avoidance study, three 
participants were excluded from study 5 and two from study 6 because they bid 
less than $0.25 on more than 40 items; in studies 7 and 8, we also excluded one 
participant in each sample owing to auction exclusion criteria. These exclusions 
ensured a sufficient number of highly valued items that were different enough 
from lower-valued items.

Item selection. Items were ranked based on WTP, where item 1 had the highest 
WTP and so forth until item 60, which had the lowest WTP. We then chose eight 
items as higher-valued (ranked 8–15) and eight items as lower-valued (ranked 
46–53). Out of each of these eight items, four were associated with an auditory 
cue to later served as Go items and four were not associated with the cue to later 
served as NoGo items (Supplementary Fig. 1). This selection procedure ensured 
pairing of high-value Go with high-value NoGo items and low-value Go with 
low-value NoGo items. These pairs made up of two items of similar WTP later 
presented at probe (see below) such that participants should a priori be indiffer-
ent in a choice between them based on initially stated values. To maintain ~25% 
cue frequency (8 of 30 high and 8 out of 30 low) as is usually done in stop-signal 
tasks25, we chose an additional 4 high-value items (out of the items ranked 16–23) 
and an additional 4 low-value items (out of the items ranked 38–45) that were 
later used in high-value Go versus low-value Go comparisons and high-value 
NoGo versus low-value NoGo comparisons during probe (data not shown).

For study 7 (n = 26 participants), we only used the lower-value 30 items 
for training and selected items ranked 38–45 as the higher-value items 
(Supplementary Fig. 2).

Cue-approach training. The task is functionally opposite to the stop-signal 
task25. On each trial, images of the food items were presented on the screen for 
1 s followed by an intertrial interval of an average 3 s (range 1–12 s, Fig. 1b).  
Item presentation was randomized within a block of 60 trials. Participants  
were instructed to press a button on the keyboard as fast as they could, but  
only when they heard a tone. Their task was to press the button before the items 

disappeared from the screen. The items that were chosen as Go items were con-
sistently associated with the tone. In study 1 we initiated the tone at 650 ms after 
the item was presented on the screen (Go-signal delay, GSD) and then updated 
the GSD using a ladder technique; we increased the GSD by 17 ms if participants 
pressed the button before the item disappeared, whereas the GSD was reduced 
by 50 ms if the participants pressed the button after the item disappeared (always 
after 1 s). We chose this 3:1 ladder titration ratio to ensure a 75% success rate in 
button presses. In study 1 (n = 29 participants) and study 3 (n = 21 participants) 
all 60 food items were presented 12 times each during training. In study 2 they 
were presented 8 times and in study 4 (n = 27 participants) they were presented 
16 times. The order of presentation within the 60 items was randomized, and all 
items were presented before the next set started. After two presentations of all 
items the participants received a short self-paced break before continuing to the 
next run. In studies 2, 3 and 4, we initiated the ladders at 750 ms as the results 
from study 1 showed a convergence around that number.

Cue-avoidance training. Item selection was identical to the procedure for cue-
approach training. This task is highly similar to the trained-inhibition version of 
the stop-signal task26,27. All components and timings of this task were identical 
to the cue-approach training except for two details. First, in this task, participants 
were instructed to press the button as fast as they could every time they saw an 
item, unless they heard a tone. Second, as this task was designed to optimize the 
difficulty of stopping, the stop-signal-delay was initiated at 250 ms. We used 
a similar 3:1 ratio for ladders titration in this task; we decreased the ladder by 
50 ms if participants did not stop on time and increased it by 17 ms if they  
did manage to stop. In study 5 (n = 42 participants) all items were presented  
12 times and in study 6 (n = 26 participants) all items were presented 16 times.

Cue without approach. For study 8 we followed the same procedure as in the 
cue-approach training but did not ask the 31 participants to press the button when 
they heard the tone. We used yoked ladders from study 4.

Probe. After the completion of training, participants filled in a computer-adapted 
version of the Barratt impulsiveness scale (BIS)-11 questionnaire46. They were 
then told that they would next perform a new task (Fig. 1c) where they would 
be presented pairs of items. They were told that a single trial would be drawn at 
random at the end of the session and their choice on that trial would be honored 
(i.e., they would receive the item that they had chosen on that trial at the end of 
the experiment and will stay to consume it in the lab).

Pairing procedure. We presented unique pairs of items during the probe phase. 
The main goal of our analysis was to test how the cue-approach or avoidance 
training affected participants’ preferences between items that had similar initial 
value. We presented items from the same value category (high or low with similar 
WTP rankings) such that one item was associated with the cue during training 
and the other was not (Supplementary Fig. 1). Participants were presented with 
16 unique pairs (each of the four Go items were paired with each of the four NoGo 
items) for each value category. If the manipulation did not affect participants’ 
valuation of the items then they should be indifferent between them. Participants 
were also presented with two additional pair types made up of high-value Go 
versus low-value Go and high-value NoGo versus low-value NoGo items. These 
pairs served as ‘sanity checks’ to ensure that the initial WTPs truly represented 
participants’ values (the results of these comparisons are not reported, but in all 
cases the expected differences between choice of high- and low-valued items 
were observed).

No-probe version. In study 9 we did not include the probe phase for 25  
participants.

Trial timing. At trial onset, the two items in a pair were presented directly to the 
right and left of a fixation cross (Fig. 1c). Participants had 1.5 s to respond with 
either of two buttons on the keyboard corresponding to the left or right locations 
on the screen. The chosen item was highlighted with a green rectangle around it. 
The choice confirmation remained on the screen for 500 ms until a fixation-cross 
appeared during the intertrial interval for an average of 3 s (range 1–12 s). If the 
participants did not choose within the allotted time, a message appeared on the 
screen asking them to please choose faster followed by the intertrial fixation cross 
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and the next trial began. Each of the 64 unique pairs was presented twice across 
the two probe runs. The order and left-right locations of the items on the screen 
were randomized across participants and across the two runs.

Questionnaires. As mentioned above, the BIS-11 (ref. 46) questionnaire was 
administered between training and probe (no significant correlations were found 
with the proportion of choices of high-value Go items, P > 0.3, two sided Pearson 
correlation). At the end of the session, when participants remained in the lab to 
consume the food item, they received several additional questionnaires, which 
are beyond the scope of this manuscript.

Probe behavior. To test whether cue-approach (or cue-inhibition) training 
induced a preference change, we performed a repeated-measures logistic regres-
sion using the lmer function from the lme4 library in R (ref. 47) to compare the 
odds of choosing the Go to NoGo items against equal odds for the high-value 
and low-value pairs separately. We also performed a repeated-measures linear 
regression to test for differences in reaction time (RT) for choices of Go and NoGo 
items for the high-value and low-value pairs separately (data not shown).

Probe eye-tracking. Eye-tracking data were acquired using an Eyelink-1000  
SR-Research eye tracker. Usable data were obtained on 18 participants from  
cue-approach study 4. Gaze position was categorized as being either within the  
x-axis boundaries of the fixation cross, within the x-axis boundaries of  
the stimulus on the right of the fixation cross or on the left of the fixation  
cross. The proportion of the trial time spent looking at the right or left items 
on each trial was calculated. We examined the difference in the proportion of 
total trial time spent looking at the Go item versus the NoGo item, when the 
participant chose the high-value Go or the high-value NoGo item separately 
using repeated measures linear regression. We also examined the difference in the 
proportion of time spent looking at the Go versus the NoGo item when that item  
was not chosen using repeated-measures linear regression. We also looked 
at the main effect of Go/NoGo item assignment as well as the main effect of 
chosen/unchosen on the proportion of choice time spent viewing an item during 
probe phase using repeated measures linear regression including the two factors 
Go/NoGo and chosen/unchosen with two grouping factors (for item presenta-
tion and participant).

Auction. Repeated-measures linear regression was used to test the two-way 
interaction between time (pretraining auction and post-training auction) and 
condition (Go and NoGo) within each value category separately. This interaction 
tests whether the change in WTP over time is different for Go and NoGo items. 
P values for the effects in the mixed models were calculated using the Kenward-
Rogers approximation for degrees of freedom48. In order to better account for 
regression to the mean, we looked at the main effect of factor Go/NoGo item 
assignment as well as its interaction with value (high-value versus low-value 
items) on WTP at the second, post-training auction while accounting for WTP 
on the first, pretraining auction using repeated-measures linear regression with 
a grouping factor for participant.

We also investigated the influence of the change in WTP from pre- to post-
training auctions on the proportion of choice time spent viewing a particular 
item during the probe phase accounting for Go/NoGo item assignment using 
repeated-measures linear regression with a grouping factor for participant.

Retest. We recontacted all participants and requested that they return to the lab. 
Participants were requested to fast for 4 h similar to the original experiment.  
In this follow-up session, 20 participants performed the auction and then  
probe phase with the same pairings as the one they had originally performed on 
their first visit to the lab.

Imaging version. We performed study 3 of the cue approach experiment while 
21 participants were scanned with fMRI. In this version, participants used 
an MRI-compatible response pad to enter their response. They filled in the  
computer-adapted version of the BIS-11 (ref. 46) using the MRI-compatible  
button box before the probe phase while inside the scanner.

fMRI acquisition and analysis. Imaging data were acquired on a 3T Skyra MRI 
scanner (Siemens) with a 32-channel head coil. Functional data were acquired 

using a T2*-weighted echo planar imaging sequence (repetition time (TR) = 
2,000 ms, echo time TE = 30 ms, flip angle (FA) = 60°, field of view (FOV) = 256, 
acquisition matrix of 128 × 128. Forty eight oblique axial slices with a 2-mm 
inplane resolution were positioned 30° off the anterior commissure-posterior 
commissure line to reduce the frontal signal dropout49 and spaced 2 mm with a 
0.5 mm gap to achieve full brain coverage). Slices were acquired using the multi-
band sequence50 (acceleration factor = 2, parallel imaging factor iPAT = 2) in an 
interleaved fashion. Higher-order shimming was used to reduce susceptibility 
artifacts. Each of the training runs consisted of 194 volumes and each of the probe 
runs consisted of 164 volumes. In addition to functional data, a single three-
dimensional high-resolution full brain image acquired using a magnetization  
prepared rapid gradient echo (MPRAGE) pulse sequence (TR = 1,900 ms,  
TI = 900 ms, TE = 2.43 ms, FA = 9°, FOV = 25 cm2) was acquired for brain mask-
ing and image registration.

Raw imaging data in DICOM format were converted to NIFTI format and 
preprocessed through a standard preprocessing pipeline using the FSL package51 
version 5. Functional image time series were first aligned using the MCFLIRT tool 
to obtain six motion parameters that correspond to the x-y-z translation and rota-
tion of the brain over time. Second, the skull was removed from the T2* images 
using the brain extraction tool (BET) and from the high-resolution T1 images 
using Freesurfer52,53. Spatial smoothing was performed using a Gaussian kernel 
with a full-width half maximum (FWHM) of 5 mm. Data and design matrix were 
high-pass filtered using a Gaussian-weighted least-squares straight line fit with a 
cutoff period of 100 s. Grand-mean intensity normalization of each run’s entire 
four-dimensional data set by a single multiplicative factor was also performed. 
The functional volumes for each participant and run were registered to the high 
resolution T1-weighted structural volume using a boundary-based registration 
method54 implemented in FSL5 (BBR). The T1-weighted image was then regis-
tered to the MNI152 2 mm template using a linear registration implemented in 
FLIRT (12 degrees of freedom). These two registration steps were concatenated 
to obtain a functional-to-standard space registration matrix.

Imaging analysis. We focused our analysis on the probe phase to examine the 
neural signature of value change. We used a general linear model (GLM) for the 
probe phase that included seven regressors for each of the four trial types: for 
high-value Go versus high-value NoGo, (i) onsets of trials when high-value Go 
items were chosen with fixed duration of 0.87 s, which was the average RT across 
all trials across all subjects; (ii) to explore the preference for each item (Fig. 3a), 
we used the demeaned total number of choices (on all probe trials where this 
item appeared) of the chosen item as a parametric modulator of the above onset 
regressor (the same average RT was used as duration as above); (iii) to account 
for the difference in pretraining WTP between the items in each pair we added 
the WTP difference as a parametric modulator with the same onsets and dura-
tions as regressor #1. All of the above three regressors were added for the trials 
when participants chose the NoGo item in a pair. To account for RT differences 
between choices of the Go and NoGo items we added a regressor with the onsets 
of all high-value Go and NoGo trials but as the modulator we added the demeaned 
RT across all these trials. We defined the same seven regressors for the probe trials 
that compared low-value Go to low-value NoGo and also high-value Go versus 
low-value Go and high-value NoGo versus low-value NoGo, which resulted in 
a total of 28 regressors (four trial types times 7) and an additional regressor for 
missed trials of all types. We included the six motion regressors described above, 
framewise displacement (FD) and RMS intensity difference from one volume to 
the next (DVARS)55 as confound regressors. We also modeled out trials with FD 
and DVARS that exceeded a threshold of 0.5 by adding a single time point regres-
sor for each ‘to-be-scrubbed’ volume56. All regressors were entered at the first level 
of analysis and all (but the added confound regressors) were convolved with a 
canonical double-gamma hemodynamic response function. The temporal deriva-
tive of each regressor (but the added confound regressors) was included in the 
model. The model was estimated separately for each participant for each run.

To test which regions showed a greater modulation by the preference for  
an item we contrasted the parametric modulator of the chosen high-value Go 
items (regressor (ii) above) with the same regressor for the high-value NoGo 
items (Fig. 3b). We masked this contrast by our pre-hypothesized vmPFC region. 
The mask encompassed the medial PFC by combining Harvard-Oxford regions 
(frontal pole, frontal medial cortex, paracingulate gyrus and subcallosal cortex) 
falling between x = 14, x = −14 and z < 0.
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Four participants were excluded from the imaging analysis because their para-
metric modulator of choices was zeroed out. One chose all high-value Go items 
at exactly the same proportion and three chose all high-value NoGo items at the 
same proportion during probe. Thus, the parametric modulator was perfectly 
correlated with the intercept regressor (column of 1 s) resulting in a rank-deficient  
design matrix.

For all group analyses we averaged across individual subjects to perform  
a one-sample t-test to obtain the overall effects for the group. All reported  
statistical maps were corrected at the whole-brain level using a cluster-based 
Gaussian random field correction for multiple comparisons, with an uncorrected 
cluster-forming threshold of z = 2.3 and corrected extent threshold of P < 0.05, 
except for the comparison between modulation of high-value Go and high-value 
NoGo during probe, which was corrected only for the medial PFC mask.

Training. The GLM during the training phase included 4 regressors for each Go 
item broken down by subsequent four probe trial types (high-value Go versus 
high-value NoGo, low-value Go versus low-value NoGo, high-value Go versus 
Low-value Go and high-value NoGo versus low-value NoGo): (i) onsets of the 
Go trial, modeled with a fixed duration of 1 s; (ii) same onset and duration but 
modulated by subsequent number of choices during probe; (iii) same onset and 
duration but modulation by initial WTP; (iv) same onset and duration but modu-
lated by the Go-signal delay for that trial. Thus there were four different Go trials 
and for each there were four regressors yielding a total of 16 regressors. Then for 
each of the different types of the NoGo trials there were three regressors similar 
to above except the modulation by the Go signal delay as there was no signal in 
the NoGo trials. Thus, there were four different NoGo trials and for each there 
were three regressors yielding a total of 12 regressors. To account for RT differ-
ences between all trials we added a regressor with the onsets of all Go trials and 
the modulator was the demeaned RT across all these trials. We further added a 
missed trial regressor for high-value Go and low-value Go and two regressors for 
an erroneous response for high-value and low-value NoGo. There were a total 

of 33 regressors. We added the same covariates as in the probe design matrix: we 
included the 6 motion regressors described above, along with framewise displace-
ment (FD) and RMS intensity difference from one volume to the next (DVARS)55 
as confound regressors.
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