
UC Irvine
UC Irvine Previously Published Works

Title
Channel Acquisition for Massive MIMO-OFDM With Adjustable Phase Shift Pilots

Permalink
https://escholarship.org/uc/item/4f3020j2

Journal
IEEE Transactions on Signal Processing, 64(6)

ISSN
1053-587X

Authors
You, L
Gao, X
Swindlehurst, AL
et al.

Publication Date
2016-03-15

DOI
10.1109/TSP.2015.2502550

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4f3020j2
https://escholarship.org/uc/item/4f3020j2#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


ar
X

iv
:1

5
1
1
.0

3
8
1
2
v
1
  
[c

s.
IT

] 
 1

2
 N

o
v
 2

0
1
5

IEEE TRANSACTIONS ON SIGNAL PROCESSING 1

Channel Acquisition for Massive MIMO-OFDM

with Adjustable Phase Shift Pilots
Li You, Student Member, IEEE, Xiqi Gao, Fellow, IEEE, A. Lee Swindlehurst, Fellow, IEEE, and Wen Zhong

Abstract—We propose adjustable phase shift pilots (APSPs) for
channel acquisition in wideband massive multiple-input multiple-
output (MIMO) systems employing orthogonal frequency division
multiplexing (OFDM) to reduce the pilot overhead. Based on
a physically motivated channel model, we first establish a
relationship between channel space-frequency correlations and
the channel power angle-delay spectrum in the massive antenna
array regime, which reveals the channel sparsity in massive
MIMO-OFDM. With this channel model, we then investigate
channel acquisition, including channel estimation and channel
prediction, for massive MIMO-OFDM with APSPs. We show
that channel acquisition performance in terms of sum mean
square error can be minimized if the user terminals’ channel
power distributions in the angle-delay domain can be made non-
overlapping with proper phase shift scheduling. A simplified
pilot phase shift scheduling algorithm is developed based on
this optimal channel acquisition condition. The performance of
APSPs is investigated for both one symbol and multiple symbol
data models. Simulations demonstrate that the proposed APSP
approach can provide substantial performance gains in terms of
achievable spectral efficiency over the conventional phase shift
orthogonal pilot approach in typical mobility scenarios.

Index Terms—Adjustable phase shift pilots, massive MIMO-
OFDM, channel estimation, channel prediction, channel acquisi-
tion, pilot phase shift scheduling.

I. INTRODUCTION

FORTHCOMING 5G cellular wireless systems are ex-

pected to support 1000 times faster data rates than the

currently deployed 4G long-term evolution (LTE) system. To

achieve the high data rates required by 5G, many technologies

have been proposed [1]–[3]. Among them, massive multiple-

input multiple-output (MIMO) systems, which deploy un-

precedented numbers of antennas at the base stations (BSs)

to simultaneously serve a relatively large number of user

terminals (UTs), are believed to be one of the key candidate

technologies for 5G [4]–[6].
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Orthogonal frequency division multiplexing (OFDM) is a

multi-carrier modulation technology suited for high data rate

wideband wireless transmission [7], [8]. Due to its robust-

ness to channel frequency selectivity and relatively efficient

implementation, OFDM combined with massive MIMO is a

promising technique for wideband massive MIMO transmis-

sion [4]. As in conventional MIMO-OFDM, the performance

of massive MIMO-OFDM is highly dependant on the quality

of the channel acquisition. Pilot design and channel acquisition

for massive MIMO-OFDM is of great practical importance.

Optimal pilot design and channel acquisition for conven-

tional MIMO-OFDM has been extensively investigated in the

literature. The most common approach is to estimate the

channel response in the delay domain, and optimal pilots

sent from different transmit antennas are typically assumed

to satisfy the phase shift orthogonality condition in both the

single-user case [9]–[11] and the multi-user case [12]. Note

that such phase shift orthogonal pilots (PSOPs) have been

adopted in LTE [13]. When channel spatial correlations are

taken into account, optimal pilot design has been investigated

for both the single-user case [14] and multi-user case [15].

Although these orthogonal pilot approaches can eliminate pilot

interference in the same cell, they do not take into account

the pilot overhead issue, which is thought to be one of the

limiting factors for throughput in massive MIMO-OFDM [4].

When such approaches are directly adopted in time-division

duplex (TDD) massive MIMO-OFDM, the corresponding pilot

overhead is proportional to the sum of the number of UT

antennas, and would be prohibitively large as the number

of UTs becomes large. This becomes the system bottleneck,

especially in high mobility scenarios where pilots must be

transmitted more frequently. Therefore, a pilot approach that

takes the pilot overhead issue into account is of importance

for massive MIMO-OFDM systems.

In this paper, we propose adjustable phase shift pilots (AP-

SPs) for massive MIMO-OFDM to reduce the pilot overhead.

For APSPs, one sequence along with different adjustable phase

shifted versions of itself in the frequency domain are adopted

as pilots for different UTs. The proposed APSPs are different

from conventional PSOPs [9], [10], [12], in which phase

shifts for different pilots are fixed, and phase shift differences

between different pilots are no less than the maximum channel

delay (divided by the system sampling duration) of all the

UTs. Since in our approach the phase shifts for different

pilots are adjustable, more pilots are available compared with

conventional PSOPs, which leads to significantly reduced pilot

overhead.

The proposed APSPs exploit the following two channel

http://arxiv.org/abs/1511.03812v1
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properties: First, wireless channels are sparse in many typical

propagation scenarios; most channel power is concentrated

in a finite region of delays and/or angles due to limited

scattering [16]–[19]. Such channel sparsity can be resolved

in the angle domain in massive MIMO due to the relatively

large antenna array apertures, which has been observed in

recent massive MIMO channel measurement results [20],

[21]. Second, channel sparsity patterns, i.e., channel power

distributions in the angle-delay domain, for different UTs

are usually different.1 For APSPs, when the phase shifts

for pilots employed by different UTs are properly scheduled

according to the above channel properties, channel acquisition

can be achieved simultaneously in an almost interference-free

manner as with conventional PSOPs. There has recently been

increased research interest on utilizing channel sparsity for

channel acquisition in massive MIMO. For instance, a time-

frequency training scheme [25] and a distributed Bayesian

channel estimation scheme [24] were proposed for massive

MIMO-OFDM by exploiting the channel sparsity. As the

approaches in [24] and [25] focus on channel acquisition for a

single UT, the corresponding pilot overhead would still grow

linearly with the number of UTs. Channel sparsity has also

been exploited to mitigate pilot contamination in multi-cell

massive MIMO [26], [27]. Note that compressive sensing has

been applied to sparse channel acquisition in some recent

works (see, e.g., [19], [22], [23], [28] and references therein),

in which the corresponding pilot signals are usually assumed to

be randomly generated. However, it is usually quite difficult to

implement random pilot signals in practical systems [29]. For

example, adopting large dimensional random pilot signals in

the massive MIMO-OFDM systems considered here requires

huge storage space and high complexity channel acquisition

algorithms. In addition, a low peak-to-average power ratio

(PAPR) for randomly generated pilot signals usually cannot

be guaranteed. These drawbacks can be mitigated via proper

design of the deterministic sensing matrices (see, e.g., [30],

[31] and references therein).

The main contributions of this paper are summarized as

follows:

• Based on a physically motivated channel model, we

establish a relationship between the space-frequency do-

main channel covariance matrix (SFCCM) and the chan-

nel power angle-delay spectrum for massive MIMO-

OFDM. We show that when the number of BS antennas

is sufficiently large, the eigenvectors of the SFCCMs for

different UTs tend to be equal, while the eigenvalues de-

pend on the respective channel power angle-delay spectra,

which reveals the channel sparsity in the angle-delay do-

main. Then we propose the angle-delay domain channel

response matrix (ADCRM) and the corresponding angle-

delay domain channel power matrix (ADCPM), which

can model the massive MIMO-OFDM channel sparsity

1There has been recent work that considers channels with a sparse common
support [22], [23]. However, for massive MIMO channels, the common
support assumption might not hold due to the increased angle resolution
[22], [24]. Thus, in this work we assume that the channel sparsity patterns of
different UTs are different (but not necessarily totally different), although the
proposed APSP approach can also be applied to the common support cases.

in the angle-delay domain, and are convenient for further

analyses.

• With the presented channel model, we propose APSP-

based channel acquisition (APSP-CA) for massive

MIMO-OFDM in TDD mode. For APSPs, equivalent

channels for different UTs will experience corresponding

cyclic shifts in the delay domain. Using this property,

we show that the sum mean square error (MSE) of

channel estimation (MSE-CE) can be minimized if the

UTs’ channel power distributions in the angle-delay do-

main can be made non-overlapping with proper pilot

phase shift scheduling. Taking the time-varying nature of

the channel into account, we further investigate channel

prediction during the data segment using the received

pilot signals. We show that the sum MSE of channel

prediction (MSE-CP) can also be minimized if the UTs’

channel power distributions in the angle-delay domain

can be made non-overlapping with proper pilot phase

shift scheduling, which coincides with the optimal chan-

nel estimation condition. A simplified pilot phase shift

scheduling algorithm is developed based on this optimal

channel acquisition condition. The proposed APSP-CA

approach is investigated for cases involving both one

symbol and multiple consecutive symbols.

• The proposed APSP-CA is evaluated in several typical

propagation scenarios, and significant performance gains

in terms of achievable spectral efficiency over the conven-

tional PSOP-based channel acquisition (PSOP-CA) are

demonstrated, especially in high mobility scenarios.

Portions of this work previously appeared in the conference

paper [32].

A. Notations

We adopt the following notation throughout the paper. We

use ̄ =
√
−1 to denote the imaginary unit. ⌊x⌋ (⌈x⌉) denotes

the largest (smallest) integer not greater (smaller) than x.

〈·〉N denotes the modulo-N operation. δ(·) denotes the delta

function. Upper (lower) case boldface letters denote matrices

(column vectors). The notation , is used for definitions. Nota-

tions ∼ and ∝ represent “distributed as” and “proportional to”,

respectively. We adopt IN to denote the N ×N dimensional

identity matrix, and IN×G to denote the matrix composed

of the first G (≤ N) columns of IN . We adopt 0 to denote

the all-zero vector or matrix. The superscripts (·)H , (·)T , and

(·)∗ denote the conjugate-transpose, transpose, and conjugate

operations, respectively. The operator diag {x} denotes the

diagonal matrix with x along its main diagonal. We employ

[a]i, [A]i,j and [A]i,: to denote the ith element of the vector

a, the (i, j)th element of the matrix A and the ith row of

the matrix A, respectively, where the element indices start

with 0. CM×N (RM×N ) denotes the M × N dimensional

complex (real) vector space. E {·} denotes the expectation

operation. CN (a,B) denotes the circular symmetric complex

Gaussian distribution with mean a and covariance B. ⊗
and ⊙ denote the Kronecker product and Hadamard product,

respectively. vec {·} represents the vectorization operation. FN

denotes the N -dimensional unitary discrete Fourier transform
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(DFT) matrix. FN×G denotes the matrix composed of the first

G (≤ N) columns of FN . fN,q denotes the qth column of

the matrix
√
NFN . We further define the permutation matrix

Πn
N ,

[
0 IN−〈n〉N

I〈n〉
N

0

]

. The notation \ denotes the set

subtraction operation.

B. Outline

The rest of the paper is organized as follows. In Section

II, we investigate the sparse nature of the massive MIMO-

OFDM channel model. In Section III, we propose APSP-CA

over one OFDM symbol in massive MIMO-OFDM, including

channel estimation and prediction. We investigate the multiple

consecutive pilot symbol case in Section IV. Simulation results

are presented in Section V, and conclusions are given in

Section VI.

II. MASSIVE MIMO-OFDM CHANNEL MODEL

In this section, we propose a physically motivated massive

MIMO-OFDM channel model, and investigate the inherent

channel sparsity property. We consider a single-cell TDD

wideband massive MIMO wireless system which consists of

one BS equipped with M antennas and K single-antenna UTs.

We denote the UT set as K = {0, 1, . . . ,K − 1} where k ∈ K
represents the UT index. We assume that the channels of differ-

ent UTs are statistically independent. We assume that the BS is

equipped with a one-dimensional uniform linear array (ULA),2

with antennas separated by one-half wavelength. Then the BS

array response vector corresponding to the incidence angle θ
with respect to the perpendicular to the array is given by [17]

vM,θ =

[

1 exp (−̄π sin (θ)) . . .

. . . exp (−̄π(M − 1) sin (θ))

]T

∈ C
M×1. (1)

We assume that the signals seen at the BS are constrained

to lie in the angle interval A = [−π/2, π/2], which can be

achieved through the use of directional antennas at the BS,

and thus no signal is received at the BS for incidence angles

θ /∈ A [33].

We consider OFDM modulation with Nc subcarriers, per-

formed via the Nc-point inverse DFT operation, appended with

a guard interval (a.k.a. cyclic prefix) of length Ng (≤ Nc)
samples. We employ Tsym = (Nc +Ng)Ts and Tc = NcTs to

denote the OFDM symbol duration with and without the guard

interval, respectively, where Ts is the system sampling duration

[13]. We assume that the guard interval length Tg = NgTs is

longer than the maximum channel delay of all the UTs [34],

[35].

We assume that the channels remain constant during one

OFDM symbol, and evolve from symbol to symbol. We denote

the uplink (UL) channel gain between the antenna of the kth

UT and the mth antenna of the BS over OFDM symbol ℓ and

subcarrier n as [gk,ℓ,n]m. Using a physical channel modeling

2We adopt the ULA model in this paper for clarity, although our work can
be readily extended to more general antenna array models using the techniques
in [33].

approach (see, e.g., [17], [36]–[39]), the channel response

vector gk,ℓ,n ∈ C
M×1 can be described as

gk,ℓ,n =

Ng−1
∑

q=0

∞∫

−∞

π/2∫

−π/2

vM,θ · exp
(

−̄2π n

Tc
τ

)

· exp (̄2πνℓTsym) · gk (θ, τ, ν) · δ (τ − qTs) dθdν

=

Ng−1
∑

q=0

∞∫

−∞

π/2∫

−π/2

vM,θ · exp
(

−̄2π n

Nc
q

)

· exp (̄2πνℓTsym) · gk (θ, qTs, ν) dθdν (2)

where vM,θ is given in (1), gk (θ, τ, ν) is the complex-valued

joint angle-delay-Doppler channel gain function of UT k
corresponding to the incidence angle θ, delay τ , and Doppler

frequency ν. Note that the number of significant channel taps

in the delay domain is usually limited, and smaller than Ng;

i.e., |gk (θ, qTs, ν)| is approximately 0 for most q. Since the

locations of the significant channel taps in the delay domain

are usually different for different UTs, we adopt (2) in this

paper to obtain a general channel representation applicable

for all the UTs.

We write the kth UT’s channel at OFDM symbol ℓ over all

subcarriers as

Gk,ℓ = [gk,ℓ,0 gk,ℓ,1 . . . gk,ℓ,Nc−1] ∈ C
M×Nc (3)

which will be referred to as the space-frequency domain

channel response matrix (SFCRM). From (2), it is not hard

to show that

vec {Gk,ℓ} =
Ng−1
∑

q=0

∞∫

−∞

π/2∫

−π/2

[fNc,q ⊗ vM,θ] · exp (̄2πνℓTsym)

· gk (θ, qTs, ν) dθdν. (4)

We assume that channels with different incidence angles,

delays, and/or Doppler frequencies are uncorrelated [17], [38],

[39]. We also assume that the temporal correlations and joint

space-frequency domain correlations of the channels can be

separated [35], [38], i.e.,

E {gk (θ, τ, ν) g∗k (θ′, τ ′, ν′)}
= S

ADD
k (θ, τ, ν) · δ (θ − θ′) δ (τ − τ ′) δ (ν − ν′)

= S
AD
k (θ, τ) · SDop

k (ν) · δ (θ − θ′) δ (τ − τ ′) δ (ν − ν′) (5)

where S
ADD
k (θ, τ, ν), SAD

k (θ, τ), and S
Dop
k (ν) represent the

power angle-delay-Doppler spectrum, power angle-delay spec-

trum, and power Doppler spectrum of UT k, respectively [17],

[40].

From (4) and (5), we can obtain the following channel

statistical property (see Appendix A for the derivations)

E
{
vec {Gk,ℓ+∆ℓ

} vecH {Gk,ℓ}
}
= ̺k (∆ℓ) ·Rk (6)

where ̺k (∆ℓ) is the channel temporal correlation function

(TCF) given by

̺k (∆ℓ) ,

∞∫

−∞

exp (̄2πν∆ℓTsym) · SDop
k (ν) dν (7)
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and Rk is the space-frequency domain channel covariance

matrix (SFCCM) given by

Rk ,

Ng−1
∑

q=0

π/2∫

−π/2

[fNc,q ⊗ vM,θ] [fNc,q ⊗ vM,θ]
H

· SAD
k (θ, qTs) dθ ∈ C

MNc×MNc . (8)

In this work, we consider the widely accepted Clarke-Jakes

channel power Doppler spectrum,3 with the corresponding

channel TCF given by [40], [41]

̺k (∆ℓ) = J0 (2πνkTsym∆ℓ) (9)

where J0 (·) is the zeroth-order Bessel function of the first

kind, and νk is the Doppler frequency of UT k. Note that

the Clarke-Jakes power Doppler spectrum is an even function,

i.e., ̺k(∆ℓ) = ̺k(−∆ℓ), and satisfies ̺k (0) = 1. Also,

we assume that according to the law of large numbers, the

channel elements exhibit a joint Gaussian distribution, i.e.,

vec {Gk,ℓ} ∼ CN (0,Rk).

Before proceeding, we investigate in the following proposi-

tion a property of the large dimensional SFCCM, and present

a relationship between the SFCCM and the power angle-delay

spectrum for massive MIMO-OFDM channels.

Proposition 1: Define VM ∈ CM×M as [VM ]i,j , 1√
M
·

exp
(

−̄2π i(j−M/2)
M

)

, and Ωk ∈ RM×Ng as

[Ωk]i,j , MNc (θi+1 − θi) · SAD
k (θi, τj) (10)

where θm , arcsin (2m/M − 1), and τn , nTs. Then when

the number of antennas M → ∞, the SFCCM Rk tends to
(
FNc×Ng

⊗VM

)
diag {vec {Ωk}}

(
FNc×Ng

⊗VM

)H
in the

sense that, for fixed non-negative integers i and j,

lim
M→∞

[

Rk −
(
FNc×Ng

⊗VM

)
diag {vec {Ωk}}

·
(
FNc×Ng

⊗VM

)H
]

i,j
= 0. (11)

Proof: See Appendix B.

The relationship between the space-frequency domain chan-

nel joint correlation property and the channel power distribu-

tion in the angle-delay domain for massive MIMO-OFDM is

established in Proposition 1. Specifically, for massive MIMO-

OFDM channels in the asymptotically large array regime, the

eigenvectors of the SFCCMs for different UTs tend to be the

same, which shows that massive MIMO-OFDM channels can

be asymptotically decorrelated by the fixed space-frequency

domain statistical eigendirections, while the eigenvalues de-

pend on the corresponding channel power angle-delay spectra.

Proposition 1 indicates that, for massive MIMO-OFDM

channels, when the number of BS antennas M is sufficiently

large, the SFCCM can be well approximated by

Rk ≈
(
FNc×Ng

⊗VM

)
diag {vec {Ωk}}

3Although the waves impinging on the BS are assumed to be sparsely
distributed in the angle domain due to limited scattering around the BS
(typically mounted at an elevated position), the waves departing the mobile
UTs are usually uniformly distributed in angle of departure. Thus the Clarke-
Jakes spectrum is suitable to model the time variation of the channel [40],
[41].

·
(
FNc×Ng

⊗VM

)H
. (12)

It is worth noting that the approximation in (12) is consistent

with existing results in the literature. For frequency-selective

single-input single-output channels, (12) agrees with the re-

sults in [35], [42]. For frequency-flat massive MIMO channels,

the approximation given in (12) has been shown to be accurate

enough for a practical number of antennas, which usually

ranges from 64 to 512 [27], [33], [43], [44], and a detailed

numerical example can be found in [27]. Since the SFCCM

model given in (12) is a good approximation to the more

complex physical channel model in (8) when the number of

BS antennas is sufficiently large, we will thus exclusively use

the simplified SFCCM model in (12) in the rest of the paper.

Realistic wireless channels are usually not wide-sense sta-

tionary [17], i.e., Rk varies as time evolves, although with

a relatively large time scale.4 In practice, acquisition of the

large dimensional Rk is rather difficult and resource-intensive

for massive MIMO-OFDM. However, when we shift our focus

from the space-frequency domain to the angle-delay domain,

the problem can be significantly simplified. Motivated by the

eigenvalue decomposition of the SFCCM given in (12), we

decompose the SFCRM as follows

Gk,ℓ = VMHk,ℓF
T
Nc×Ng

(13)

where

Hk,ℓ = VH
MGk,ℓF

∗
Nc×Ng

∈ C
M×Ng (14)

is referred to as the angle-delay domain channel response

matrix (ADCRM) of UT k at OFDM symbol ℓ. In the

following proposition, we derive a statistical property of the

ADCRM.

Proposition 2: For massive MIMO-OFDM channels, when

the number of antennas M → ∞, elements of the ADCRM

Hk,ℓ satisfy

E
{

[Hk,ℓ+∆ℓ
]i,j [Hk,ℓ]

∗
i′,j′

}

= ̺k (∆ℓ) δ (i− i′) δ (j − j′) · [Ωk]i,j (15)

where Ωk is given in (10).

Proof: See Appendix C.

Proposition 2 shows that, for massive MIMO-OFDM chan-

nels, different elements of the ADCRM Hk,ℓ are approx-

imately mutually statistically uncorrelated, which lends the

ADCRM in (14) its physical interpretation. Specifically, dif-

ferent elements of the ADCRM correspond to the channel

gains for different incidence angles and delays, which can be

resolved in massive MIMO-OFDM with a sufficiently large

antenna array aperture. Note that [Ωk]i,j corresponds to the

average power of [Hk]i,j , and can describe the sparsity of

the wireless channels in the angle-delay domain. Hereafter we

will refer to Ωk as the angle-delay domain channel power

matrix (ADCPM) of UT k. The dimension of the ADCPM

Ωk is much smaller than that of the SFCCM Rk, and most

elements in Ωk are approximately zero due to the channel

sparsity. In addition, Ωk is composed of the variances of

4The degree of channel stationarity depends on the propagation scenarios.
In typical scenarios, the channel statistics vary on the order of seconds [45],
while the OFDM symbol length is usually on the order of millisecond [46].
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independent angle-delay domain channel elements, and thus

can be estimated in an element-wise manner. Therefore, in

practice there will be enough resources for one to obtain an

estimate of Ωk with guaranteed accuracy. In the rest of the

paper, we will assume that the ADCPMs of all the UTs are

known by the BS.

Before we conclude this section, we define the extended

ADCRM as follows

H̄k,ℓ,(Nc) , Hk,ℓI
T
Nc×Ng

=
[
Hk,ℓ 0M×(Nc−Ng)

]
∈ C

M×Nc . (16)

Similarly, the extended ADCPM, which corresponds to the

power distribution of the extended ADCRM H̄k,ℓ,(Nc), is

defined as

Ω̄k,(Nc) , ΩkI
T
Nc×Ng

=
[
Ωk 0M×(Nc−Ng)

]
∈ R

M×Nc . (17)

Such definitions will be employed to simplify the analyses in

the following sections.

III. CHANNEL ACQUISITION WITH APSPS OVER ONE

SYMBOL

Based on the sparse massive MIMO-OFDM channel model

presented in the previous section, we propose APSP-CA

for massive MIMO-OFDM, including channel estimation and

prediction. In this section, we first investigate the case where

the APSPs are sent over one OFDM symbol, while the multiple

symbol case will be investigated in the next section.

A. APSPs over One Symbol

We assume that all the UTs are synchronized. During the UL

pilot segment, namely, the ℓth OFDM symbol of each frame,

all the UTs transmit the scheduled pilots simultaneously, and

the space-frequency domain signal received at the BS can be

represented as

Yℓ =

K−1∑

k′=0

Gk′,ℓXk′ + Zℓ ∈ C
M×Nc (18)

where [Yℓ]i,j denotes the received pilot signal at the ith
antenna over the jth subcarrier, Gk,ℓ is the SFCRM defined in

(3), Xk = diag {xk} ∈ C
Nc×Nc denotes the frequency domain

pilot signal sent from the kth UT, Zℓ is the additive white

Gaussian noise (AWGN) matrix during the UL pilot segment

with elements identically and independently distributed (i.i.d.)

as CN (0, σztr), and σztr is the noise power.

The proposed APSP over one OFDM symbol for a given

UT k is given by

Xk ,
√
σxtr diag {fNc,φk

}
︸ ︷︷ ︸

,Dφk

X, φk = 0, 1, . . . , Nc − 1 (19)

where X = diag {x} ∈ C
Nc×Nc satisfying XXH = INc

is

the basic pilot matrix shared by all UTs in the same cell, and

σxtr is the pilot signal transmit power. The APSP signal given

in (19) can be seen as a phase shifted version of
√
σxtrX

with phase shift φk in the frequency domain. Note that the

proposed APSP has the same PAPR as that of X in the

time domain, thus existing low PAPR sequence designs can

be easily incorporated into our approach. In addition, as the

basic pilot matrix X can be predetermined, only X and the

pilot phase shift indices rather than the entire pilot matrices

are required to be stored, and the required storage space can

be significantly reduced.

From (19), it can be readily obtained that, for ∀k, k′ ∈ K,

Xk′XH
k = σxtrDφk′−φk

(20)

which indicates that cross correlations of the proposed APSPs

for different UTs depend only on the associated phase shift

difference. It is worth noting that, for conventional PSOPs,

the phase shift differences for different pilots are set to satisfy

the orthogonality condition |φk′ − φk| ≥ Ng ∀k′ 6= k.

However, for our APSPs, the phase shifts for different pilots

are adjustable, and pilots for different UTs can even share the

same phase shift, which leads to more available pilots, and

thus pilot overhead can be significantly reduced.

B. Channel Estimation with APSPs

In this section we investigate channel estimation during the

pilot segment under the minimum MSE (MMSE) criterion

using the proposed APSPs. Direct MMSE estimation of the

SFCRM Gk,ℓ requires information about the large dimen-

sional SFCCM Rk and a large dimensional matrix inversion,

which is difficult to implement in practice. However, with

the sparse massive MIMO-OFDM channel model presented

above, when we shift our focus from the space-frequency

domain to the angle-delay domain, channel estimation can

be greatly simplified. The BS can first estimate the ADCRM

to obtain Ĥk,ℓ, then the SFCRM estimates can be readily

obtained as Ĝk,ℓ = VMĤk,ℓF
T
Nc×Ng

via exploiting the

unitary equivalence between the angle-delay domain channels

and the space-frequency domain channels given in (13), while

the same MSE-CE performance can be maintained. In the

following, we focus on estimation of the ADCRM Hk,ℓ under

the MMSE criterion.

Recalling (13), the received pilot signal at the BS in (18)

can be rewritten as

Yℓ =

K−1∑

k′=0

VMHk′,ℓF
T
Nc×Ng

Xk′ + Zℓ. (21)

After decorrelation and power normalization of Yℓ, the BS

can obtain an observation of the UL channel Hk,ℓ, given by

(22) shown at the top of the next page, where (a) follows

from (20). Using the unitary transformation property, it can

be readily shown that the pilot noise term in (22) exhibits

a Gaussian distribution with i.i.d. elements distributed as

CN (0, σztr/σxtr), and (22) can be simplified as

Yk,ℓ = Hk,ℓ +
∑

k′ 6=k

H
φk′−φk

k′,ℓ +
1√
ρtr

Ziid (23)

where ρtr , σxtr/σztr is the signal-to-noise ratio (SNR)

during the pilot segment, and Ziid ∈ CM×Ng is the normalized

AWGN matrix with i.i.d. elements distributed as CN (0, 1).
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Yk,ℓ =
1

σxtr
VH

MYℓX
H
k F∗

Nc×Ng

=
1

σxtr

K−1∑

k′=0

Hk′,ℓF
T
Nc×Ng

Xk′XH
k F∗

Nc×Ng
+

1

σxtr
VH

MZℓX
H
k F∗

Nc×Ng

(a)
= Hk,ℓ +

∑

k′ 6=k

Hk′,ℓF
T
Nc×Ng

Dφk′−φk
F∗

Nc×Ng

︸ ︷︷ ︸

pilot interference,
∑

k′ 6=k
H

φ
k′−φk

k′,ℓ

+
1

σxtr
VH

MZℓX
H
k F∗

Nc×Ng

︸ ︷︷ ︸

pilot noise

(22)

Note that the pilot interference term H
φk′−φk

k′,ℓ defined in

(22) satisfies

H
φk′−φk

k′,ℓ = Hk′,ℓF
T
Nc×Ng

Dφk′−φk
F∗

Nc×Ng

= Hk′,ℓI
T
Nc×Ng

FT
Nc

Dφk′−φk
F∗

Nc
INc×Ng

(a)
= H̄k′,ℓ,(Nc)F

T
Nc

Dφk′−φk
F∗

Nc
INc×Ng

(b)
= H̄k′,ℓ,(Nc)Π

φk′−φk

Nc
INc×Ng

(24)

where (a) follows from (16), and (b) follows from the permu-

tation matrix definition given in Section I-A. Thus, the pilot

interference term H
φk′−φk

k′,ℓ in (23) is a column truncated ver-

sion of the extended ADCRM H̄k′,ℓ,(Nc) with a cyclic column

shift, where the shift factor depends on the corresponding pilot

phase shift difference φk′−φk. Thus elements of H
φk′−φk

k′,ℓ can

be readily obtained as

[

H
φk′−φk

k′,ℓ

]

i,j
=







[Hk′,ℓ]i,〈j−(φk′−φk)〉Nc

,

〈j − (φk′ − φk)〉Nc
≤ Ng − 1

0, else.

(25)

Recalling Proposition 2, elements of the ADCRM Hk′,ℓ are

statistically uncorrelated. Consequently, elements of the pilot

interference term H
φk′−φk

k′,ℓ , a column truncated copy of Hk′,ℓ

with cyclic column shift, are also statistically uncorrelated.

Thus, using the same methodology as in the previous section,

the corresponding power matrix of the pilot interference term

H
φk′−φk

k′,ℓ can be defined as

Ω
φk′−φk

k′ , E
{

H
φk′−φk

k′,ℓ ⊙
(

H
φk′−φk

k′,ℓ

)∗}

= Ω̄k′,(Nc)Π
φk′−φk

Nc
INc×Ng

(26)

which is a column truncated version of the extended ADCPM

Ω̄k′,(Nc) defined in (17) with cyclic column shift φk′ − φk .

With the channel observation Yk,ℓ in (23), and the fact that

the angle-delay domain channel elements are uncorrelated as

derived in Proposition 2, the MMSE estimate Ĥk,ℓ can be

obtained in an element-wise manner as follows [47]

[

Ĥk,ℓ

]

i,j
=

[Ωk]i,j
∑K−1

k′=0

[

Ω
φk′−φk

k′

]

i,j
+ 1

ρtr

[Yk,ℓ]i,j . (27)

Let H̃k,ℓ = Hk,ℓ − Ĥk,ℓ be the angle-delay domain channel

estimation error of the kth UT, then the corresponding MSE-

CE can be obtained as

ǫCE
k ,

M−1∑

i=0

Ng−1
∑

j=0

E

{∣
∣
∣
∣

[

H̃k,ℓ

]

i,j

∣
∣
∣
∣

2
}

(a)
=

M−1∑

i=0

Ng−1
∑

j=0

E

{
∣
∣
∣[Hk,ℓ]i,j

∣
∣
∣

2

−
∣
∣
∣
∣

[

Ĥk,ℓ

]

i,j

∣
∣
∣
∣

2
}

=

M−1∑

i=0

Ng−1
∑

j=0







[Ωk]i,j −
[Ωk]

2
i,j

∑K−1
k′=0

[

Ω
φk′−φk

k′

]

i,j
+ 1

ρtr







(28)

where (a) follows from the orthogonality principle of MMSE

estimation [47].

Before we proceed, we define the sum MSE-CE of all the

UTs as

ǫCE ,

K−1∑

k=0

ǫCE
k . (29)

Due to the incurred pilot interference, performance of the

APSP-based channel estimation might deteriorate. However,

we will show in the following proposition that such effects can

be eliminated with proper phase shift scheduling for different

pilots.

Proposition 3: The sum MSE-CE ǫCE is lower bounded by

ǫCE ≥ εCE =

K−1∑

k=0

M−1∑

i=0

Ng−1
∑

j=0

{

[Ωk]i,j −
[Ωk]

2
i,j

[Ωk]i,j +
1
ρtr

}

(30)

and the lower bound can be achieved under the condition that,

for ∀k, k′ ∈ K and k 6= k′,
(

Ω̄k,(Nc)Π
φk

Nc

)

⊙
(

Ω̄k′,(Nc)Π
φk′

Nc

)

= 0. (31)

Proof: See Appendix D.

Proposition 3 shows that with the proposed APSPs, the sum

MSE-CE can be minimized when phase shifts for different

pilots are properly scheduled according to the condition given

in (31). The interpretation is very intuitive. With frequency

domain phase shifted pilots, equivalent channels will exhibit

corresponding cyclic shifts in the delay domain, as seen from

(24). If the equivalent channel power distributions in the angle-

delay domain for different UTs can be made non-overlapping

after pilot phase shift scheduling, the pilot interference effect

can be eliminated, and the sum MSE-CE can be minimized.

Wireless channels are approximately sparse in the angle-

delay domain in many practical propagation scenarios, and

typically only a few elements of the ADCPM Ωk are dominant

in massive MIMO-OFDM. When such channel sparsity is

properly taken into account, the equivalent angle-delay domain

channels for different UTs are almost non-overlapping with
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high probability, assuming proper pilot phase shifts. This

suggests the feasibility of the proposed APSPs for massive

MIMO-OFDM.

Note that performance of the proposed APSP approach

is related to the channel sparsity level. For the case where

channels of different UTs have a sparse common support with

s (≤ Ng) representing the number of the columns containing

non-zero elements in the ADCPM [22], [23], the maximum

number of UTs that can be served without pilot interference is

⌊Nc/s⌋. However, for practical wireless channels, most of the

channel elements in the angle-delay domain are close to zero,

and the condition in (31) usually cannot be satisfied exactly,

which will lead to degradation of the channel acquisition

performance. In such cases, it is clear that the more sparse

the channels are, the better performance can be achieved by

the proposed APSP approach.

Before we conclude this subsection, we remark here that

several existing pilot approaches satisfy the optimal condition

given in Proposition 3. For the case where channel sparsity

property is not known, it is reasonable to assume that all

the angle-delay domain channel elements are identically dis-

tributed, i.e., all the ADCPM elements are equal, in which

case the optimal condition in (31) can be achieved when

|φk − φk′ | ≥ Ng for ∀k 6= k′, i.e., the extended channels in

the delay domain for different UTs are totally separated, which

coincides with the conventional PSOPs [12]. For frequency-

flat massive MIMO channels, i.e., Nc = 1, the condition in

(31) can be achieved when Ωk ⊙Ωk′ = 0 for ∀k 6= k′, i.e.,

different UTs can share the same pilot when the respective

channels have non-overlapping support in the angle domain,

which coincides with previous works such as [33], [43]. In

our work, the proposed APSPs exploit the joint angle-delay

domain channel sparsity in massive MIMO-OFDM, and are

more efficient and general from the pilot overhead point of

view.

C. Channel Prediction with APSPs

In the previous subsection, we investigated channel es-

timation during the pilot segment. Directly employing the

pilot segment channel estimates in the data segment might

not always be appropriate [48], especially in high mobility

scenarios, which are the main focus of the APSPs. In this

subsection, we investigate channel prediction during the data

segment based on the received pilot signals, using the proposed

APSPs.

For frame-based massive MIMO-OFDM transmission, the

BS utilizes the received signals during the pilot segment

to acquire the channels in the current frame. If the pilot

segment channel estimate Ĥk,ℓ is directly employed as the

estimate of the channel Hk,ℓ+∆ℓ
during the data segment, the

corresponding sum MSE-CE for a given delay ∆ℓ between the

pilot symbol and data symbol can be written as

ǫCE (∆ℓ) =

K−1∑

k=0

M−1∑

i=0

Ng−1
∑

j=0

E

{∣
∣
∣
∣

[

Hk,ℓ+∆ℓ
− Ĥk,ℓ

]

i,j

∣
∣
∣
∣

2
}

=

K−1∑

k=0

M−1∑

i=0

Ng−1
∑

j=0

{

[Ωk]i,j + [1− 2̺k (∆ℓ)]

·
[Ωk]

2
i,j

∑K−1
k′=0

[

Ω
φk′−φk

k′

]

i,j
+ 1

ρtr

}

. (32)

In high mobility scenarios, the channel TCF satisfies

̺k (∆ℓ)→ 0 for relatively large delay |∆ℓ|. When ̺k (∆ℓ) <
1/2, i.e., 1 − 2̺k (∆ℓ) > 0, it can be observed from (32)

that the sum MSE-CE expression ǫCE (∆ℓ) is even larger than

the sum channel power
∑K−1

k=0

∑M−1
i=0

∑Ng−1
j=0 [Ωk]i,j , and

channel estimation performance cannot be guaranteed, which

motivates the need for channel prediction.

For channel prediction, the BS utilizes the received pilot

signals as well as the channel TCF to get estimates of the

channels during the data segment. Under the MMSE criterion,

with the angle-delay domain channel property of massive

MIMO-OFDM given in Proposition 2, it is not hard to show

that an estimate of the ADCRM Hk,ℓ+∆ℓ
based on Yk,ℓ can

be obtained in an element-wise manner as follows
[

Ĥk,ℓ+∆ℓ

]

i,j

= ̺k (∆ℓ)
[Ωk]i,j

∑K−1
k′=0

[

Ω
φk′−φk

k′

]

i,j
+ 1

ρtr

[Yk,ℓ]i,j . (33)

Recalling the pilot segment channel estimate in (27), it can be

seen that

Ĥk,ℓ+∆ℓ
= ̺k (∆ℓ) Ĥk,ℓ (34)

which indicates that optimal channel estimates during the data

segment can be easily obtained via prediction with initial

channel estimates obtained during the pilot segment, and the

complexity of channel prediction in massive MIMO-OFDM

can be further reduced. Similar to (29), the sum MSE-CP for

a given delay ∆ℓ between the data symbol and pilot symbol

can be defined as

ǫCP (∆ℓ) ,

K−1∑

k=0

M−1∑

i=0

Ng−1
∑

j=0

E

{∣
∣
∣
∣

[

Hk,ℓ+∆ℓ
− Ĥk,ℓ+∆ℓ

]

i,j

∣
∣
∣
∣

2
}

=

K−1∑

k=0

M−1∑

i=0

Ng−1
∑

j=0

{

[Ωk]i,j − ̺2k (∆ℓ)

·
[Ωk]

2
i,j

∑K−1
k′=0

[

Ω
φk′−φk

k′

]

i,j
+ 1

ρtr

}

. (35)

From (35), it can be seen that pilot interference will affect

channel prediction performance similar to the channel estima-

tion case. However, we will show in the following proposition

that such effects can still be eliminated with proper pilot phase

shift scheduling.

Proposition 4: The sum MSE-CP ǫCP (∆ℓ) ∀∆ℓ is lower

bounded by

ǫCP (∆ℓ) ≥ εCP (∆ℓ)

=

K−1∑

k=0

M−1∑

i=0

Ng−1
∑

j=0

{

[Ωk]i,j − ̺2k (∆ℓ)
[Ωk]

2
i,j

[Ωk]i,j +
1
ρtr

}

(36)

and the lower bound can be achieved under the condition that,
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(a) Type-A frame structure

(b) Type-B frame structure

Fig. 1. Frame structures for TDD transmission.

for ∀k, k′ ∈ K and k 6= k′,
(

Ω̄k,(Nc)Π
φk

Nc

)

⊙
(

Ω̄k′,(Nc)Π
φk′

Nc

)

= 0. (37)

Proof: The proof is similar to that of Proposition 3, and

is omitted for brevity.

D. Frame Structure

There exist two typical frame structures for TDD massive

MIMO transmission [49]. One type of frame structure (which

will be referred to as type-A) begins with the UL pilot seg-

ment, followed by the UL and downlink (DL) data segments,

as shown in Fig. 1(a). In the second type (which will be

referred to as type-B), the UL pilot segment is placed between

the UL data segment and DL data segment, as shown in Fig.

1(b). For the proposed APSP approach, the delay between the

tail-end symbols of the data segment and the pilot segment will

be longer than the PSOP approach due to the reduced pilot

segment length. In addition, the APSP approach focuses on

high mobility scenarios where channels vary relatively quickly.

Thus the type-B frame structure is well-suited for the proposed

APSP approach.

E. Pilot Phase Shift Scheduling

In the previous subsections, we investigated channel estima-

tion and prediction for massive MIMO-OFDM with APSPs,

and obtained the optimal pilot phase shift scheduling condition

applicable to both channel estimation and prediction. However,

such an optimal condition cannot always be met in practice,

but pilot phase shift scheduling can still be beneficial. Several

scheduling criteria can be adopted. For example, if we sched-

ule the pilot phase shifts based on the MMSE-CE criterion,

the problem can be formulated as

argmin
{φk:k∈K}

ǫCE (38)

where ǫCE is defined in (29). Such a scheduling problem is

combinatorial, and optimal solutions must be found through an

exhaustive search. Note that the optimal phase shift scheduling

conditions for channel estimation and prediction are the same,

thus solution of the problem (38) can also be expected to

perform well under the MMSE-CP criterion.

Algorithm 1 Pilot Phase Shift Scheduling Algorithm

Input: The UT set K and the corresponding ADCPMs

{Ωk : k ∈ K}; the preset threshold γ
Output: Pilot phase shift pattern {φk : k ∈ K}

1: Initialization: φ0 = 0, scheduled UT set Ksch = {0},
unscheduled UT set Kun = K\Ksch

2: for k ∈ Kun do

3: Search for a phase shift φ that satisfies

ξ
(

Ω̄k,(Nc)Π
φ
Nc

,
∑

k′∈Ksch Ω̄k′,(Nc)Π
φk′

Nc

)

≤ γ

4: If φ cannot be found in step 3, then φ =

argmin
x

ξ
(

Ω̄k,(Nc)Π
x
Nc

,
∑

k′∈Ksch Ω̄k′,(Nc)Π
φk′

Nc

)

5: Update φk = φ, Ksch ← Ksch∪{k}, Kun ← Kun\ {k}
6: end for

Motivated by the optimal condition for channel estimation

and prediction obtained in previous subsections, a simplified

pilot phase shift scheduling algorithm can be developed. We

first define the following function that measures the degree of

overlap between two real matrices A,B ∈ RM×N as follows

ξ (A,B) ,

∑

i,j [A⊙B]i,j
√
∑

i,j [A]2i,j ·
√
∑

i,j [B]2i,j

. (39)

From the Cauchy-Schwarz inequality, it is obvious that the

overlapping degree function in (39) satisfies 0 ≤ ξ (A,B) ≤ 1.

When A is a scaled version of B, ξ (A,B) = 1. When the lo-

cations of non-zero elements in A and B are non-overlapping,

ξ (A,B) = 0. In our algorithm, we preset a threshold to

balance the tradeoff between the algorithm complexity and

channel acquisition performance. Specifically, we schedule

the pilot phase shifts for different UTs to make the overlap

function between the ADCPMs for different UTs smaller than

the preset threshold γ. Intuitively, the smaller the threshold

γ, the better the channel acquisition performance will be,

although with a higher algorithm complexity. The description

of the proposed algorithm is summarized in Algorithm 1.

IV. CHANNEL ACQUISITION WITH APSPS OVER

MULTIPLE SYMBOLS

In the previous section, we investigated channel acquisition

for massive MIMO-OFDM with the proposed APSPs over one

OFDM symbol. Sometimes pilots over one symbol might be

not sufficient to accommodate a large number of UTs. In this

section, we extend the use of APSPs to the case of multiple

consecutive OFDM symbols.

We assume that the pilots are sent over Q consecutive

OFDM symbols starting with the ℓth symbol in each frame.

In practice, the pilot segment length Q is usually short, and

we adopt the widely accepted assumption that the channels

remain constant during the pilot segment [10]–[12]. Then the

received signals by the BS during the pilot segment can be

written as

Yℓ,(Q) =
K−1∑

k′=0

Gk′,ℓXk′,(Q) + Zℓ,(Q)
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=

K−1∑

k′=0

VMHk′,ℓF
T
Nc×Ng

Xk′,(Q)

+ Zℓ,(Q) ∈ C
M×NcQ (40)

where Yℓ,(Q) , [Yℓ Yℓ+1 . . . Yℓ+Q−1], Yℓ ∈ CM×Nc

represents the received pilot signal at the BS during the ℓth
symbol, Xk,(Q) , [Xk,0 Xk,1 . . . Xk,Q−1] represents

the pilot signals and Xk,q = diag {xk,q} ∈ CNc×Nc represents

the signal sent from the kth UT during the qth symbol of the

pilot segment, Zℓ,(Q) is AWGN with i.i.d. elements distributed

as CN (0, σztr) and σztr is the noise power.

Recalling (19), the maximum adjustable phase shift for

different pilots over one OFDM symbol is Nc − 1. For the

Q pilot symbol case, the maximum adjustable pilot phase

shift can be extended to QNc − 1. By exploiting the modulo

operation, we construct the APSPs over multiple OFDM

symbols as follows

Xk,(Q) ,
√

Q [U]〈φk〉Q,: ⊗X⌊φk/Q⌋,

φk = 0, 1, . . . , QNc − 1 (41)

where U is an arbitrary Q × Q dimensional unitary matrix,

and X⌊φk/Q⌋ is the APSP signal over one symbol defined in

(19). Then it can be obtained that, for ∀k, k′ ∈ K,

Xk′,(Q)

(
Xk,(Q)

)H

= Q
(

[U]〈φk′ 〉Q,: ⊗X⌊φk′/Q⌋
)

·
(

[U]〈φk〉Q,: ⊗X⌊φk/Q⌋
)H

(a)
= Q

(

[U]〈φk′ 〉Q,: [U]
H
〈φk〉Q,:

)

⊗
(

X⌊φk′/Q⌋X
H
⌊φk/Q⌋

)

(b)
= σxtrQδ

(

〈φk′ 〉Q − 〈φk〉Q
)

·D⌊φk′/Q⌋−⌊φk/Q⌋ (42)

where (a) follows from the Kronecker product identities

(A⊗B) (C⊗D) = (AC)⊗ (BD) and (A⊗B)
H

= AH ⊗
BH [50], and (b) follows from (20). This shows that the

available phase shifts for the Q symbol case are divided into

Q groups for the proposed APSPs in (41), and the group index

depends on the residue of the pilot phase shift φ with respect to

the pilot segment length Q. Pilot interference can only affect

the UTs using APSPs with phase shifts in the same group.

For example, if 〈φk′ 〉Q = 〈φk〉Q, then phase shifts φk′ and

φk are within the same group, and the corresponding channel

acquisition of UTs k′ and k might be mutually affected.

Given the APSP correlation property over multiple symbols

in (42), the channel estimation and prediction operations can

be performed similarly to the single-symbol case investigated

in the previous section, and we will briefly discuss such issues

below.

After decorrelation and power normalization with Yℓ,(Q)

given in (40), the BS can obtain an observation of the pilot

segment ADCRM Hk,ℓ as

Yk,ℓ,(Q)

=
1

σxtrQ
VH

MYℓ,(Q)X
H
k,(Q)F

∗
Nc×Ng

=
1

σxtrQ

K−1∑

k′=0

Hk′,ℓF
T
Nc×Ng

Xk′,(Q)X
H
k,(Q)F

∗
Nc×Ng

+
1

σxtrQ
VH

MZℓ,(Q)X
H
k,(Q)F

∗
Nc×Ng

(a)
=

K−1∑

k′=0

δ
(

〈φk′ 〉Q − 〈φk〉Q
)

·Hk′,ℓF
T
Nc×Ng

·D⌊φk′/Q⌋−⌊φk/Q⌋F
∗
Nc×Ng

+
1√
ρtrQ

Ziid

(b)
= Hk,ℓ +

∑

k′ 6=k

δ
(

〈φk′ 〉Q − 〈φk〉Q
)

·H⌊φk′/Q⌋−⌊φk/Q⌋
k′,ℓ

︸ ︷︷ ︸

pilot interference

+
1√
ρtrQ

Ziid

︸ ︷︷ ︸

pilot noise

(43)

where (a) follows from (42), ρtr , σxtr/σztr is the pilot

segment SNR, Ziid is the normalized AWGN matrix with i.i.d.

elements distributed as CN (0, 1), and (b) follows from (24).

With the channel observation Yk,ℓ,(Q) in (43), the MMSE

estimate of the ADCRM Hk,ℓ can be readily obtained in an

element-wise manner as (44) shown at the top of the next

page, and the corresponding sum MSE-CE is given by (45)

shown at the top of the next page, In addition, prediction of

the ADCRM Hk,ℓ+∆ℓ
based on Yk,ℓ,(Q) can be performed as

(46) shown at the top of the next page, and the corresponding

sum MSE-CP with a given delay ∆ℓ is given by (47) shown

at the top of the next page.

Based on the above sum MSE-CE and MSE-CP expressions

for the multiple symbol APSP case, we can readily obtain the

following proposition.

Proposition 5: The sum MSE-CE ǫCE
(Q) is lower bounded by

ǫCE
(Q) ≥ εCE

(Q) =

K−1∑

k=0

M−1∑

i=0

Ng−1
∑

j=0

{

[Ωk]i,j −
[Ωk]

2
i,j

[Ωk]i,j +
1

ρtrQ

}

(48)

and the sum MSE-CP ǫCP
(Q) (∆ℓ) for ∀∆ℓ is lower bounded by

ǫCP
(Q) (∆ℓ) ≥ εCP

(Q) (∆ℓ)

=

K−1∑

k=0

M−1∑

i=0

Ng−1
∑

j=0

{

[Ωk]i,j −
̺2k (∆ℓ) [Ωk]

2
i,j

[Ωk]i,j +
1

ρtrQ

}

. (49)

Both the lower bounds in (48) and (49) can be achieved under

the condition that, for ∀k, k′ ∈ K and k 6= k′,
(

Ω̄k,(Nc)Π
⌊φk/Q⌋
Nc

)

⊙
(

Ω̄k′,(Nc)Π
⌊φk′/Q⌋
Nc

)

= 0,

when 〈φk〉Q = 〈φk′〉Q . (50)

Proof: The proof is similar to that of Proposition 3, and

is omitted for brevity.

Proposition 5 extends the single-symbol APSP case in the

previous section to the multiple symbol case. Actually, when

Q = 1, Proposition 5 reduces to the results in Proposi-

tion 3 and Proposition 4. The interpretation of Proposition

5 is straightforward. For multiple symbol APSPs, different

pilot phase shifts are divided into several groups, and pi-

lot interference only affects the UTs using the phase shifts

within the same group. If pilot interference can be eliminated

through proper phase shift scheduling in all the groups, then

optimal channel estimation and prediction performance can
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[

Ĥk,ℓ

]

i,j
=

[Ωk]i,j
∑K−1

k′=0 δ
(

〈φk′〉Q − 〈φk〉Q
) [

Ω
⌊φk′/Q⌋−⌊φk/Q⌋
k′

]

i,j
+ 1

ρtrQ

[
Yk,ℓ,(Q)

]

i,j
(44)

ǫCE
(Q) =

K−1∑

k=0

M−1∑

i=0

Ng−1
∑

j=0







[Ωk]i,j −
[Ωk]

2
i,j

∑K−1
k′=0 δ

(

〈φk′ 〉Q − 〈φk〉Q
) [

Ω
⌊φk′/Q⌋−⌊φk/Q⌋
k′

]

i,j
+ 1

ρtrQ







(45)

[

Ĥk,ℓ+∆ℓ

]

i,j
=

̺k (∆ℓ) [Ωk]i,j
∑K−1

k′=0 δ
(

〈φk′ 〉Q − 〈φk〉Q
) [

Ω
⌊φk′/Q⌋−⌊φk/Q⌋
k′

]

i,j
+ 1

ρtrQ

[
Yk,ℓ,(Q)

]

i,j
(46)

ǫCP
(Q) (∆ℓ) =

K−1∑

k=0

M−1∑

i=0

Ng−1
∑

j=0







[Ωk]i,j −
̺2k (∆ℓ) [Ωk]

2
i,j

∑K−1
k′=0 δ

(

〈φk′ 〉Q − 〈φk〉Q
) [

Ω
⌊φk′/Q⌋−⌊φk/Q⌋
k′

]

i,j
+ 1

ρtrQ







(47)

be achieved. When the optimal pilot phase shift scheduling

condition in Proposition 5 cannot be met, a straightforward

extension of the pilot phase shift scheduling algorithm in the

previous section can be applied. Specifically, the UT set can

be divided into Q groups, and pilot phase shift scheduling

can be performed within each UT group using Algorithm 1.

The tradeoff between channel acquisition performance and

algorithm complexity can still be balanced with the preset

threshold to determine the degree of allowable channel over-

lap.

V. NUMERICAL RESULTS

In this section, we present numerical simulations to evaluate

the performance of the proposed APSP-CA in massive MIMO-

OFDM. The major OFDM parameters, which are based on

3GPP LTE [46], are summarized in Table I. The massive

MIMO-OFDM system considered is assumed to be equipped

with a 128-antenna ULA at the BS with half wavelength

antenna spacing. The number of UTs is set to K = 42 as

in [4].

We consider channels with 20 taps in the delay domain,

which exhibit an exponential power delay profile [18], [51]

S
del
k (τ) ∝ exp (−τ/ςk) , for τ ∈ [0, NgTs] (51)

where ςk denotes the channel delay spread of UT k. We

assume that transmissions from all the UTs are synchronized

[13], [18]. The qth channel tap of UT k is assumed to exhibit

a Laplacian power angle spectrum [18], [33], [51]

S
ang
k,q (θ) ∝ exp

(

−
√
2 |θ − θk,q| /ϕk,q

)

,

for θ ∈ A = [−π/2, π/2] (52)

where θk,q and ϕk,q represent the corresponding mean angle

of arrival (AoA) and angle spread for the given channel tap,

respectively. We assume that the UTs are uniformly distributed

in a 120◦ sector, and the mean AoA θk,q is uniformly

TABLE I
OFDM SYSTEM PARAMETERS

Parameter Value

System bandwidth 20 MHz

Sampling duration Ts 32.6 ns

Subcarrier spacing 15 kHz

Subcarrier number Nc 2048

Guard interval Ng 144

Symbol length Tsym 71.4 µs

distributed in the angle interval [−π/3, π/3] in radians. We

do not consider large scale fading in the simulations, and

channels are normalized as
∑

i,j [Ωk]i,j = MNc for ∀k. We

consider channel propagation under several typical mobility

scenarios including suburban (SU), urban macro (UMa), and

urban micro (UMi). The primary statistical channel parameters

under these scenarios are based on the WINNER II channel

model [18], [38], and are summarized in Table II. We assume

that all UTs exhibit the same Doppler, delay, and angle spread

in the simulations.

With the above settings, we compare the performance of

the proposed APSP-CA approach with that of the conven-

tional PSOP-CA approach, which serves as the benchmark

for comparison of channel acquisition performance. For the

conventional PSOP-CA, the required pilot segment length

is Q = ⌈K/ (Nc/Ng)⌉ = 3 OFDM symbols [4]. For the

proposed APSP-CA, the pilot segment length can be set to

Q = 1 or 2. We adopt Algorithm 1 to schedule the pilot

phase shifts in the simulations, and the overlap threshold in

the algorithm is set as γ = 10−4. Although this algorithm

is suboptimal in general compared with exhaustive search,
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Fig. 2. Comparison of the pilot segment MSE-CE performance of APSPs and PSOPs. Results are shown versus the pilot SNR in several typical scenarios.

TABLE II
STATISTICAL CHANNEL PARAMETERS IN TYPICAL SCENARIOS

Scenario
Doppler νTsym

(Velocity)

Delay

spread ς

Angle

spread ϕ

Suburban 31× 10−3 0.77 µs 2◦

(SU) (250 km/h)

Urban macro 14× 10−3 1.85 µs 2◦

(UMa) (100 km/h)

Urban micro 6.6× 10−3 0.62 µs 10◦

(UMi) (50 km/h)

substantial performance gains over the conventional PSOP-CA

in terms of achievable spectral efficiency can still be achieved

with relatively little computational cost.

In Fig. 2, the pilot segment MSE-CE performance5 obtained

by the proposed APSPs (with Q = 1 and 2) are compared

with those for conventional PSOPs (Q = 3) under several

typical propagation scenarios. It can be observed that, in all the

considered scenarios, the MSE-CE performance with APSPs

approaches the performance obtained with PSOPs, while the

pilot overhead is reduced by 66.7% (Q = 1) and 33.3% (Q =
2), respectively.

In Fig. 3, we compare the channel acquisition performance

during the data segment in terms of MSE versus the delay

∆ℓ between the data symbol and pilot segment. Both the

APSP-CA (Q = 1) and PSOP-CA (Q = 3) are evaluated.

Also, for APSPs, both the channel estimation and prediction

MSE performance are calculated. It can be observed that the

MSE-CP performance obtained with APSPs approaches that

for PSOPs, with the pilot overhead reduced by 66.7%. In

addition, with APSPs, channel prediction outperforms channel

estimation in all the evaluated scenarios. Note that the channel

acquisition performance in terms of both MSE-CE and MSE-

CP grows almost linearly with delay, and thus the channel

acquisition performance can be improved when combined

5All the simulated MSE results are normalized by the number of subcarriers
Nc and the number of UTs K .

with the type-B frame structure, as shown in the following

simulation results.

At the end of this section, we compare the achievable

spectral efficiency of the proposed APSP and the conventional

PSOP approaches.6 We assume that the frame length equals

500 µs as in [4], which is equal to the length of 7 OFDM

symbols [46], and that UL and DL data transmission each

occupies half of the data segment length. For the conventional

PSOP-CA approach, channel estimation and the type-A frame

structure in Fig. 1(a) are adopted. For the proposed APSP-

CA approach, both APSPs (Q = 1) and channel prediction

are adopted, and both type-A and type-B frame structures are

considered. A MMSE receiver and precoder are employed for

both UL and DL data transmissions, and the SNR is assumed

to be equal to the pilot SNR. In Fig. 4, the achieved spectral

efficiency7 of the APSP-CA and PSOP-CA approaches are

depicted. It can be observed that the proposed APSP-CA

approach shows substantial performance gain in terms of the

achievable spectral efficiency over the conventional PSOP-CA

approach, especially in the high mobility regime where pilot

overhead dominates and the high SNR regime where pilot

interference dominates. Specifically, in the high mobility SU

scenario (250 km/h) with an SNR of 10 dB, the proposed

APSPs can provide about 69% in average spectral efficiency

gains over the conventional PSOPs. In addition, the type-B

frame structure can provide a gain of about 64% over the

type-A frame structure when APSPs are adopted.

VI. CONCLUSION

In this paper, we proposed a channel acquisition approach

with adjustable phase shift pilots (APSPs) for massive MIMO-

OFDM to reduce the pilot overhead. We first investigated

the channel sparsity in massive MIMO-OFDM based on a

physically motivated channel model. With this channel model,

we investigated channel estimation and prediction for massive

6Note that the achievable spectral efficiency can reflect the tradeoff between
the transmission performance and pilot overhead. Intuitively, reducing the pilot
overhead decreases the channel acquisition quality (which leads to degradation
of the achievable spectral efficiency), but also increases the length of the data
segments (which leads to increased achievable spectral efficiency).

7The achievable UL rate is evaluated using the classical worst case approach
as in [52], and the achievable DL rate is evaluated using the approach in [53].
The OFDM guard interval overhead is taken into account.
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Fig. 3. Comparison of the channel acquisition performance during the data segment between APSPs and PSOPs. For APSPs, the performance of both channel
estimation and prediction are depicted. Results are shown versus the channel acquisition delay in several typical scenarios.
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Fig. 4. Comparison of the achievable spectral efficiency between the APSP-CA and PSOP-CA approaches. For the APSP-CA approach, both type-A and
type-B frame structures are considered. Results are shown versus the SNR in several typical scenarios.

MIMO-OFDM with APSPs, and provided an optimal pilot

phase shift scheduling condition applicable to both channel

estimation and prediction. We further developed a simplified

pilot phase shift scheduling algorithm based on this optimal

channel acquisition condition with APSPs. The proposed

APSP-CA implemented over both one and multiple symbols

were investigated. Significant performance gains in terms of

achievable spectral efficiency were observed for the proposed

APSP-CA approach over the conventional PSOP-CA approach

in several typical mobility scenarios.

APPENDIX A

DERIVATION OF (6)

The derivation of (6) is detailed in (53), shown at the top

of the next page, where (a) follows from (5), and (b) follows

from the definition of the delta function.

APPENDIX B

PROOF OF PROPOSITION 1

We start by defining some auxiliary variables to simplify the

derivations. We define nd , ⌊d/M⌋ and md , 〈d〉M for an

arbitrary non-negative integer d. Note that the element indices

start from 0 in this paper. Then we can readily obtain that for

a matrix Ωk ∈ RM×Ng , the dth element of vec {Ωk} equals

the (md, nd)th element of Ωk, i.e., [vec {Ωk}]d = [Ωk]md,nd
.

We can also obtain that for matrices F ∈ CNc×Ng and

V ∈ CM×M , [F⊗V]i,j = [F]ni,nj
[V]mi,mj

from the

definition of the Kronecker product. With the above definitions

and related properties, the proof can be obtained as follows:

lim
M→∞

[

Rk −
(
FNc×Ng

⊗VM

)
diag {vec {Ωk}}

·
(
FNc×Ng

⊗VM

)H
]

i,j

= lim
M→∞

[Rk]i,j − lim
M→∞

MNg−1
∑

d=0

[vec {Ωk}]d

·
[
FNc×Ng

⊗VM

]

i,d

[
FNc×Ng

⊗VM

]∗
j,d

(a)
= lim

M→∞
[Rk]i,j − lim

M→∞

Ng−1
∑

nd=0

M−1∑

md=0

[Ωk]md,nd

·
[
FNc×Ng

]

ni,nd

[
FNc×Ng

]∗
nj ,nd

[VM ]mi,md
[VM ]

∗
mj ,md

(b)
= lim

M→∞
[Rk]i,j − lim

M→∞

1

MNc

Ng−1
∑

nd=0

M−1∑

md=0

MNc

· (θmd+1 − θmd
) SAD

k (θmd
, τnd

)

· exp
(

−̄2π (ni − nj)nd

Nc

)
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E
{
vec {Gk,ℓ+∆ℓ

} vecH {Gk,ℓ}
}

= E












Ng−1
∑

q=0

∞∫

−∞

π/2∫

−π/2

[fNc,q ⊗ vM,θ] · exp (̄2πν (ℓ+∆ℓ)Tsym) · gk (θ, qTs, ν) dθdν






·






Ng−1
∑

q′=0

∞∫

−∞

π/2∫

−π/2

[fNc,q′ ⊗ vM,θ′ ]
H · exp (−̄2πν′ℓTsym) · gk (θ′, q′Ts, ν

′) dθ′dν′












=

Ng−1
∑

q=0

Ng−1
∑

q′=0

∞∫

−∞

π/2∫

−π/2

∞∫

−∞

π/2∫

−π/2

[fNc,q ⊗ vM,θ] [fNc,q′ ⊗ vM,θ′ ]
H · exp (̄2πν (ℓ+∆ℓ)Tsym) · exp (−̄2πν′ℓTsym)

· E {gk (θ, qTs, ν) gk (θ
′, q′Ts, ν

′)}dθdνdθ′dν′

(a)
=

Ng−1
∑

q=0

Ng−1
∑

q′=0

∞∫

−∞

π/2∫

−π/2

∞∫

−∞

π/2∫

−π/2

[fNc,q ⊗ vM,θ] [fNc,q′ ⊗ vM,θ′ ]
H · exp (̄2πν (ℓ+∆ℓ)Tsym) · exp (−̄2πν′ℓTsym)

· SAD
k (θ, qTs) · SDop

k (ν) · δ (θ − θ′) δ (q − q′) δ (ν − ν′) dθdνdθ′dν′

(b)
=

Ng−1
∑

q=0

∞∫

−∞

π/2∫

−π/2

[fNc,q ⊗ vM,θ] [fNc,q ⊗ vM,θ]
H · exp (̄2πν∆ℓTsym) · SAD

k (θ, qTs) · SDop
k (ν) dθdν

=

∞∫

−∞

exp (̄2πν∆ℓTsym) · SDop
k (ν) dν

︸ ︷︷ ︸

̺k(∆ℓ)

·
Ng−1
∑

q=0

π/2∫

−π/2

[fNc,q ⊗ vM,θ] [fNc,q ⊗ vM,θ]
H · SAD

k (θ, qTs) dθ

︸ ︷︷ ︸

Rk

(53)

· exp
(

−̄2π (mi −mj) (md −M/2)

M

)

(c)
=

Ng−1
∑

q=0

π/2∫

−π/2

[fNc,q ⊗ vM,θ]i [fNc,q (q)⊗ vM,θ]
∗
j

· SAD
k (θ, qTs) dθ − lim

M→∞

Ng−1
∑

nd=0

M−1∑

md=0

(θmd+1 − θmd
)

· SAD
k (θmd

, τnd
) exp

(

−̄2π (ni − nj)nd

Nc

)

· exp (−̄π (mi −mj) sin (θmd
))

(d)
=

Ng−1
∑

q=0

π/2∫

−π/2

[fNc,q]ni
[fNc,q]

∗
nj

[vM,θ]mi
[vM,θ]

∗
mj

· SAD
k (θ, τq) dθ −

Ng−1
∑

r=0

θM∫

θ0

exp

(

−̄2π (ni − nj)

Nc
r

)

· exp (−̄π (mi −mj) sin (θ)) · SAD
k (θ, τr) dθ

(e)
=

Ng−1
∑

q=0

π/2∫

−π/2

exp

(

−̄2π (ni − nj)

Nc
q

)

· exp (−̄π (mi −mj) sin (θ)) · SAD
k (θ, τq) dθ

−
Ng−1
∑

r=0

π/2∫

−π/2

exp

(

−̄2π (ni − nj)

Nc
r

)

· exp (−̄π (mi −mj) sin (θ)) · SAD
k (θ, τr) dθ

= 0 (54)

where (a) follows from the definition of Kronecker product

and the definitions of md and nd, (b) follows from (10) and

the definitions of FNc×Ng
and VM , (c) follows from (8) and

the definitions of τn and θm, (d) follows from the definition

of the Kronecker product, and (e) follows from (1) and the

fact that θ0 = −π/2 and θM = π/2.

Before concluding the proof, we also have to show that both

of the limits in the first equation of (54) exist and are finite.

For this purpose, as can be seen from (e) of (54), we only

need to show that
∣
∣
∣
∣
∣

Ng−1
∑

q=0

π/2∫

−π/2

exp

(

−̄2π (ni − nj)

Nc
q

)

· exp (−̄π (mi −mj) sin (θ)) · SAD
k (θ, τq) dθ

∣
∣
∣
∣
∣

(a)

≤
Ng−1
∑

q=0

∣
∣
∣
∣
∣

π/2∫

−π/2

exp

(

−̄2π (ni − nj)

Nc
q

)
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· exp (−̄π (mi −mj) sin (θ)) · SAD
k (θ, τq) dθ

∣
∣
∣
∣
∣

(b)

≤
Ng−1
∑

q=0

π/2∫

−π/2

∣
∣
∣
∣
∣
exp

(

−̄2π (ni − nj)

Nc
q

)

· exp (−̄π (mi −mj) sin (θ)) · SAD
k (θ, τq)

∣
∣
∣
∣
∣
dθ

=

Ng−1
∑

q=0

π/2∫

−π/2

∣
∣S

AD
k (θ, τq)

∣
∣ dθ

(c)
<∞ (55)

where (a) follows from the triangle inequality∣
∣
∣
∑N−1

q=0 aq

∣
∣
∣ ≤

∑N−1
q=0 |aq|, (b) follows from the integral

property

∣
∣
∣

∫ b

a
f (x) dx

∣
∣
∣ ≤

∫ b

a
|f (x)| dx, and (c) follows

from the fact that the power angle-delay spectrum function

S
AD
k (θ, τ), which represents the channel power in the

angle-delay domain, is bounded. This concludes the proof.

APPENDIX C

PROOF OF PROPOSITION 2

To show (15), it suffices to show that

E
{
vec {Hk,ℓ+∆ℓ

} vecH {Hk,ℓ}
}

= ̺k (∆ℓ) · diag {vec {Ωk}} . (56)

From the definition of Hk,ℓ given in (14), we can obtain

vec {Hk,ℓ} =
(

FH
Nc×Ng

⊗VH
M

)

vec {Gk,ℓ}

=
(
FNc×Ng

⊗VM

)H
vec {Gk,ℓ} (57)

via employing the Kronecker product identities vec {ABC} =
(
CT ⊗A

)
vec {B} and AH ⊗BH = (A⊗B)

H
[50].

Then it can be shown that

E
{
vec {Hk,ℓ+∆ℓ

} vecH {Hk,ℓ}
}

(a)
=

(
FNc×Ng

⊗VM

)H
E
{
vec {Gk,ℓ+∆ℓ

} vecH {Gk,ℓ}
}

·
(
FNc×Ng

⊗VM

)

(b)
= ̺k (∆ℓ) ·

(
FNc×Ng

⊗VM

)H
Rk

(
FNc×Ng

⊗VM

)

(c)
= ̺k (∆ℓ) · diag {vec {Ωk}} (58)

where (a) follows from the fact that FNc×Ng
and VM are both

deterministic matrices, (b) follows from (6), and (c) follows

from Proposition 1. This concludes the proof.

APPENDIX D

PROOF OF PROPOSITION 3

Due to the fact that the elements of Ω
φk′−φk

k′ are non-

negative, we can obtain

ǫCE =

K−1∑

k=0

M−1∑

i=0

Ng−1
∑

j=0

{

[Ωk]i,j

−
[Ωk]

2
i,j

[Ωk]i,j +
∑

k′ 6=k

[

Ω
φk′−φk

k′

]

i,j
+ 1

ρtr

}

≥
K−1∑

k=0

M−1∑

i=0

Ng−1
∑

j=0

{

[Ωk]i,j −
[Ωk]

2
i,j

[Ωk]i,j +
1
ρtr

}

= εCE.

(59)

Furthermore, when the condition
(

Ω̄k,(Nc)Π
φk

Nc

)

⊙
(

Ω̄k′,(Nc)Π
φk′

Nc

)

= 0 is satisfied, then with the same

column permutation and column truncation, multiplications

of the corresponding elements still equal zero, i.e.,
(

Ω̄k,(Nc)Π
φk

Nc
Π

−φk

Nc
INc×Ng

)

⊙
(

Ω̄k′,(Nc)Π
φk′

Nc
Π

−φk

Nc
INc×Ng

)

= 0. (60)

Recalling the definition in (26) and exploiting the permu-

tation matrix property that Πa
NΠb

N = Πa+b
N , the condition in

(60) is equivalent to

Ωk ⊙Ω
φk′−φk

k′ = 0. (61)

Then for ∀i, j,

[Ωk]
2
i,j






[Ωk]i,j +

∑

k′ 6=k

[

Ω
φk′−φk

k′

]

i,j
+

1

ρtr







= [Ωk]
2
i,j

{

[Ωk]i,j +
1

ρtr

}

(62)

which leads to

[Ωk]
2
i,j

[Ωk]i,j +
∑

k′ 6=k

[

Ω
φk′−φk

k′

]

i,j
+ 1

ρtr

=
[Ωk]

2
i,j

[Ωk]i,j +
1
ρtr

. (63)

Substituting (63) into (28), the MSE-CE expression ǫCE
k re-

duces to

εCE
k =

M−1∑

i=0

Ng−1
∑

j=0

{

[Ωk]i,j −
[Ωk]

2
i,j

[Ωk]i,j +
1
ρtr

}

. (64)

Then the minimum in (30) can be achieved. This concludes

the proof.

REFERENCES

[1] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K.
Soong, and J. C. Zhang, “What will 5G be?” IEEE J. Sel. Areas
Commun., vol. 32, no. 6, pp. 1065–1082, Jun. 2014.

[2] F. Boccardi, R. W. Heath, Jr., A. Lozano, T. L. Marzetta, and P. Popovski,
“Five disruptive technology directions for 5G,” IEEE Commun. Mag.,
vol. 52, no. 2, pp. 74–80, Feb. 2014.

[3] C.-X. Wang, F. Haider, X. Q. Gao, X.-H. You, Y. Yang, D. Yuan, H. M.
Aggoune, H. Haas, S. Fletcher, and E. Hepsaydir, “Cellular architecture
and key technologies for 5G wireless communication networks,” IEEE
Commun. Mag., vol. 52, no. 2, pp. 122–130, Feb. 2014.

[4] T. L. Marzetta, “Noncooperative cellular wireless with unlimited num-
bers of base station antennas,” IEEE Trans. Wireless Commun., vol. 9,
no. 11, pp. 3590–3600, Nov. 2010.

[5] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive
MIMO for next generation wireless systems,” IEEE Commun. Mag.,
vol. 52, no. 2, pp. 186–195, Feb. 2014.

[6] L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin, and R. Zhang,
“An overview of massive MIMO: Benefits and challenges,” IEEE J.
Sel. Topics Signal Process., vol. 8, no. 5, pp. 742–758, Oct. 2014.



YOU et al.: CHANNEL ACQUISITION FOR MASSIVE MIMO-OFDM WITH ADJUSTABLE PHASE SHIFT PILOTS 15

[7] L. J. Cimini, “Analysis and simulation of a digital mobile channel using
orthogonal frequency division multiplexing,” IEEE Trans. Commun.,
vol. 33, no. 7, pp. 665–675, Jul. 1985.
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