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Channel Assignment in Cellular Radio 

Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Kumar N .  Sivarajan and Robert J. McEliece, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

California Institute of Technology,’ 
and 

John W. Ketchum, 
GTE Laboratories Incorporated. 

In this paper, we describe some heuristic channel as- 
signment algorithms for cellular systems, that we have 
recently developed. These algorithms have yielded op- 
timal, or near-optimal assignments, in many cases. The 
channel assignment problem can be viewed as a gener- 
alized graph coloring problem, and these algorithms 
have been developed, in part, by suitably adapting 
some of the ideas previously introduced in heuristic 
graph coloring algorithms. 

Introduction 

With the growth in demand for mobile telephone ser- 
vices and the limited allocation of spectrum for this 
purpose, the problem of optimal assignment of fre- 
quency channels, in order to make the most efficient 
use of the available spectrum, is becoming increasingly 
important. In this paper we describe channel assign- 
ment algorithms which we have recently developed and 
which have performed well in many of the examples 
we considered. We formulate the channel assignment 
problem as a minimum span problem, i.e., a problem 
wherein we are required to find the minimum band- 
width necessary to satisfy a given demand. 

Problem Statement 

Frequencies are represented by the positive integers 1, 
2 , 3 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA... . 

Given : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N : the number of cells in the system 

mi, 
in cell zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi 

ci j ,  
quired between a call in cell i and a call in cell j 

Find : 

f i k ,  1 5 i 5 N ,  1 5 k 5 mi : the frequency 

1 5 i 5 N : the number of channels required 

1 5 i , j  5 N : the frequency separation re- 

assigned to  the kth call in the ith cell 
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such that, 
max fik 

i , k  

(i.e. the total number of frequencies required), is a 
minimum, subject to the separation constraints, 

l f i k  - f j ~ l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 cij 

for all i , j ,  k ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 except for i = j ,  k = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1.  

Example 1. The number of cells is N = 4. m = 
(mi)  = (1,1,1,3) is the vector of requirements. The 
separation matrix C = ( c i j )  is 

It is required to find positive integers (frequencies) f 1 1 ,  
f 2 1 ,  f31, f41, f42 and f43, such that their maximum 
is a minimum, subject to the separation constraints 
specified by C. 

This problem is equivalent to the following general- 
ized graph coloring problem. Consider the graph ob- 
tained by representing each call by a vertex, with an 
edge joining two vertices if the corresponding calls can- 
not use the same frequency. This edge is labelled with 
the required mimimum separation between the frequen- 
cies assigned to these calls. The frequency assignment 
problem is then equivalent to  assigning positive inte- 
gers to the vertices of this graph such that, if two ver- 
tices are connected by an edge, the absolute value of 
the difference of the integers assigned to these vertices, 
is a t  least equal to the edge label, and, the maximum 
integer used is as small as possible. If all the cij’s are 
0’s and 1’s (pure co-channel case), this reduces to the 
classical graph coloring problem. Since the latter is 
known to be NP-complete, it follows that the general- 
ized graph coloring problem is also NP-complete [6]. 

The basic idea of all of our algorithms is to list the 
calls in some order, and use either a requirement ex- 
haustive strategy or a frequency exhaustive strategy. 
(See [2] or [3]). 



Frequency Exhaustive strategy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1. Starting at the top of the list, assign to  each call 
the least possible frequency, consistent with previous 
assignments i.e., without violating the separation con- 
s t raint zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs .  

Requirement Exh a ustive strategy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1. Take frequency 1 and assign it to the first call in the 
list. There may be other calls, further down the list, 
which can reuse frequency 1. If so, assign frequency 
1 again to the first such call in the list. Continue in 
this manner until there is no call in the list, to which 
frequency 1 can be assigned. 
2. Now take frequency 2, and starting at  the top of the 
list, similarly assign it to all possible calls in the list. 
3. Continue in this manner until all the calls have 
been assigned frequencies. (In this strategy, one takes a 
frequency and exhausts the requirements (calls); hence 
the name.) 

The degree of cell i is defined zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas 

which is a heurist,ic measure of the difficulty of assign- 
ing a frequency to a call in that cell. The degree of a 
call is the degree of the cell in which it is contained. In 
the equivalent graph coloring problem described above, 
the degree of a call is equal to the sum of the labels on 
the edges, incident at the vertex corresponding to the 
call. 

Based on this, two different orderings of the cells are 
considered. They are the Node-color and Node-degree 
orderings considered by Zoellner and Beall in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[2], ex- 
cept that the above definition of the degree of a cell is 
used. In the Node-degree ordering, the cells are ar- 
ranged in decreasing order of their degrees. The Node- 
color ordering is obtained as follows : Of the N cells, 
the cell with the least degree is placed at the last (Nth)  
place in the list. This cell is eliminated from the system 
and the degrees of the remaining cells are recomputed. 
Now, the cell with the least degree is placed at the 
( N  - 1)th position in the list, and eliminated from the 
system. This process is continued until the ordering 
is complete. These orderings are modifications of the 
'highest degree first' and 'least degree last' heuristics 
in graph coloring. 

Once the cells have been ordered, the calls can be 
ordered in two ways. The calls are arranged in an 
( N  x mma) matrix, where N is the number of cells 
and mmax is the maximum number of calls in any cell. 
Each row of the matrix corresponds to the calls in a 

cell. The rows are arranged in Node-color or Node- 
degree order as explained above. The idea is to  ar- 
range the calls such that all the columns have nearly 
the same number of calls. Calls in the first row start 
a t  the first column. Calls in the second row start at 
column (ml + l ) ,  if the first row has m l  calls, and cycli- 
cally fill this row. Similarly, calls in the third row start 
where the second ends and so on. 

Example 1 (continued). The degrees of the calls are 
d = ( 4 , 7 , 6 , 1 3 ) .  Therefore the Node-degree ordering 
is (cell zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4, cell 2, cell 3,  cell 1). The matrix of calls 
corresponding to this is 

In the Node-color ordering, cell number 1 is again 
the last in the list since it has the least degree. If this 
cell is eliminated, the degrees of the other cells become 
d = (-, 3 , 6 , 1 3 ) .  Therefore, cell number 2 will be in the 
third place in the list. The final Node-color ordering 
is (cell 4, cell 3, cell 2, cell 1). The matrix of calls 
corresponding to this is 

/a41 a42 "43)  

Once the calls have been so arranged in a matrix, 
two orderings of the calls are obtained by either listing 
all the calls in the first row, then the second, and so 
on (Row-wise ordering), or listing the calls in the first 
column, then the second, and so on (Column-wise or- 
dering). Therefore one obtains f o u r  ways of ordering 
the calls from two ways of ordering the cells. Combined 
with two techniques of assigning frequencies, this gives 
rise to eight frequency assignment algorithms. 

The assignments obtained using one or the other of 
these algorithms, on many of the examples we consid- 
ered, is close to  the best lower bound (LB) obtained 
using the lower bounds in [4]. 

Example 1 (again). Consider the matrix of calls A d .  

Ordering the calls row-wise, one obtains (a41, a42, a43, 

a21, a31, a l l )  as the list of calls. A frequency exhaustive 
strategy applied to this list of calls gives the frequency 
assignment (1, 6, 11, 2, 3, 6). A requirement exhaus- 
tive strategy, at the first step, assigns frequency 1 to 
calls 1 and 7 (a41 and a l l ) .  The complete assignment 
using this strategy is (1, 6, 11, 5, 3,  1).  The maximum 
frequency used by both these assignments is 11, which 
is also the lower bound. This is because, any two of 
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the three calls in cell number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 require a separation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 between them. Ordering the calls column-wise, one 
gets (a41, azl ,  ~ 4 2 ,  a31, a43, a l l ) .  The row-wise and 
column-wise ordering methods applied to the matrix 
of calls A, yield (a41, a42, a43, a31, a21, a l l )  and (a41, 

a31, ~ 4 2 ,  a21, a43, a l l ) ,  respectively. In all the above 
cases, in this particu1a.r example, a frequency exhaus- 
tive strategy gives the assignment (all  : 6, a21 : 2,  
a31 : 3,  a41 : 1, a42 : 6, a43 : 11) .whereas a require- 
ment exhaustive strategy gives the assignment (al l  : 1, 
a21 : 5, a31 : 3, a41 : 1, a42 : 6, a43 : 11). 

It is important to note that all the above algorithms 
are non-iterative, and hence fast ( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO(n2)  where n is 
the total number of channel requirements ), compared 
to  iterative algorithms like the one proposed by Box 
[l]. This feature is particularly important in the case 
of large cellular systems. This, and the fact that these 
algorithms are applicable to any cellular system (not 
necessarily consisting of regular, hexagonal cells), are 
important when one is trying to choose the optimal 
locations for the cell sites, by repeated application of a 
channel assignment algorithm, since a large number of 
cases may have to be solved. 

Algorithm Performarice Results 

The performance of these algorithms is shown in Tables 
2 and 3 for various sets of constraints. The cellular 
system considered is the 21-cell example found in [4], 

which is reproduced as Figure 1. In this figure, the cell 
number is indicated within each cell. Table 1 (Case 
1) reproduces the inhomogeneous requirements for this 
system given in [4]. These requirements were used to  
compile Table 2. Table 1 (Case 2) gives another set 
of channel requirements which were used in compiling 
Table 3. 

In Tables 2 and 3, the best lower bound obtained 
using the bounds in [4] (LB), and the performance 
of our channel assignment algorit,hms are tabulated. 
The entries in the table are the number of frequencies 
(span) required. A three letter code is used to indicate 
the algorithms. The first letter is ‘C’ or ‘D’ and de- 
notes ‘Node-color order’ or ‘Node-degree order’ respec- 
tively. The second letter is ‘R’ or ‘C’ for ‘Row-wise’ 
or ‘Column-wise’ ordering. The last letter is ‘R’ or ‘F’ 
for ‘Requirement’ or ‘Frequency’ Exhaustive method 
of assignment. A 2 (resp. 1) in column ‘acc’ implies 
the presence (resp. absence) of adjacent channel con- 
straints on adjacent cells. The cclsite constraint is in- 
dicated in column zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA‘cid’. (The number closest to  the 
lower bound in each row is in italics.) 

Other Possible Orderings 

If all the non-zero entries in the separation matrix are 
taken to be unity, the cells ordered using the Node-color 
or Node-degree ordering described above, and the calls 
ordered row-wise, we obtain the Node-color and Node- 
degree orderings described in [3]. The best assignment 
obtained using our algorithms, in all the examples con- 
sidered, is better then the assignments obtained by 
using this ordering of the calls, and a frequency or 
requirement exhaustive strategy. However, the per- 
formance of the frequency assignment algorithms ob- 
tained by using this ordering of the cells, and column- 
wise ordering of calls, is better in some cases. One such 
case is in Table 2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN ,  = 7, acc = 2 and c,i = 5.  The 
minimum number of frequencies used by any of the al- 
gorithms listed there is 447 but with the Node-color 
ordering of cells described in [3], column-wise ordering 
of calls and a frequency exhaustive assignment strat- 
egy, an assignment which uses only 445 frequencies may 
be obtained. 

Therefore, the two new ideas on channel assignment 
introduced in this paper viz., the new definition of the 
degree of a cell (or call) in the presence of arbitrary 
constraints (not purely co-channel), and the column- 
wise ordering of calls, which corresponds essentially to 
taking a call from each cell in the system in succession 
(with some modification to accommodate the unequal 
numbers of calls in each cell), achieve significant sav- 
ings in the spectrum needed for a frequency assignment 
problem. 

One of the weaknesses of these algorithms that we 
have have noticed is their performance in the case of 
homogeneous requirements. To remedy this, we intro- 
duce yet another ordering of the cells which we call the 
CO-channel Sets ordering. This ordering is applicable 
only to regular , hexagonal cellular systems. 

CO-channel zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASets ordering 

1. Assume the requirements are homogeneous and a 
regular frequency reuse plan is to be adopted. This 
necessitates dividing the available spectrum, and the 
cells in the system, into N ,  classes, where N,  is an 
integer of the form i 2  + i j  + j2 and, i and j are non- 
negative integers. The most commonly used values of 
N ,  are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4, 7 and 12. 
2. Order the cells so that all the cells belonging to class 
1 are at the top of the list, followed by those belonging 
to class 2,  and so on. 

If the requirements are homogeneous, with only co- 
channel and co-site constraints, column-wise ordering 
of calls, and a frequency exhaustive assignment strat- 
egy, will give an optimal assignment. In the presence 
of adjacent channel constraints, the numbering of the 
classes is important, but not otherwise. (See [5] for 
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a complete treatment of the homogeneous frequency 
assignment problem in regular, hexagonal cellular sys- 
tems). This ordering of the cells can be used to get 
good results in the case of near-homogeneous require- 
ments. It is interesting to note that if the calls are or- 
dered such that all calls which are assigned frequency 
1, in an optimal assignment, are at the top of the list, 
followed by calls which are assigned frequency 2, and 
so on, either a frequency exhaustive or a requirement 
exhaustive strategy will come up with an optimal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas- 
signment (i.e, using the minimum number (span) of 
frequencies). 

In addition to being NP-complete, graph coloring is 
one of the most difficult problems to develop approxi- 
mation algorithms for. It is shown in [7] that the prob- 
lem of finding a fast (polynomial-time) algorithm that 
guarantees a coloring using less than twice the mini- 
mum number of colors, is itself NP-complete. In the 
light of these results, the performance of the heuristics 
we have developed seems very good indeed. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 1: The 21-cell system (The cell number is indi- 
cated within each cell.) 

Case- 1 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i mi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmi 
1 8  5 
2 25 5 
3 8  5 
4 8  8 
5 8 12 
6 15 25 
7 18 30 
8 52 25 
9 77 30 

10 28 40 
11 13 40 
12 15 45 
13 31 20 
14 15 30 
15 36 25 
16 57 15 
17 28 15 
18 8 30 
19 10 20 
20 13 20 
21 8 25 

Table 1: The Channel Requirements in the Examples 
considered in Tables 2 and 3 
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Nc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
12 
7 

12 
7 

12 
7 

12 
7 

acc 
2 
2 
2 
2 
1 
1 
1 
1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

cii LB 
5 414 
5 414 
7 533 
7 533 
5 381 
5 381 
7 533 
7 533 

CRF 
543 
543 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
536 
536 
381 
381 
533 
533 

CRR 
464 
468 
565 
564 
381 
381 
533 
533 

CCF 
4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA60 
45 1 
546 
546 
381 
381 
533 
533 

CCR 
476 
501 
562 
559 
381 
381 
533 
533 

DRF 
543 
543 
536 
536 
381 
381 
533 
533 

DRR 
521 
466 
566 
561 
381 
381 
533 
533 

DCF 
475 
44 7 
546 
533 
381 
381 
533 
533 

DCR 
504 
495 
565 
566 
381 
381 
533 
533 

Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2: Algorithm results for Case 1 requirements in Table 1 

N ,  acc cii LB CRF CRR CCF CCR DRF DRR DCF DCR 
12 2 5 258 360 345 296 283 346 296 304 297 
7 2 5 258 347 285 274 272 346 270 280 269 

12 2 7 309 381 325 315 327 384 384 310 335 
7 2 7 309 310 319 318 328 358 341 333 338 

12 2 12 529 529 529 529 529 534 530 534 532 

Table 3: Algorithm results for Case 2 requirements in Table 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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