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Abstract

Prevailing video frame interpolation techniques rely heavily
on optical flow estimation and require additional model com-
plexity and computational cost; it is also susceptible to error
propagation in challenging scenarios with large motion and
heavy occlusion. To alleviate the limitation, we propose a
simple but effective deep neural network for video frame inter-
polation, which is end-to-end trainable and is free from a mo-
tion estimation network component. Our algorithm employs a
special feature reshaping operation, referred to as PixelShuf-
fle, with a channel attention, which replaces the optical flow
computation module. The main idea behind the design is to
distribute the information in a feature map into multiple chan-
nels and extract motion information by attending the channels
for pixel-level frame synthesis. The model given by this prin-
ciple turns out to be effective in the presence of challenging
motion and occlusion. We construct a comprehensive evalua-
tion benchmark and demonstrate that the proposed approach
achieves outstanding performance compared to the existing
models with a component for optical flow computation.

Introduction

Various video processing problems—including video classi-
fication (Carreira and Zisserman 2017; Simonyan and Zis-
serman 2014a; Xie et al. 2018), object detection and seg-
mentation (Cheng et al. 2017; Zhu et al. 2018; 2017), video
prediction (Li et al. 2018; Reda et al. 2018), and others (Chen
et al. 2017; Lai et al. 2018)—frequently depend on the ac-
curate optical flow estimation since it leads to the success
of the target tasks in terms of quantitative and qualitative
performance. Although there exists another line of research
that is free from optical flow estimation and predicts out-
puts directly without motion information (Long et al. 2016;
Mathieu, Couprie, and LeCun 2016a; Ranzato et al. 2014;
Srivastava, Mansimov, and Salakhudinov 2015), these meth-
ods have failed to present promising results compared with
the techniques based on optical flow estimation while show-
ing potential as generic methodologies.

∗This work was partially done during the internship at Snap
Research.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
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Figure 1: Advantage of using Channel Attention (CA) for
video frame interpolation in an example with large motion.
The proposed algorithm is also compared with the exist-
ing methods including SepConv-L1 (Niklaus, Mai, and Liu
2017b) and TOFlow (Xue et al. 2018).

Video frame interpolation approaches (Jiang et al. 2018;
Liu et al. 2017; Niklaus and Liu 2018; Xue et al. 2018) also
follow this trend and typically work as follows: 1) estimating
optical flow between two consecutive frames, 2) constructing
initial estimates of intermediate frames by image warping
with the optical flow, and 3) refining the initial interpolation
results through high-level processing using a deep neural
network. While this pipeline often works well in practice, it
relies heavily on optical flow estimation that incurs substan-
tial computational cost, in terms of time and memory, for
motion estimation. Moreover, while the approach requires
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a large number of ground-truth annotations to learn optical
flow, the supervision for motion estimation is tricky because
real ground-truth motion is not available; researchers often
use synthetic image pairs with known motion fields but they
cannot model the real challenges observed in natural scenes.

We are motivated by the potential drawbacks in using op-
tical flow, and propose a novel framework of video frame
interpolation that replaces optical flow with simple feature
map transformations, referred to as PixelShuffle (Shi et al.
2016). PixelShuffle gradually distributes the information re-
lated motion into multiple channels and constructs a trans-
formed feature map, which is combined with a channel at-
tention to capture the variations between the anchor frames
including motion and synthesizes high-quality intermediate
video frames without explicit motion estimation. The pro-
posed approach is capable of handling large motion and heavy
occlusion effectively, and outperforms the prior state-of-the-
art methods.

Overall, our contributions are summarized as follows:

• We propose a novel end-to-end trainable network of video
frame interpolation that synthesizes an intermediate frame
effectively without the explicit estimation of motion.

• We empirically show that the motion estimation module
can be replaced by a simple combination of PixelShuf-
fle, parameter-free feature transformations, and channel
attention successfully for video frame interpolation.

• We construct a more comprehensive benchmark for video
frame interpolation and confirm that our model outper-
forms the existing methods by large margins.

The rest of the paper is organized as follows. We first
review the related works and then describe our network ar-
chitecture. After that, we discuss the reasons that our model
can alleviate the need for explicit motion estimation by visu-
alizing and analyzing each feature channels. Last, we present
experimental results on a new benchmark dataset and com-
pare our method with the existing ones.

Related Works

Video frame interpolation

Video frame interpolation approaches are typically based
on optical flow estimation to handle time-varying informa-
tion in videos (Baker et al. 2010; Werlberger et al. 2011;
Yu et al. 2013). The standard pipeline is given by linear inter-
polation of optical flow, warping of input frames using the in-
terpolated motion, and frame blending with occlusion reason-
ing and missing region completion. Recent advances in deep
convolutional neural networks (CNNs) have enabled this pro-
cess to be trained in an end-to-end manner, and many video
frame interpolation techniques incorporate a CNN-based op-
tical flow module into their core networks (Bao et al. 2018;
Jiang et al. 2018; Liu et al. 2017; Niklaus and Liu 2018;
Xue et al. 2018). However, the accurate estimation of optical
flow is a challenging problem that is error-prone to many
cases in real-world videos, especially when there are large
motion and heavy occlusion. The errors in optical flow estima-
tion may be propagated to the subsequent procedure for video

frame interpolation and degrade the overall performance of
algorithms.

On the other hand, several recent frame interpolation meth-
ods generate unseen frames without predicting explicit flow
vectors. These approaches include phase-based and kernel-
based methods while there exists a direct pixel-level synthesis
technique (Long et al. 2016). The phase-based interpolation
methods (Meyer et al. 2015; 2018) represent motion with
the phase shift of individual pixels and construct interme-
diate frames using modified per-pixel phase. (Niklaus, Mai,
and Liu 2017a) performs video frame interpolation using
spatially-adaptive convolution filters whose weights are pre-
dicted by a CNN. The computational complexity of this idea
has been greatly improved in (Niklaus, Mai, and Liu 2017b)
by making the convolution kernels separable, but the amount
of motion this approach can handle is still limited to the pre-
defined kernel size. An earlier work by (Long et al. 2016)
synthesizes video frames by interpolation to learn a CNN
model for unsupervised optical flow estimation. Although
the frames generated by the method look blurry and their
quantitative results are not competitive, the approach has
shown the potential of pixel-level synthesis without the direct
supervision of motion.

While our algorithm is conceptually related to (Long et al.
2016), it introduces a new combination of simple modules to
build an architecture appropriate for motion understanding
and leads to significant performance boost in synthesizing
intermediate video frames in challenging scenarios.

Attention mechanism

Attention mechanism makes a neural network focus on im-
portant regions of its feature representations. There is a
wide range of applications taking advantage of attention in
deep neural networks, which includes sequence-based mod-
els (Bahdanau, Cho, and Bengio 2014; Mnih et al. 2014;
Vaswani et al. 2017), image classification (Hu, Shen, and
Sun 2018; Wang et al. 2017; Woo et al. 2018), image local-
ization (Cao et al. 2015; Jaderberg et al. 2015), and image
super-resolution (Zhang et al. 2018b).

To maximize the benefit of attention, several recent works
propose specialized architectures to effectively implement
this feature. (Wang et al. 2017) proposes residual attention
network, a powerful encoder-decoder style model, for image
classification. (Hu, Shen, and Sun 2018) proposes squeeze-
and-excitation (SE) module to focus on calculating inter-
channel relationships, and improve classification accuracy
with a more compact module. This approach has been ex-
tended in (Woo et al. 2018), which introduces an efficient
combination of spatial and channel attention. (Zhang et al.
2018b) applies channel attention to a low-level vision prob-
lem of single image super-resolution. Since every spatial
region is important for pixel-level synthesis, we do not explic-
itly consider spatial attention. Instead, we adopt the channel
attention method proposed in (Zhang et al. 2018b) to our
video frame interpolation framework.

Video Frame Interpolation Model
The goal of video frame interpolation is to synthesize a cor-
rect intermediate frame given two input video frames I1
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Figure 2: The overall architecture of our network. The two down-shuffled images Ĩ1 and Ĩ2 are concatenated in a channel

direction to build Ĩ. The channel dimension of Ĩ is reduced by the first convolution layer to match that of Ĩ1,2. A global identity
connection is added around the 5 ResGroups. After the identity feature maps is combined with the residuals, we perform another

convolution followed by up-shuffling operations to obtain the final output Î1,2.

Figure 3: Visualization of the operations in PixelShuffle. Note
that, contrary to the original version in (Shi et al. 2016), our
algorithm does not apply convolutions after the shuffling
operations.

and I2. The success of video frame interpolation algorithms
obviously depends on the quality of high-level reasoning
about motion and occlusion across the two frames. While
most existing methods estimate bidirectional optical flow or
its variants for motion estimation, we design a deep neural
network architecture for accurate video frame interpolation
through a simple but effective image representation via Pix-
elShuffle (Shi et al. 2016) and an inter-frame low-level event
modeling by channel attention (Hu, Shen, and Sun 2018;
Zhang et al. 2018b). The proposed method allows to be free
from learning or estimating optical flow during our training
and testing procedure.

Overview of network architecture

Figure 2 illustrates the overall network architecture of the
proposed model. Our network down-shuffles two input im-

ages, {I1, I2} into {Ĩ1, Ĩ2}, respectively, which are concate-
nated in a channel direction to construct a combined image,

Ĩ. The transformed input Ĩ is passed through a series of resid-
ual blocks with channel attentions to synthesize the down-

shuffled target image denoted by Ĩ1,2, which is up-shuffled to

construct the final intermediate frame, Î1,2. Note that the pro-
cedure of down-shuffling followed by up-shuffling resembles
encoder-decoder models, but does not involve any feature
learning and introduce any parameter. We describe the details
of the individual components next.

(a) ResGroup (b) CA Module

Figure 4: Illustration of ResGroup and CA module.

Main components

We now discuss two main components of our network, Pix-
elShuffle and residual groups with channel attention.

PixelShuffle PixelShuffle (Shi et al. 2016) is the operation
to reorganize the layout of an image (or a feature map) by
pooling an image with several different switch variables and
generating down-sampled images corresponding to the indi-
vidual switch variables or performing its inverse procedure.
The former is referred to as down-shuffling and the latter is
called up-shuffling. The down-shuffle operation reduces the
spatial dimension of an image I ∈ R

H×W×C by a factor
of s in each down-shuffle layer, and results in a tensor in

R
H/s×W/s×s2C while the up-shuffle performs the operation

in the opposite direction. Figure 3 visualizes both operations
when s = 2.

We apply PixelShuffle operations with s = 8, and gen-
erate two down-shuffled images by a factor of 8, denoted

by Ĩ1, Ĩ2 ∈ R
H/8×W/8×192, from the corresponding input

images, I1, I2 ∈ R
H×W×3. After that, Ĩ1 and Ĩ2 are concate-

nated in a channel direction and the resulting image has 384
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Figure 5: Visualization of internal feature maps with their channel attentions. The leftmost images show our prediction results

Î1,2 while the rightmost ones illustrate the reference optical flow map M1→2 between two input images I1 and I2, calculated
with PWC-Net (Sun et al. 2018). In the middle, the activation maps for the channels that have the highest attention scores
are shown for each example. The regions in red have high activations while blue indicates low ones, and the heatmaps are
super-imposed on the ground-truth intermediate image. We can clearly see that most regions with high feature responses in the
feature maps with high channel attention scores correspond to the regions with large motion. It implies that channel attention is
playing its role appropriately by focusing on these regions with high weights.

channels. We reduce the channel dimension back to 192 by
applying a 3× 3 convolution. At the end of the network, we
reconstruct the image to its original size through a series of
the inverse processing, up-shuffling.

The main reason to employ PixelShuffle instead of the stan-
dard encoder-decoder models such as U-Net (Ronneberger,
Fischer, and Brox 2015) is to maintain a large receptive field
size in the following convolution blocks and enable to handle
various scene changes through the combinations of multi-
ple channels with shifted features. Note that PixelShuffle is
parameter-free, and it does not lose any local information
when increasing the receptive field. Any kind of encoder
and decoder can be integrated additionally to improve per-
formance with extra cost, but it turns out that PixelShuffle is
powerful enough to achieve competitive performance without
a complex encoder-decoder pair.

Residual groups with channel attentions The down-
shuffled feature maps are followed by five residual groups,
referred to as ResGroups from now, each of which consists of
12 residual channel attention (RCA) blocks, having 60 RCA
blocks in total. As illustrated in Figure 4a, each RCA block in
ResGroup contains two 3× 3 convolution layers with the rec-
tified linear unit (ReLU) activation in between and a channel
attention (CA) module is located before the residual connec-
tion. The architecture for the CA module is shown in Figure

4b. Denoting the input feature by F ∈ R
H′×W ′×C′

, global
average pooling aggregates the statistics of a channel to ob-

tain a descriptor Fc ∈ R
1×1×C′

. The following two 1 × 1
convolution layers, which are identical to fully-connected
layers, are expected to capture the non-linear inter-channel
relationships.

Formally, the channel attention weights are computed as:

att (Fc) = σ (W1 ∗ (ReLU (W0 ∗ F
c))) , (1)

where σ(·) denotes a sigmoid function, and W0 and W1

are weights of the two 1 × 1 convolution layers. The final
output of our CA module is then calculated as an element-
wise product of the input feature F and the obtained attention
weights att(Fc).

Loss

We train our base network illustrated in Figure 2 using a
pixel reconstruction loss Lr that measures how close the

reconstructed intermediate frame Î1,2 is to the ground-truth
frame Igt in RGB pixel space. The reconstruction loss is given
by the ℓ1 norm as

Lr =
∥

∥

∥
Î1,2 − Igt

∥

∥

∥

1

. (2)

The loss based on ℓ1 norm is known to produce less blurry
results than the standard ℓ2 loss (Goroshin, Mathieu, and
LeCun 2015; Long et al. 2016; Mathieu, Couprie, and LeCun
2016b).

For better qualitative results, after convergence with Lr,
we fine-tune our model using another loss function with a
perceptual loss term, Lp, which is given by

L = λ1Lr + λ2Lp, (3)

where we use λ1 = 0.9 and λ2 = 0.005 to match the scale
of both loss types. The perceptual loss is computed by

Lp =
∥

∥

∥
φ(Î1,2)− φ(Igt)

∥

∥

∥

2

2

, (4)

where φ(·) is a function to extract conv5 4 features from the
VGG-19 model pretrained on ImageNet dataset (Simonyan
and Zisserman 2014b). As noted in (Zhang et al. 2018a), the
perceptual loss greatly helps in synthesizing realistic frames.
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Understanding Our Model

We investigate the benefit of channel attention in handling
motion when combined with PixelShuffle. Note that, in our
framework, the down-shuffling operation distributes spatial
context to the channel axis, which makes it straightforward to
model scene changes by attending to individual channels ap-
propriately. Regarding this, we visualize the internal feature
representations with channel attentions and their reconstruc-
tion during the interpolation process to gain more insight.

Internal Feature Visualization

We describe the relationships between feature activations of
our fully trained model and the actual motion map obtained
from an optical flow computation network. Figure 5 visual-
izes multiple activation maps in the channels that have the
highest attention weights, where our final prediction results
are presented along with the corresponding reference optical
flow estimations. Note that the regions with high responses
for each visualized feature map roughly match the moving
regions or its subset. This shows how our channel attention
module successfully identifies the right channels containing
important information.

Reasoning about the correct motion is the most critical step
in video frame interpolation. However, one caveat of using a
motion estimation module is that even the exact optical flow
does not necessarily guarantee an optimal interpolation, as
discussed in (Xue et al. 2018). This is the main reason that we
attempt to perform video frame interpolation without explicit
motion estimation and jointly consider all the information
needed to synthesize high-quality frames (including e.g. oc-
clusion, fine details around the motion boundaries, brightness,
color, etc.) as a whole. Therefore, our feature activations visu-
alized in Figure 5 should also contain all kinds of information,
which is why the visualizations may look a bit noisy com-
pared to the flow map. Another reason for the misalignment
with the motion map is that our model aims at generating a
good interpolation by iteratively refining the motion through
multiple ResBlocks. In other words, our approach estimates
a latent motion field in multiple channels within a layer and
handles the full motion along multiple layers (ResBlocks)
in a progressive fashion. Figure 6 presents evidence that our
model gradually improves motion estimation.

Intermediate image reconstruction

We follow the feedforward process of our network and vi-
sualize the interpolated frame from the intermediate feature
maps in the layers of 4 ResGroups, from G2 to G51 in Fig-
ure 6. Each image is reconstructed by passing the first feature
map in each ResGroup through the last convolution layer
followed by up-shuffling layers. The results clearly illustrate
that, while the reconstruction from an early layer (e.g., G2)
almost looks like an overlay of two input frames, the motion
between two frames is gradually compensated to synthesize
the interpolated frames accurately. The last row presents our
final results from the full model.

1We omit the first ResGroup since the most of its activations re-
semble the low-level feature responses that are commonly observed
in CNNs.

Figure 6: Visualization of the reconstructed images from the
output feature representations of individual ResGroups. They
clearly show that moving regions gradually merge together
as the features pass through more layers. From top to bottom,
we present the results from the 2nd to 5th ResGroups and the
last row illustrates the final output.

Experiments

Datasets

We evaluate our model on three benchmark datasets com-
monly used in the recent works (Jiang et al. 2018; Liu et al.
2017; Niklaus and Liu 2018; Niklaus, Mai, and Liu 2017b;
Xue et al. 2018): Middlebury optical flow (Baker et al.
2010), UCF101 (Soomro, Zamir, and Shah 2012), and
Vimeo90K (Xue et al. 2018).

In addition to these three datasets, we create a more
comprehensive benchmark dataset called SNU-FILM (SNU
Frame Interpolation with Large Motion), to evaluate the per-
formance of video frame interpolation methods with respect
to the amount of motion; from almost static scenes to very
challenging scenarios containing large motion and occlusion.
Note that it is not appropriate to use the existing datasets
comprising of 30 fps videos because controlling the amount
of motion by dropping multiple frames in a 30 fps video
results in a very large time gap between remaining frames.
So, we construct our benchmark dataset based on high frame
rate videos including 11 videos from the test set of GOPRO
dataset (Nah, Kim, and Lee 2017) and 20 videos collected
from YouTube. All the videos are of 240 fps and we evaluate
on 10 different frames per sequence. We plan to release the
dataset with the motion attribute annotations.

Our evaluation benchmark has four different settings—
Easy, Medium, Hard, and Extreme—depending on the tem-
poral gap between two input frames. For the Easy setting, we
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Figure 7: Sample image and its flow maps from each of the test settings of the proposed SNU-FILM benchmark. Note the clear
difference of the amount of motion for each setting. Optical flow is calculated with PWC-Net (Sun et al. 2018), and the maximum
value of its magnitude is set to 20 for better visualization.

Table 1: Motion (flow magnitude) statistics for each setting.

Setting Easy Medium Hard Extreme

Mean 2.71 5.39 10.65 20.51
Maximum 15.71 31.38 62.26 120.23

drop every other frame from the original 240 fps videos and
use the dropped frame as the target ground-truth interpolation,
which formulates the video frame interpolation task from 120
fps to 240 fps. In the Medium setting, every fourth frame
remains and the middle frame among the three dropped ones
is employed as the target. which define a problem to double
the frame rate from 60 to 120. Likewise, the Hard and the
Extreme are for 30-to-60 fps and 15-to-30 fps, respectively.

Although the categorization in our synthetic dataset does
not exactly correspond to the actual motion magnitude be-
tween two frames, they are highly correlated and the dataset
is representative to evaluate video frame interpolation algo-
rithms with respect to the size of motion. Table 1 presents the
motion statistics for each setting, and Figure 7 illustrates the
examples in our test set with different motion attributes. Note
that, since we do not have the ground-truth optical flow for
each scene, we use PWC-Net (Sun et al. 2018) for all optical
flow calculation and use the results as ground-truths.

Implementation details

We use the training split of Vimeo90K (Xue et al. 2018)
dataset for training, where our model is optimized by
Adam (Kingma and Ba 2014) for 200 epochs (approximately
320K iterations); training is based on 256× 256 patches and
the batch size is 32. Random vertical and horizontal flipping
along with random temporal order swapping between two
input frames are adopted for data augmentation. The initial
learning rate is 0.0001, which is reduced by a factor of 2
whenever the validation loss stops decreasing for more than 5
epochs. We clip the gradient norm to be less than 0.1, which
handles the gradient explosion issue.

Our algorithm is implemented in PyTorch. A full training
of our network takes about 4 days on a single Titan Xp GPU.
The source code for our framework is made public along with
the pretrained models to facilitate reproduction.2

2https://github.com/myungsub/CAIN

Comparison with the state-of-the-art

We compare our framework, named CAIN (Channel Atten-
tion for frame INterpolation), with state-of-the-art end-to-end
models including deep voxel flow (DVF) (Liu et al. 2017),
adaptive separable convolution (SepConv) (Niklaus, Mai,
and Liu 2017b), task-oriented flow (TOFlow) (Xue et al.
2018), SuperSloMo (Jiang et al. 2018), CyclicGen (Liu et
al. 2019), and DAIN (Bao et al. 2019). We also use recent
PWC-Net (Sun et al. 2018) to compute bi-directional opti-
cal flow and use an occlusion reasoning algorithm (Baker et
al. 2010) to construct a strong baseline for two-step frame
interpolation algorithm for comparison.

For quantitative evaluation, we measure peak signal-to-
noise ratio (PSNR) and structural similarity (SSIM) index.
Overall performance is summarized in Table 2. We use the
official pretrained models provided by the authors if they are
available. Note that, although our network is only trained
on Vimeo90K dataset, it can still generalize well to other
datasets and show outstanding performance. We observe sig-
nificant gain in terms of both PSNR and SSIM on all settings
of the new motion-focused evaluation benchmark, which
indicates that our model handles a wide range of motion
magnitude effectively. This is an exciting result, since many
cases in Hard or Extreme setting have larger motion than that
is present in Vimeo90K dataset. This demonstrates that our
model, while synthesizing the pixel values directly without
motion estimation, generalizes to the challenging scenarios
with large motions better than the existing methods with ex-
plicit motion computation. While our model shows relatively
higher interpolation error (IE) in the Middlebury benchmark,
it is qualitatively much better in most cases.

Qualitative results are shown in Figure 8, where we com-
pare with four recent methods that have their pretrained mod-
els available. In both examples, all compared methods failed
to find the correct position of the moving object that leads to
severe ghost artifacts. Our method, on the other hand, is not
only good at finding the correct position of the objects even
in the presence of large motion, but also has much less ghost
artifacts due to better occlusion handling. The resulting in-
terpolations are thus visually much more pleasing. For more
qualitative comparison and full video demos, please also take
a look at our supplementary document.

We analyze the computational complexity of our model
in comparison with two recent state-of-the-art approaches,
CyclicGen (Liu et al. 2019) and DAIN (Bao et al. 2019).
For this experiment, we use HD resolution frame triplets
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Table 2: Quantitative results (PSNR / SSIM) of different frame interpolation algorithms on the proposed SNU-FILM benchmark,
Vimeo90K (Xue et al. 2018), and UCF101 (Soomro, Zamir, and Shah 2012; Liu et al. 2017) datasets. Note that SNU-FILM
consists of 4 splits with respect to the amount of motion. Results for Middlebury dataset (Baker et al. 2010) show interpolation
error (IE, the lower the better). Bold denotes the best performance.

Model FILM(Easy) FILM(Medium) FILM(Hard) FILM(Extreme) Vimeo90K UCF101 Middlebury

PWC-Net 36.42 / 0.983 33.09 / 0.960 27.72 / 0.888 23.81 / 0.806 31.36 / 0.939 33.60 / 0.963 2.24

DVF 25.10 / 0.848 23.31 / 0.809 21.68 / 0.768 19.86 / 0.720 31.54 / 0.946 34.12 / 0.963 4.04
SepConv-L1 39.68 / 0.990 35.07 / 0.976 29.39 / 0.926 24.32 / 0.845 33.79 / 0.970 34.95 / 0.968 2.05
TOFlow+Mask 39.08 / 0.989 34.39 / 0.974 28.44 / 0.918 23.39 / 0.831 33.73 / 0.968 34.58 / 0.967 2.15

SuperSloMo †37.28 / 0.986 †33.80 / 0.973 †28.98 / 0.925 †24.15 / 0.845 †33.15 / 0.966 34.75 / 0.967 †2.28

CAIN (w/o CA) 39.59 / 0.990 35.34 / 0.976 29.56 / 0.926 24.48 / 0.846 34.25 / 0.970 34.75 / 0.968 2.36
CAIN (Ours) 39.78 / 0.990 35.49 / 0.977 29.86 / 0.929 24.69 / 0.850 34.65 / 0.973 34.91 / 0.969 2.28

†: results from publicly available implementation of (Paliwal 2018).

Input overlay DVF SepConv-L1 SepConv-Lf TOFlow Ours GT

Figure 8: Qualitative comparisons on Vimeo90K dataset (Xue et al. 2018) with recent frame interpolation algorithms. While
the moving regions are not properly handled and sometimes disappear for other approaches, our method successfully finds the
correct interpolated positions.

Table 3: Computational complexity for running HD resolu-
tion (1280× 720) frames.

Model CyclicGen DAIN CAIN (Ours)

# Parameters (M) 3.05 24.0 42.8
Run-time (ms) 1036 816 64
Memory (MB) 4025 6944 492

Vimeo90k 32.10 / 0.949 34.72 / 0.976 34.65 / 0.973
UCF101 35.11 / 0.968 35.00 / 0.968 34.91 / 0.969

with batch size of 1, and measure the peak GPU memory
usage and the average running time for 100 batches. Table 3
summarizes time and memory complexity of each model.
The number of parameters in our model is larger than other
algorithms, but the proposed model has a clear advantage
with respect to run-time and memory requirements. While the
accuracy of CAIN is marginally worse than DAIN, it is faster
by more than one order of magnitude with only about 7%
of memory usage. Compared to CyclicGen, CAIN achieves

competitive accuracy in the tested datasets, Vimeo90k and
UCF101, with more than 16 times faster speed and 12.2%
memory.

Ablation study

Comparison to the model without channel attention Fig-
ure 9 and Table 2 presents the qualitative and quantitative
comparisons, respectively, of the models with and without
channel attention. For the model without channel attention
(w/o CA), we simply remove the CA module in Figure 4a to
change the base building block from RCA blocks to a widely-
used plain residual block (ResBlock) (He et al. 2016). The
results show that integrating channel attention gives a signif-
icant PSNR gain of 0.4 dB in Vimeo90k dataset, and also
show consistent boosts in PSNR and SSIM in our SNU-FILM
benchmark across all motion groups. The proposed model
with CA generates visually more pleasing frames with less
artifacts; it demonstrates that channel attention plays a crucial
role in handling motion and improving accuracy. Please refer
to the supplementary materials for more qualitative results.
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GT w/o CA w/ CA

Figure 9: Visual comparison for our models with and without
channel attention. We illustrate the cropped regions for each
image from Vimeo90K dataset (Xue et al. 2018). Our model
with CA captures moving objects better and shows images
with less motion blur.

Table 4: Quantitative results from several models in which
the numbers of ResGroups and RCA blocks per ResGroup
vary while their product is set to a constant. We show the
performance for Vimeo90K dataset (Xue et al. 2018).

#ResGroups #RCA Blocks PSNR SSIM

3 20 34.55 0.972
5 12 34.65 0.973

12 5 34.03 0.968

Effects of hyperparameters We present the influence of
the number of ResGroups and RCA blocks using Vimeo90K
dataset in Table 4. For fair comparisons, we fix the number of
total RCA blocks in our model and modify the ratio between
the number of groups and blocks, i.e., (the number of groups)
× (the number of blocks) = 60. All compared models there-
fore has the same number of parameters and running time.
Our final model with 5 ResGroups outperforms the other
model variants, but the differences in performance are not
that significant when the number of RCA blocks becomes
large. We also observe that as the number of groups increases
a lot, training becomes more sensitive and does not converge
at times.

Conclusion

We presented a novel framework for video frame interpo-
lation that synthesizes high-quality images without explicit
estimation of motion. The proposed model incorporates chan-
nel attention with PixelShuffle, and generalizes to unseen
motions effectively. To effectively present the results, we
build a new benchmark focused on evaluating video frame
interpolation algorithms in the presence of the variations in
motion magnitude. Both quantitative and qualitative results
demonstrate the advantage of our approach over the existing
state-of-the-art methods that are based on optical flow.
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