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ABSTRACT

Supervised deep learning has gained significant attention for
speech enhancement recently. The state-of-the-art deep learning
methods perform the task by learning a ratio/binary mask that is
applied to the mixture in the time-frequency domain to produce the
clean speech. Despite the great performance in the single-channel
setting, these frameworks lag in performance in the multichannel
setting as the majority of these methods a) fail to exploit the available
spatial information fully, and b) still treat the deep architecture as
a black box which may not be well-suited for multichannel audio
processing. This paper addresses these drawbacks, a) by utilizing
complex ratio masking instead of masking on the magnitude
of the spectrogram, and more importantly, b) by introducing a
channel-attention mechanism inside the deep architecture to mimic
beamforming. We propose Channel-Attention Dense U-Net, in
which we apply the channel-attention unit recursively on feature
maps at every layer of the network, enabling the network to
perform non-linear beamforming. We demonstrate the superior
performance of the network against the state-of-the-art approaches
on the CHiME-3 dataset.

Index Terms— Channel-Attention, U-Net, Complex Ratio
Masking, Multichannel Speech Enhancement.

1. INTRODUCTION

Multichannel speech enhancement is the problem of obtaining a
clean speech estimate from multiple channels of noisy mixture
recordings. Traditionally, beamforming techniques have been
employed, where a linear spatial filter is estimated, per frequency, to
boost the signal from the desired target direction while attenuating
the interferences from other directions by utilizing second-order
statistics, e.g., spatial covariance of speech and noise [1].

In recent years, deep learning (DL) based supervised speech
enhancement techniques have achieved significant success [2],
specifically for monaural/single-channel case. Motivated by this
success, a recent line of work proposes to combine supervised
single-channel techniques with unsupervised beamforming methods
for multichannel case [3, 4]. These approaches are broadly known
as neural beamforming, where a neural network estimates the
second-order statistics of speech and noise, using estimated time-
frequency (TF) masks, after which the beamformer is applied to
linearly combine the multichannel mixture to produce clean speech.
However, the performance of neural beamforming is limited by the
nature of beamforming, a linear spatial filter per frequency bin.

This work was done while B. Tolooshams and A. H. Song were interns
at Amazon Web Services.

Another line of work [5, 6] proposes to use spatial features
along with spectral information to estimate TF masks. Most of
these approaches have an explicit step to extract spatial features such
as interchannel time/phase/level difference (ITD/IPD/ILD). Recent
work [7] automatically extracts phase information from the input
mixture by incorporating IPD as a block inside the neural network.
[8] takes a more general approach to predict the TF mask by
directly feeding magnitude and phase of the complex spectrogram
from all microphones to a convolutional neural network (CNN).
Despite incorporating spatial information, these methods still focus
on predicting a real mask, hence resort to using the noisy phase, and
ignore phase-enhancement.

To overcome the aforementioned limitations, this paper
proposes an end-to-end neural architecture for multichannel speech
enhancement, which we call Channel-Attention Dense U-Net. The
distinguishing feature of the proposed framework is a Channel-
Attention (CA) mechanism inspired by beamforming. CA is
motivated by the self-attention mechanism, which captures global
dependencies within the data. Self-attention has been previously
used in various fields [9, 10, 11], as well as speech enhancement
in the single-channel setting [12]. This paper incorporates CA into
a CNN to guide the network to decide, at every layer, which feature
maps to pay the most attention to. This work, therefore, extends the
idea of beamforming on the input space to a latent space.

In addition to the CA units, the network is a variation of
U-Net [13], a popular architecture for source separation, and
DenseNet [14]. Motivated by the success of complex ratio masking
in the single-channel case [15], our approach takes both real and
imaginary part of the complex mixture short-time Fourier transform
(STFT) and estimates a complex ratio mask (CRM) unlike in [6, 16].
The CRM is then applied to the mixture STFT to obtain the clean
speech. Channel-Attention Dense U-Net does not require an explicit
spatial feature extraction step; instead it implicitly identifies and
exploits the relevant spatial information.

Rest of the paper is organized as follows: Section 2 introduces
the proposed network, Channel-Attention Dense U-Net, and
discusses mechanism of CA in detail. Section 3 describes the
dataset, network parameters, and evaluation criteria. This is
followed by Section 4, in which we demonstrate the outperformance
of our network against state-of-the-art methods. Finally, Section 5
concludes the paper and discusses some future directions of this
work.

2. CHANNEL-ATTENTION DENSE U-NET

2.1. Problem Description

Let yc ∈ RN be the discrete-time signal of a noisy mixture at
microphone c. We assume that {yc}Cc=1, for c = 1, . . . , C and



n = 1, . . . , N , follows the generative model

yc[n] = sc[n] + nc[n], (1)

where sc[n] and nc[n] represent the clean speech and noise
recorded at channel c, at time n, respectively. The goal of speech
enhancement is to estimate ŝref, where ref ∈ {1, . . . , C} denotes
a reference channel from the multichannel mixtures {yc}Cc=1. We
also denote Yc ∈ CF×T as the STFT of yc, where F and T are
the number of frequency bins and time frames, respectively, and
Y = [Y1, . . . ,YC ] ∈ CF×T×C as multichannel STFT.

Let Yf = [Y1
f , . . . ,Y

C
f ] ∈ CT×C be the multichannel

STFT at frequency bin f , the traditional beamformers, such as
the popular MVDR beamformer, linearly combine {Yc

f}Cc=1 with
the estimated beamforming weights ŵf ∈ CC , to produce the
estimated clean speech Ŝf at each frequency f (e.i., Ŝf = Yf ŵ

H
f ∈

CT ). As will be made clearer in subsequent sections, our proposed
framework applies attention weights, i.e., a weight matrix similar
to beamforming weights, recursively to the multichannel input and
feature maps, extending the beamforming analogy to a non-linear
combination.

2.2. Framework Overview

Channel-Attention Dense U-Net consists of an encoder, a mask
estimation network, and a decoder. The encoder performs STFT on
the mixture {yc}Cc=1 to produce Y. Given Y, the mask estimation
network computes both the speech mask M and noise mask Mnoise,
which are multiplied to input, to obtain the clean speech estimate
Ŝ ∈ CF×T×C and the noise estimate N̂ ∈ CF×T×C . Finally, the
decoder performs inverse-STFT on Ŝ and N̂ to produce time-domain
estimates of the speech ŝ ∈ RN×C and the noise n̂ ∈ RN×C .

We now expand on how the outputs of the network, Ŝ and N̂,
are computed from Y. Stacking the real and imaginary components
Ystack = [Yr,Yi] where subscript r and i denote real and imaginary
parts, respectively, the mask estimation network aims to estimate a
mask Mstack = [Mr,Mi] ∈ [RF×T×C ,RF×T×C ]. The complex
multiplication between Y and M produces estimated speech Ŝ ∈
CF×T×C [16, 8]. Hence, M can be considered as the CRM for
speech. Given Mstack, the noise mask Mnoise

stack is computed for the
estimate of the noise N̂ as follows:

Mnoise
r = 1−Mr, Mnoise

i = −Mi. (2)

The clean speech Ŝ and noise N̂ are estimated by the element-wise
complex multiplication (denoted as ∗)

Ŝ = Y ∗M, N̂ = Y ∗Mnoise. (3)

To train the network, we minimize the weighted `1 loss of
the audio in time domain and the magnitude of its spectrogram as
follows:

L(u, û) =
∑

u∈{s,n}

α‖u− û‖1 +
∥∥|U| − |Û|∥∥

1
, (4)

where α is determined based on the relative importance of the two
error terms. The framework is trained in a supervised manner,
requiring ground truth speech and noise signals [2].

2.3. Network Architecture

The mask estimation network is a variant of U-Net that consists of
a series of blocks. The first block is a single unit of CA to perform
beamforming-like operation on the input mixture, and the last block

is a convolutional layer with ReLU non-linearity to generate the
mask. We explain the middle blocks for the rest of this section.

We note that the real version of Channel-Attention Dense U-Net
takes the magnitude of the STFT as its input, and estimates a real
mask [16]. This implies that the denoising of the noisy mixture is
performed only with respect to the magnitude, hence the estimated
clean speech contains phase of the noisy mixture.
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Fig. 1. Architecture of Channel-Attention Dense U-Net for L = 2.

2.3.1. U-Net with DenseNet Blocks

U-Net, a convolutional network previously proposed for image
segmentation, is a popular network for source separation [17] and
speech enhancement [18]. U-Net consists of a series of blocks
(L down-blocks and L up-blocks), and skip-connections between
down and up-blocks. Each down-block consists of a pooling layer
for down-sampling, a convolutional layer, and an exponential non-
linearity. Each up-block consists of an up-sampling through a
transposed convolution with stride 2, a transposed convolutional
layer, and an exponential non-linearity.

In Channel-Attention Dense U-Net, each convolutional layer in
each block is replaced by a DenseNet block followed by a CA unit.
The output of each down-block or up-block is the concatenation of
the input and output of its CA unit. DenseNet applies convolution
to the concatenation of several previous-layer feature maps, which
eases the gradient flow in deep networks and helps each layer learn
features that are not similar to the neighbouring layers [19]. Figure 1
shows the architecture of Channel-Attention Dense U-Net for when
L = 2, and Figure 2 shows the detail of down and up blocks.

2.3.2. Channel-Attention

In this section, we introduce the Channel-Attention unit inspired
by self-attention and beamforming. Self-attention is a mechanism
for capturing global dependencies, which has gained attention in
various fields such as machine translation [9], natural language
processing [10], and image processing [11].

Given input x ∈ RF̃×T̃×2C̃ , which is also the output of the
DenseNet in mid blocks, our proposed CA unit transforms x into
key k(x) ∈ RF̃×d×2C̃ , query q(x) ∈ RF̃×d×2C̃ , and value
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Fig. 2. (a) Down Block, (b) Up Block. The skip connection is the
output from the corresponding down-block.

v(x) ∈ RF̃×T̃×2C̃ feature maps through a convolution followed
by an exponential non-linearity. Note that we use (̃·) to indicate that
due to down/up-sampling layer in each block, the dimensions of the
input are different for CA unit at different blocks. The k, q, and
v are 1 × 1 convolutional operators in the 2-dimensional space of
F̃ × 2C̃ with T̃ input channels and d, d, and T̃ output channels,
respectively, followed by an exponential non-linearity.

We treat the key, query, and value as stack of real and imaginary
where the first C̃ channels are real and the second C̃ channels are
imaginary. For a given frequency bin f , we define the key and
query as kf (x) ∈ Cd×C̃ and qf (x) ∈ Cd×C̃ . The CA mechanism
computes the similarity matrix, P = [P1, . . . ,PF̃ ] ∈ CF̃×C̃×C̃

between key and query for every frequency bin as follows:

Pf = kf (x)Tqf (x) ∈ CC̃×C̃ , for f = 1, . . . , F̃ . (5)

Having kf (x) = [kf1, . . . ,kfC̃ ] and qf (x) = [qf1, . . . ,qfC̃ ], for

f = 1, . . . , F̃ , the similarity matrix is,

Pf = kT
fqf =


kT
f1qf1 . . . kT

f1qfC̃

kT
f2qf1 . . . kT

f2qfC̃

... . . .
...

kT
fC̃

qf1 . . . kT
fC̃

qfC̃

 . (6)

The attention weights matrix W ∈ CF̃×C̃×C̃ is normalized (by
softmax function) P with respect to the second dimension. The
weight matrix entry is thus given as

|wf,c,c′ | =
e|pf,c,c′ |∑C̃
c=1 e

|pf,c,c′ |
, ∠wf,c,c′ = ∠pf,c,c′ , (7)

for f = 1, . . . , F, and c, c′ = 1, . . . , C̃. The output of the attention
unit for frequency f is the concatenation of the real and imaginary
parts of of computed as follows:

of = vf (x)Wf ∈ CT̃×C̃ , (8)

where vf (x) ∈ CT̃×C̃ , and Wf ∈ CC̃×C̃ . For real-valued input,
multiplication and similarity operations happen in real domain.
Figure 3 shows the detailed architecture of CA.
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Fig. 3. CA unit. Given input x, CA computes the attention mask W
and apply it to value, a variant of the input.

2.4. Connection of Channel-Attention to Beamforming

The motivation for incorporating the CA concept into our framework
is two-fold. First, inspired by the traditional beamformers which
linearly combine multichannel mixtures to produce a clean signal
estimate, we expect the trained CA unit to learn to ‘optimally’
combine multichannel information to produce a clean speech signal.
Specifically, the fact that a CA unit is applied to features maps
at every layer, and that nonlinearity layers exist throughout the
architecture suggests that this combination is not confined to the
linear regime.

In Eq. (6), each column c resembles beamforming weights as if
channel c is chosen as reference. Therefore, in Eq. (8), vf (x) can be
seen as a variant of the input signal to CA, and Wf decides which
channel of vf (x) to pay more attention to. Indeed, our proposed
CA can be seen as a mechanism to automatically pick a reference
channel and perform beamforming. Interestingly, we observe that
the attention weights in a trained model learn to represent the signal-
to-noise-ratio (SNR) (importance) of each feature map.

We verified this behaviour by examining the weights of the
trained CA unit W, located right after the encoder, from the
trained CA unit of real Channel-Attention Dense U-Net for the
following two input scenarios: 1) a noisy mixture from the CHiME-
3 dataset [20] and 2) a toy example with the simulated input where
channel 1 has the highest SNR among all channels. We chose to
examine the real network instead of the complex network, for easier
interpretation and visualization.

(a)

(b)

Fig. 4. (a) W from the CHiME-3 dataset (b) W from the SNR
example.

Figure 4(a) shows the [WF×C×1, . . . ,WF×C×C ] for the
CHiME-3 data example, where we observe that channel 5 has
received the most attention. This matches with the fact that
channel 4 and 5 of CHiME-3 recordings have the highest SNR on
average. Another interesting observation is that CA learns to pay
more attention to low frequencies, which are known to contain the
majority of the speech information.



Figure 4(b) demonstrates the similar results for a toy example.
In this case, we clearly observe that channel 1, the channel with the
highest SNR, gets the most attention.

3. EXPERIMENTS
3.1. Dataset

We used the publicly available CHiME-3 dataset [20], made
available as part of a speech separation and recognition challenge,
for training and evaluating speech enhancement performance. The
dataset is a 6-channel (C = 6) microphone recording of talkers
speaking in a noisy environment, sampled at 16 kHz. It consists
of 7,138, 1,640, and 1,320 simulated utterances with an average
length of 3 s for training, development, and test, respectively. At
every iteration of training, a random segment of length N = 19,200
is selected from the utterance, and a random attenuation of the
background noise in the range of [−20, 0] dB is applied as a data
augmentation scheme. This augmentation was done to make the
network robust against various SNRs.

3.2. Training and Network Parameters

The encoder and decoder are initialized with STFT and Inverse-
STFT coefficients, respectively, using a Hanning window of length
1,024, hence F = 512 (we discard the last bin, since, for the
downsampling step of the network, the number of frequency bins
needs to be even), and hop size of 256. Consequently, the number of
time frames for each input is T = 80. We design the network to have
4 down-blocks and 4 up-blocks (L = 4) where the kernel size for
all convolutions is 2× 2. The number of convolutional filters in the
first layer is set to 32, with a maximum of 256 possible number of
filters at every convolution. For all the CA units inside the network,
we set the depth of query and key to d = 20.

The network is trained with ADAM optimizer with learning rate
of 10−4, and batch size of 8. For the loss function (Eq. (4)), we set α
such that the error in time domain, ‖u − û‖1, is twice as important
as the error in the magnitude of the spectrogram,

∥∥|U|−|Û|∥∥
1
. This

is done based on loss magnitude at the beginning of training.

3.3. Evaluation

We evaluated the network performance with the following metrics:
signal-to-distortion ratio (SDR) using BSS Eval library [21] and
Perceptual Evaluation of Speech Quality (PESQ) - more specifically
the wideband version recommended in ITU-T P.862.2 (–0.5 to 4.5).

Given the source estimates ŝ from all C channels at the output,
we computed the posterior SNR for each channel and selected the
channel with the highest posterior SNR as the final estimate.

4. RESULTS

We trained four networks as follows:
• U-Net (Real): U-Net without any dense blocks, which

performs magnitude ratio masking.

• Dense U-Net (Real): U-Net (Real) with dense blocks (D=4).

• Dense U-Net (Complex): U-Net with dense blocks (D=4),
which takes real and imaginary part of STFT as input and
performs complex ratio masking.

• CA Dense U-Net (Complex): Dense U-Net (Complex) with
Channel-Attention.

Table 1 demonstrates the improvement in the performance of
the network, as we add a new component to the architecture, such

Table 1. Performance of trained networks on CHiME-3 dataset.
sim-dev sim-test

Methods SDR PESQ SDR PESQ

Channel-5 (Noisy) 5.79 1.27 6.50 1.27

U-Net (Real) 14.651 2.105 15.967 2.176

Dense U-Net (Real) 14.901 2.242 16.855 2.378

Dense U-Net (Complex) 16.962 2.33 18.402 2.404

CA Dense U-Net (Complex) 17.169 2.368 18.635 2.436

Table 2. Performance comparison of Channel-Attention Dense U-
Net with state-of-the-art results on CHiME 3.

sim-dev sim-test

Methods SDR ∆PESQ SDR ∆PESQ

NMF B [22] - - 16.16 0.52

Forgetting F [23] 16.07 - - -

Neural B [3] 15.80 0.92 15.12 1.02

CA Dense U-Net 17.169 1.09 18.635 1.16

as dense-blocks, complex ratio masking scheme, and finally, the
Channel-Attention. We note that for U-Net (Real), and Dense U-Net
(Real), the only spatial information network has access to is ILD,
the level difference between the channel. Hence the performance
improvement from Dense U-Net (Real) to Dense U-Net (Complex)
is primarily for two reasons: a) access to IPD information, and b)
complex ratio masking instead of magnitude ratio masking. Finally,
we observe that Channel-Attention improves the performance of
Dense U-Net (Complex) further.

We compare the performance of our method to the following
three state-of-the-art methods on CHiME-3 dataset:

• Neural Beamforming [3]: An MVDR beamforming with
mask estimation through bidirectional-LSTM.

• NMF-Informed Beamforming [22]: An online MVDR
beamforming through the decomposition of TF bins of the
mixture into the sum of speech and noise, by performing non-
negative matrix factorization (NMF).

• Forgetting Factor Optimization [23]: An MVDR
beamforming with simultaneous estimation of TF masks and
forgetting factors.

Table 2 shows the results where ∆PESQ represents PESQ
improvement with respect to the channel 5 of the noisy mixtures
(row 1 in Table 1). Results for the competing methods are taken from
the corresponding papers and the missing entries in the table indicate
that the metric is not reported in the reference paper. Overall, our
proposed approach significantly outperforms state-of-the-art results
on the CHiME-3 speech enhancement task.

5. CONCLUSION

This paper proposed a channel-attention mechanism inspired by
beamforming for speech enhancement of multichannel recordings.
The paper combined time-frequency masking [16], UNet [13], and
DenseNet [14] into a unified network along with channel-attention
mechanism. Our interpretation of the channel-attention mechanism
is that the network performs recursive non-linear beamforming on
the data represented in a latent space. We showed that the proposed
network outperforms all the published state-of-the-art algorithms on
the CHiME-3 dataset.
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