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Distributed wireless networks with smart users (independent and rational) are becoming popular, and researchers are studying
distributed equilibrium solutions like Nash Equilibrium (NE) to analyze and predict the convergence of such networks. Our goal
is to drive the distributed wireless network to NE with high total throughput. Study of the distribution of network metrics at NE
with high total throughput shows that communication links still have significant amount of interference. Adding an
interference-received term with an optimal weight (α∗opt) to the link’s payoff can push the distributed network to converge to NE
with high total throughput. The channel allocation trend at NE with high total throughput is as follows: each of the C − 1 links
occupies its own channel, and the remaining N − C + 1 links share the remaining one channel, where N is the number of links
and C is the number of channels in the network. The links (transmitters and receivers) are randomly located and C <N (limited
resources). The transmitter of a link has a direct connection with the receiver of the link; hence, several links overlap. This leads
to a dense network with considerable amount of interference especially for links sharing channels. A practical application of our
work is when smart devices in a room, hall, or concert arena have a direct communication with other smart devices in the area
using limited bandwidth. Using best response technique and definitions of NE, we derive and propose an approximate way to
mathematically express α∗opt (referred to as bαopt) along with its probability density function (PDF) for a specific scenario. Then,
a generic equation for bαopt is inferred for varying network sizes (links) and available resources (channels). Implementing such a
policy enhances the total throughput of the distributed wireless network by up to 15%. In a more general setting, our distributed
policy can achieve up to 75% of the maximum total throughput (benchmark value reached by centralized solution via
exhaustive search) at a fraction of the time and computation resources.

1. Introduction

Wireless communication and networking is expanding expo-
nentially [1]. Scientists are exploring new techniques to keep
up with the escalated traffic. Various technologies in mobile
communication (3G, 4G, and 5G) [2], wireless LAN (WiFi)
[3], and personal area networking (Bluetooth) [4] are cater-
ing to the need of the present wireless communications, but
new innovations and techniques are essential to meet up with
the future trends and ever growing demand [5].

Fixed Resource Allocation (FRA) of power, spectrum,
and transmission protocols are inefficient [6] as only a frac-
tion of the allocated resources is utilized by the designated

users. By dynamically allocating the resources, the smart
radios can enhance the efficiency of the network by several
folds in comparison to FRA [7]. Intelligent radios are capable
to sense the environment, reason based on the observations
made [8], and adopt their transmission parameters to get
higher efficiency and performance [9]. In this work, we focus
on dynamically allocating the channels (spectrum) to the
intelligent wireless users [10].

As radios are becoming more intelligent and have greater
computational power, distributed networks are becoming
popular [11]. Several, mobile devices may connect and share
information with each other via Bluetooth or WiFi in the
absence of a central entity [4]. Generally, in a distributed
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network, each user independently makes the decision [12],
i.e., each user acts selfishly to maximize its own payoff [13].
Although a central agent might ordain a global optimal strat-
egy to these users, they will mostly drift away by choosing
strategies that enhance their own payoff, consequently result-
ing in a lower overall network performance compared to the
global optimal [14]. Centralized solutions via exhaustive
search technique result in maximum total throughput; how-
ever, it requires massive amount of resources (computation
and time) especially in larger networks. Hence, many net-
works like ad hoc and device to device (D2D) prefer decen-
tralized solutions [15].

Nash Equilibrium (NE) is a natural and eventual equilib-
rium state, which the independent and selfish users converge
to in distributed scenarios [16]. As each user tries to enhance
its own payoff in every iteration, after considerable amount of
iterations, the system converges to a Nash Equilibrium (NE).
Depending on the starting point, the definition of a user’s
payoff, network size, resources available, etc., the system
can converge to NE with varying performance [17]. We want
to converge to a NE with high total throughput [18].

Several research groups have used game theory tech-
niques to address the resource allocation problem in wireless
distributed networks. The authors in [17] have defined the
user’s payoff to be the individual throughput. This is a dis-
tributed system and there is no information exchange
between the users, but mostly, the system converges to NE
solutions with poor performance [19]. In [20] the authors
have defined the user’s payoff to be the total throughput of
all users to emulate a centralized system where each user
works to maximize the total performance of the network.
The performance is high; however, each user needs to know
the throughput of all other users which is not viable for a
practical distributed network. In [21], the authors have
defined the user’s payoff to be the received power minus
interference received plus interference created to other users.
The objective is to increase the received power and to mini-
mize the interference received from other users and the inter-
ference a user generates to other users [22]. Here, the
resource allocation schemes are performed in a distributed
way, but complete information exchange among the users is
essential, and the performance is only slightly better than
its predecessors.

In [23, 24], the characteristics of the network metrics, link
distance, individual throughput, and interference from/to,
were studied. It was found that adding an optimal amount
of interference-received term in the user’s utility, the distrib-
uted wireless network can be driven towards NE with high
total throughput [18]. There, α∗opt is the optimal weight of
the interference-received term for a specific network which
is determined by running many random simulations for step
size variations of α. In this work, we mathematically derive an
approximate expression of α∗opt (referred to as bαopt) along
with its probability density function (PDF), for a random
“10-link 4-channel” scenario. Then, a generic equation ofbαopt for an “N-link C-channel” scenario is inferred based
on the trend of different network sizes. In our work, the links
(transmitters and receivers) are randomly located and C <N

(limited resources). The transmitter of a link has a direct con-
nection with the receiver of the link; hence, several links over-
lap. This leads to a dense network with considerable amount
of interference especially for links sharing channels. A practi-
cal application of our work is when smart devices in a room,
hall, or concert arena have a direct communication with
other smart devices in the area using limited bandwidth.
Implementing the policy enhances the total throughput of
the distributed wireless network by up to 15%, and it can
achieve up to 75% of the maximum total throughput (the
benchmark value reached by the centralized solution via
exhaustive search technique) at a fraction of time and com-
putational resources.

In Section 2, the system model of our distributed wireless
network is explained. In Section 3, game theory is analyzed in
detail. NE with high total throughput is defined, and how dis-
tributed solutions with high total throughput can be achieved
by inserting the optimal weight (α∗opt) of the interference-
received term in the utility is explained. Section 4 mathemat-
ically derives the policy (bαopt) from NE with high total
throughput constraints for a “10-link 4-channel” scenario
and extends to incorporate a generic solution for varying net-
work sizes and available resources. Section 5 compares the
results from centralized and distributed networks. Using var-
ious illustrations, it is shown how implementing our policy
enhances the performance of the distributed wireless net-
work. Section 6 concludes the work.

2. System Model

This section discusses the main components of the model.
Initially, the links (pairs of receivers and transmitters) and
channels in our model are described. Then, calculation of
the received power, interference, and throughput at the links
and network is explained.

2.1. Links and Channels. In our wireless network, there are N
links. Each link comprises of a transmitter (Tx) and a receiver
(Rx). There are i ∈ 1, 2,⋯,N transmitters and j ∈ 1, 2,⋯,N
receivers. Link j comprises a transmitter Txi which has a
direct connection with a receiver Rxj where i = j. We assume
that the maximum communication distance of Link j is the
entire network area. For example, Link1 is the communica-
tion between Tx1 and Rx1. Figure 1(a) shows a network with
10 links (N = 10) and 4 channels (C = 4). Symbols “∗” and
“o” represent the Txi and Rxj, respectively. We can observe
that several links overlap creating a dense network with con-
siderable amount of interference especially for links sharing
channels. The coordinates of the Txi and Rxj are randomly
and uniformly generated inside an area of 10 units by 10
units.

Limited resources are available in the wireless network,
and hence, channels need to be shared by the links. The
resources allocated to N links are C channels. An interesting
case is when there are less channels than the number of links:
C <N . A practical application of our work is when smart
devices in a room, hall, or concert arena have direct commu-
nication with other smart devices in the area using limited
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bandwidth. We assume each link can occupy only one chan-
nel at a time.

2.2. Mathematical Formulations. The power at the receiver
from a transmitter, using the free space ideal propagation
model, can be expressed as

Pr =
GrGtPt

4πd/λð Þ2 =
A

d2
, ð1Þ

where Gr and Gt are the antenna gain at the receiving and
transmitting sides, respectively. Pr and Pt are the power at
the receiver and transmitter, respectively. The distance
between the transmitter and the receiver is d, and λ is the
wavelength of the electromagnetic wave used in the commu-
nication system [25]. In our work, the transmission power of
all antennas and the gain of the antennas are constant. Simi-
larly, as we are operating in a narrowband spectrum, we con-
sider the wavelength of the electromagnetic wave used in the
wireless network to be constant. These constants are com-
bined into one constant A. Since the main idea is to explore
the received power with the variation of the link distance,
without loss of generality, we normalize A to unity. The
received power at Rxj from Txi can then be simplified to

pij =
1
d2ij

, ð2Þ

where dij is the distance between Txi and Rxj. In order to
avoid very high or infinite values of pij when the distance is
very small, we consider the minimum value of dij to be 1
[26], avoiding near-field effects [27].

Then, the Signal to Interference plus Noise Ratio (SINR)
of Link j is

SINR j =
pij

∑N
j=1 pij + σ2

n

=
pij

Ifromj + σ2n
where

i = j, same link,

i ≠ j, different links:
ð3Þ

In Equation (3), σ2n is the noise power and ∑N
j=1 pij is the

total interference received from other links to Link j denoted

as Ifromj . The equation assumes all links share the same chan-
nel; however, only a certain number of links share a channel
and there is interference only between links sharing the same
channel as illustrated in Figure 1(b). SINR1 equals the ratio of
the power of the signal (due to the Tx1 which equals to p11
= 1/d211) over the power of the interference and noise. The
random channel configuration (initially) used in Figure 1 is
“2124342234” (first number signifying the channel used by
Link1 and henceforth). Link1, Link3, Link7, and Link8 use
channel “2.” Hence, for Link1, there is interference from T
x3, Tx7, and Tx8 which equals to Ifrom1 = 1/d231 + 1/d271 + 1/
d281. In this work, to make a concrete example, noise power
(σ2n) is arbitrarily set at 0.001, which is 30 dB smaller than
the transmit power.

The throughput of Link j based on Shannon Capacity [28]
with AWGN channel and SINR j [29] is expressed as

T j = log2 1 + SINR j

� �
: ð4Þ

Here, the throughput is in bit/s/Hz, i.e., the throughput is
normalized over the bandwidth.
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(a) There are a total of 10 links which share 4 channels (Link1 is the
communication between Tx1 and Rx1 which is using channel “2”). The
coordinates of the Txi and Rxj are randomly and uniformly generated
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Figure 1: Distributed wireless network: random, “10-link 4-channel” scenario. The 10 links use a random channel configuration (initially) of
“2124342234” (Link1, Link3, Link7, and Link8 use channel “2”).
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The total throughput of a wireless network withN links is
the sum of all the throughput of N links,

T tot = 〠
N

j=1
T j: ð5Þ

T tot varies as different links choose different strategies which
will be further explained in Section 3. We define, Tmax

tot to be
the maximum T tot from all the different possible pure strate-
gies obtained by exhaustive search of a random scenario.

2.3. Assumptions. Four notable assumptions have been made
in this work, while focusing on distributed wireless networks,
which are as follows:

First, the links compute the resource allocation schemes
themselves in a distributed way and choose the strategies
independently.

Second, the links are rational and selfish. Links will
choose the strategies in order to increase their own payoff.
In our work, utility is defined as in Equation (7) signifying
a noncooperative network with independent and selfish
users.

Third, there is no information sharing between links.
Each link can measure the received power and interference
it receives from other links assuming the number of links
and channels available in the network are broadcasted in
the beacon signal, like in cellular or WiFi networks [30].

Fourth, good error control techniques are implemented
in the links. A system model as mentioned in Section 2.1
leads to a dense network with a significant amount of inter-
ference. In particular, links sharing channels face consider-
able amount of interference. We assume the links have
good error control techniques which allow them to commu-
nicate with some small bit rate even in the presence high
interference (as per Shannon’s formula, Equation (4)). Over
iterations, links could find other channels that have lower
interference and decide to transmit at increased data rate as
well.

Based on the system model and assumptions stated
above, channel allocation policy in our distributed wireless
network will be analyzed using game theory in the next
section.

3. Game Formulation

Game theory is a mathematical tool that is used to analyze
the strategic interaction of players, especially with conflicting
interests. In recent years, game theory has been used in dis-
tributed wireless networks for resource allocation purposes.

A game can be symbolically expressed as a triplet, <N ,
Sj,UjðSj, S−jÞ > such that there are N players (links) in the
game, j ∈ 1, 2,⋯,N . Sj is the set of strategies of player j,
and S−j represents the strategies played by all players apart
from j. The utility or payoff of player j (Link j) is Uj, which
is a function of the strategy chosen by all players [16]. In this
work, the players are the links. Each link chooses to transmit
in a particular channel resulting in a different payoff. Ratio-
nal and independent users will try to maximize their Uj in

every iteration [31]. After certain iterations, they mostly con-
verge to a Nash Equilibrium (NE) [32].

3.1. Nash Equilibrium (NE). Nash Equilibrium (NE) is a nat-
ural and eventual equilibrium state reached by rational and
independent players in a distributed network. The players
choose strategies that maximize their individual utility. At
NE, each player will not be able to increase its utility by uni-
laterally changing its strategy if the strategies of other players
remain unchanged [16], which is expressed mathematically
as

U j S∗j , S
∗
−j

� �
≥Uj Sj, S∗−j

� �
 ∀j ∈ 1, 2,⋯,N , ð6Þ

where S∗j represents the best response strategy of link j and
S∗−j represents the best response strategy of all other links
except j.

A centralized global solution may result in a higher over-
all performance, but once the rational and selfish players are
allowed to make their independent choices, they will drift
away from the centralized global solution. However, once
the system converges to a NE, none of the rational players
will change their strategies as, by doing so, they will get a
lower U j as indicated in Equation (6). Moreover, centralized
solutions via an exhaustive search technique require a mas-
sive amount of resources (computational and time) especially
in larger networks which is unfeasible. Hence, many practical
systems prefer distributed solutions.

In the next section, we define the utility of a link such that
the distributed system will converge to NE with higher
performance.

3.2. Varying Utility to Converge to NE with High
Performance. In [18, 24], total throughput of the network
with varying links and channels was analyzed using an
exhaustive search method. Distribution of network metrics
(T j, I

from
j , and dij) reflect that links have a significant amount

of interference at NE with high total throughput.
In order to converge to NE solution with high total

throughput, the utility of a link in this work is defined as

U j = T j + α∗opt · I
from
j = log2 1 +

1/d2ij
Ifromj + Pn

 !
+ α∗opt · I

from
j ,

ð7Þ

where T j is the individual link’s throughput as defined in

Equation (4), Ifromj is the interference received from other
links to Link j as defined in Equation (3), α is the weight of

Ifromj , and dij is the distance between the transmitter and
receiver of Link j.

Adding an optimal interference term to the payoff of a
link might sound contradictory; however, such characteris-
tics are observed in different spectra of life as well. For exam-
ple, let us consider a city with a certain population having a
limited number of vehicles. An equilibrium point with better
well-being can be achieved when the vehicles are shared
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optimally [33]. By sharing the vehicles, the users have to
experience inconveniences like longer ride time and route;
however, the overall traffic congestion in the city can be
reduced. Hence, the government can give benefits or other
incentives to encourage the users in the city to share vehicles
to enhance the well-being of the entire city. Similarly, when
the wireless users in a distributed network voluntarily (or
are hard-wired to) tolerate some level of interference in their
payoff, the network can achieve solutions with higher perfor-
mance. Another befitting example is of the tax payed by a cit-
izen to the government of its country. No one really wants to
pay taxes as its being cut off from the salary earned from hard
work. Similarly, none of the links in a network wants to share
the channel and the implicated interference, which thereby
diminishes its throughput. However, all citizens have to pay
taxes which are ideally used to run the government and pro-
vide social security/benefits like health care, education, and
peace/security for the people of the country. Paying taxes
facilitates the government to run better, so we can live in a
better community [34]. Similarly, if each link in the network
tolerates certain levels of interference, then the network can
operate at a higher total throughput.

Figure 2 illustrates the convergence characteristics of the
distributed system. The links use a best response technique to
converge. In every iteration, each user chooses a strategy that
maximizes its own utility, and eventually, the system con-
verges to NE [32]. Generally, the best response technique
converges to NE if the game is a potential function [35].
However, in our work, we start by assuming that the system
converges to NE at a particular channel configuration (that
results in high T tot) as explained in Section 4.1. Then, from
the NE constraints, we derive the PDF and mean value of
αopt which is the key parameter in the utility function (Equa-
tion (7)). So, using the best response technique in the derived
utility pushes the distributed network to converge to NE
(mostly) with high performance. In a general distributed sys-
tem, each user tried to maximize its individual throughput,
that is, Uj = T j. However, the converged solution of the over-
all system is not so high. Adding an optimal amount of inter-
ference in the utility (U j = T j + α∗opt · Ifromj , Equation (7))
pushes the system to converge to NE with high T tot. In Sec-
tion 4, we mathematically derive the approximate value of
α∗opt (referred to as bαopt) which gives similar performance at
a fraction of the time and computation resources. Figure 2
shows the average T tot

norm:cum (normalized cumulative total
throughput [24]) from 1000 random scenarios in the y-axis
and the number of iterations (time) in the x-axis.

In the upcoming section, we formulate the policy and
derive an approximate mathematical expression and PDF
for α∗opt (referred to as bαopt) from NE constraints that results
in high T tot for a random “10-link 4-channel” scenario and
for varying links and channels.

4. Proposed Method for Approximating the
Bounds and PDF of α∗opt

In this section, we are going to approximately derive some
bounds and PDF of α∗opt (referred hereafter as bαopt) that need

to be in the individual link’s utility to converge to a NE solu-
tion with high T tot for a random “10-link 4-channel” scenario
then for scenarios with a varying number of links and chan-
nels. bαopt is quite close to α

∗
opt, but the main advantage of bαopt

is that it can be computed in a fraction of the time and com-
putational resources required to compute α∗opt.

To proceed with the analysis, shared utility is defined
based on the definition of a link’s utility expressed in Equa-
tion (7): when a link gets a single channel, the utility of the
link is Us1 which equals to log2ð1 + ð1/d2aÞ/PnÞ. There is no
interference received from other links for Us1. When l links
share a channel, the utility of the link is defined as Usl which
is expressed as

Usl = log2 1 +
1/d2a

∑l−1
m=1 1/d2Im
� �

+ PN

 !
+ α∗opt · 〠

l−1

m=1

1
d2Im

 !
 forN ≥ 2:

ð8Þ

Here, da is the distance of the signal between the trans-
mitter and the receiver of the same link and dIm is the dis-
tance from the mth interfering link where m = 1, 2,⋯,N − 1.

The probability density function (PDF) of 1/d2a is illus-
trated in Figure 3. da is the distance between the transmitter
(with coordinates x2 and y2) and the receiver (with coordi-
nates x1 and y1) and can be mathematically expressed asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx2 − x1Þ2 + ðy2 − y1Þ2
q

. x1, x2, y1, and y2 are random vari-

ables with uniform distribution between 0 and 10 units as
illustrated in Figure 1(a). High probability mass occurs at
the maximum value of 1/d2a = 1, as per our assumption in
Equation (2). For simplicity of analysis, the distribution of
the interfering links dIm (m = 1, 2,⋯, l − 1) is assumed to
have the same distribution as da. This distribution is used
to compute the PDF of α∗opt in the upcoming section.

4.1. The “10-Link 4-Channel” Scenario. For “10 links 4 chan-
nels,” it has been observed that the maximum T tot occurs
mostly (≈85%) at channel configuration “1234444444” [18].
The left portion of Figure 4 considers the first link (j = 1)
which is getting a “single channel,” and the right portion con-
siders the fourth link (j = 4) which is “sharing channel” with
other links. The first, second, and third links get a “single
channel” and have a payoff of Us1, as defined in Equation
(8). Once the strategy is changed, the payoff of the link will
be either Us2 if channel 2 or 3 is selected or Us8 if channel 4
is selected. Hence, the NE conditions are Us1 ≥Us2 and Us1
≥Us8. The fourth to tenth links share channel 4, so the pay-
off is Us7. Once the strategy is changed to channel 4, the pay-
off of the link will be Us2. Hence, the NE condition is
Us7 ≥Us2.

Since the value of optimal α obtained from the condition
Us1 ≥Us2 is larger than the value obtained from the condi-
tion Us1 ≥Us3 which is larger than the value obtained from
the condition Us1 ≥Us4 and so forth as illustrated in
Figure 5, the upper bound for optimal α for the above men-
tioned conditions is exponentially decreasing. As Us1 ≥Us2
is a subset of Us1 ≥Us8, we get one unique upper bound
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(UB) condition: Us1 ≥Us8, and one lower bound (LB) condi-
tion: Us7 ≥Us2.

UB condition: solving for Us1 ≥Us8, using the definition
of shared utility from Equation (8) when l = 1 and 8 results in

log2 1 +
1/d2a
PN

 !
≥ log2 1 +

1/d2a
1/d2I1+⋯+1/d2I7 + PN

 !
+ α

1
d2I1

+⋯+
1
d2I7

� �
,

αUBopt ≤
log2 1 + 1/d2a

� �
/PN

� �
− log2 1 + 1/d2a

� �
/ 1/d2I1+⋯+1/d2I7 + PN

� �� �	 

1/d2I1+⋯+1/d2I7
� � :

ð9Þ

LB condition: solving for Us7 ≥Us2, using the definition
of shared utility from Equation (8) when l = 7 and 2 results in

log2 1 +
1/d2a

1/d2I1+⋯+1/d2I6 + PN

 !
+ α

1
d2I1

+⋯+
1
d2I6

� �
≥ log2 1 +

1/d2a
1/d2I1 + PN

 !
+ α

1
d2I1

� �
,

αLBopt ≥
log2 1 + 1/d2a

� �
/ 1/d2I1 + PN

� �� �
− log2 1 + 1/d2a

� �
/ 1/d2I1+⋯+1/d2I6 + PN

� �� �	 

1/d2I2+⋯+1/d2I6
� � :

ð10Þ

αUBopt is larger than αLBopt because the first term of αUBopt is

much larger than the first term of αLBopt. The absence of 1/d
2
I1
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Figure 2: Convergence characteristics (iterations versus T tot
nor:cum) of the distributed system for different definitions of utility. Best response

technique is used to converge to NE. An average of 1000 random “10-link 4-channel” scenarios is considered.
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interfering expression (which is much larger than PN) in the
denominator of the first term of αUBopt produces such a result,

½log2ð1 + ð1/d2aÞ/PNÞ≫ log2ð1 + ð1/d2aÞ/ð1/d2I1 + PNÞÞ�. This
holds true for the “N-link C-channel” scenario presented in
the next section as well. αUBopt and αLBopt are computed using

the PDF of 1/d2a and 1/d2Im. For a random “10-link 4-
channel” scenario, the PDF of bαopt is computed by taking
the average of αUBopt and αLBopt, which is illustrated in Figure 6
and has a mean value of 7.03 units. α∗opt for this network is
determined as such: the value of α is stepwise varied from 0
to 30 with an increment of 0.1. For each value of α, many ran-
dom simulations are run and the average value of T tot is
stored. The α value that results in maximum T tot is defined

as α∗opt [18]. For this network α∗opt is equal to 6.8 units which
is close to the value of bαopt. In the next section, we are going
to generalize the mathematical expression of bαopt for varying
network sizes.

4.2. The “N -Link C-Channel” Scenario. In this section, we are
going to deduce an expression of bαopt for different network
sizes, with varying numbers of links (N) and channels (C).

Generalizing the findings from the the Section 4.1, NE
with high T tot mostly occurs when (C − 1) links get a single
channel each and the remaining channel is shared by
(N − C + 1) links. As illustrated in Figure 4, Linkj can be shar-
ing a channel or using it alone at NE with high T tot and

Linkj

Single
channel
Us1

Share
channel

Us(N–C+1)

Share
channel

Us2, Us(N–C+2)

Share
channel
Us2

For 10L4C, j = 1,
“2234444444,” Us2

For 10L4C, j = 1,
“4234444444,” Us8

For 10L4C, j = 4,
“1231444444,”Us2

For 10L4C, j = 1,
“1234444444,” Us1

For 10L4C, j = 4,
“1234444444,”Us7

Upper boundary (UB):
Us1 ≥ Us2

Us1 ≥ Us(N–C+2)
(for 10L4C: Us1 ≥ Us2, Us1 ≥ Us8)

Lower boundary (LB):
Us(N–C+1) ≥ Us2

(for 10L4C: Us7 ≥ Us2)

Figure 4: At NE with high T tot, Link j can use a “single channel” or “share channel” with other links. Based on the channel configuration at
NEGood, the possible outcome after changing the strategy can be categorized. Applying the definition of NE, we can come up with the upper
bound (UB) and lower bound (LB) conditions of optimal α.
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Figure 5: Upper bound (UB) of optimal α for varying conditions.
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changing its strategy should yield in lower utility. The left
portion of the flow chart shows that initially Linkj is using
the strategy “single channel.” Its payoff isUs1 as it is not shar-
ing its channel with any other link. When the link changes its
strategy to “share channel,” it results in having two different
payoffs. First, it will have to share a channel with a link which
was previously getting a single channel, then its payoff will be
Us2. Secondly, it will share a channel with links that were pre-
viously sharing a channel with (N − C + 1) links, then its new
payoff will be UsðN−C+2Þ. Hence, the UB condition to achieve
NE with high T tot areUs1 ≥Us2 andUs1 ≥UsðN−C+2Þ. The first

condition is the subset of the second condition which was
explained earlier and illustrated in Figure 5. The right portion
of the flow chart shows that initially, Linkj is using the strat-
egy “shared channel.” Its payoff isUsðN−C+1Þ as it is sharing its
channel with (N − C + 1) links. When the link changes the
strategy, it will share a channel with the link which was pre-
viously using a “single channel.” So, its new payoff will be Us2
. Hence, the LB condition is UsðN−C+1Þ ≥Us2.

An expression to compute the expected value of bαopt for
the “N-link C-channel” scenario can be computed by taking
an expected average of αUBopt and αLBopt as follows:

Equation (11) holds true for varying values of N and C,
but better results are obtained when N/C ≥ 1:8. In the next
section, we will compare the results and analyze the perfor-
mance while implementing our policy: α∗opt and its approxi-
mate mathematical expression bαopt along with benchmark
schemes.

5. Results: Comparing Centralized and
Distributed (Basic, α∗opt, and bαopt) Schemes

In this section, we are going to compare the results obtained
by implementing our policy with a standard centralized and
basic distributed network. Figure 7 plots the T tot for four dif-
ferent schemes in the y-axis and varying network sizes in the
x-axis. The maximum value of T tot for each scenario is
obtained from the centralized solution via an exhaustive
search technique. In the exhaustive search method, all possi-
ble channel configurations are listed and T tot is sorted to
obtain Tmax

tot . This is denoted by the blue line. For large net-
works, it is not possible to perform the exhaustive search
method. For example, for the “13-link 6-channel” scenario,
the total number of channel configurations is 613 which is

over 13 billion. So, the exhaustive search results for
“13L6C” and larger scenarios is omitted. The lowest T tot is
obtained when U j = T j, which represents a basic distributed
wireless network (gray line). The value of T tot obtained by
implementing the policy Uj = T j + α∗opt × Ifrom is illustrated
by the red line. α∗opt is the optimal value of α, which is
obtained by varying the value of α for a wide range (here,
from 0 : 0.2 : 50) and choosing the value of α that results in
maximum T tot. In this work, we proposed a mathematical
expression that approximates the real optimal α which is
referred to as bαopt, represented by the orange line. Comput-
ing the optimal α via the proposed approximation is much
faster and consumes only a fraction of computational
resources, and the performance is quite close to α∗opt, as illus-
trated in Table 1. Implementing the policy can enhance the
total throughput of a distributed network by up to 15% as
illustrated in Figure 7.

Table 1 enlists seven different network sizes with varying
links (N) and channels (C). As N and C of a network
increases, the total possible channel configurations drasti-
cally increase to CN , which is shown in the second column
of the table. The 3rd column lists the time consumed to run
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Figure 6: Probability density function (PDF) of bαopt for “10-link 4-channel” scenario; the mean is 7.03 units.

�bαopt
¯ =

log2 1 + 1/d2a
� �

/PN

� �
− log2 1 + 1/d2a

� �
/ ∑N−C+1

n=1 1/d2In
� �

+ PN

� �� �h i
/∑N−C+1

n=1 1/d2In
� �

+ log2 1 + 1/d2a
� �

/ 1/d2I1 + PN

� �� �
− log2 1 + 1/d2a

� �
/ ∑N−C

n=1 1/d2In
� �

+ PN

� �� �h i
/∑N−C−1

n=1 1/d2In
� �

2

ð11Þ

8 Wireless Communications and Mobile Computing



all the CN channel configurations and find Tmax
tot . Computation

time for single configuration is around τ = 4ms (considered as
a unit time) in our desktop computer. The fourth column
shows the time consumed (computing bαopt plus running best
response technique) using the distributed policy proposed in
this work. From the table, it is evident that as the link size
increases, it is impossible (due to time and computational
resources required) to go through each channel configuration
and obtain Tmax

tot . Implementing the policy, the system can
reach to a distributed NE solution with ≈75% of the Tmax

tot con-
suming a fraction of the time and computational resources in
comparison to the general distributed system (Ui = Ti).

6. Conclusion

With the increment of smart users (independent and ratio-
nal), distributed and decentralized wireless networks are

gaining prominence. In such networks, there is no central
entity that supervises/decides the strategies of each user,
and the users do not share information with each other as
well. Our network has many links (with a direct communica-
tion between a transmitter and receivers) within a limited
area. Hence, links generally overlap, and when resources
are limited (C <N), there is high interference especially to
links sharing channels. If the communication distance is lim-
ited to a certain range and channels are spatially reused, a dif-
ferent solution is expected (we plan to explore it further in
our future work). The smart user in these networks tries to
maximize its own utility in every iteration, and eventually,
the network converges to an equilibrium solution called the
Nash Equilibrium (NE). However, not all NE have high per-
formance. From the analysis of different network metrics, it
was found that communication links still have significant
amount of interference values at NE with high T tot. Adding

5L2C 7L3C 12L4C 13L6C 15L7C 18L9C 20L10C
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T
to

t
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Uj = Tj

Figure 7: Illustration of how the distributed policy (adding bαopt × Ifrom term in the utility) increases the T tot by up to 15% for distributed
wireless networks. α∗opt is the value of optimal α obtained from many random simulations for a wide range of α. bαopt is obtained from a
mathematical expressions that approximates the α∗opt and can be obtained at a fraction of computational and time resources. Although, the
centralized solution from exhaustive search is the ideal solution, it is not feasible to adopt it especially for larger networks, due to its
tremendous consumption of time and computational resources.

Table 1: Comparing the resources (time and computation) needed and the performance of the converged solution by centralized scheme via
exhaustive search technique and our distributed policy (adding bαopt × Ifrom term in the utility).

Network
Centralized solution via exhaustive search Distributed solution, policy (bαopt)

Total channel configurations Time (estimated) consumed Time consumed

5L2C 25 = 3:2 × 101 32 τ milliseconds 39 τ ms

7L3C 37 ≈ 2:19 × 103 8.74 τ seconds 42 τ ms

12L4C 412 ≈ 1:68 × 107 18.64 τ hours 48 τ ms

13L6C 613 ≈ 1:31 × 1010 20 τ months 50 τ ms

15L7C 715 ≈ 4:75 × 1012 602 τ years 53 τ ms

18L9C 918 ≈ 1:50 × 1017 1:90 × 107τ years 56 τ ms

20L10C 1020 ≈ 1:00 × 1020 1:27 × 1010τ years 60 τ ms
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weighted interference-received term in the payoff of a link
can drive the decentralized system to converge to a solution
with higher T tot. In this work, we derived an approximate
mathematical expression along with the PDF for α∗opt,
referred as bαopt for a random “10-link 4-channel” scenario.
Then, we extracted the general trend of channel configura-
tion at NE with high T tot and proposed a mathematical
expression for bαopt for varying links (N) and channels (C).

Some limitations of our work are the value of noise
power, area/dimension of the network, and the wireless path
loss exponent is fixed. In reality, these values can vary which
may result in different channel allocation at NE with high
total throughput. This might cause a shift in the value of
α∗opt and pdf of bαopt. When we derived a generic equation
for bαopt, we obtained the NE conditions from the channel
allocation: “each of the C − 1 links occupies its own channel
and the remaining N − C + 1 links share the remaining one
channel” because, most of the time, NE with high T tot occurs
at the channel configuration. However, at times especially
when the ratio of N/C is less than 1.8, NE with high T tot
occurs at other channel allocations. We plan to address these
issues in our future work.

In this work, we implement the policy and addition of an
optimally weighted (bαopt) interference-received term in the
payoff of a communication link. This enhances the perfor-
mance of the distributed wireless network by up to 15%,
and the system can achieve up to 75% of the maximum total
throughput (benchmark value reached by centralized solu-
tion via exhaustive search technique) at a fraction of the time
and computation resources.
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