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Abstract-We use the method of multiple scales borrowed 

from perturbation theory to derive a new time-domain 
transfer function of the nonlinear fiber-optic wave-division 

multiplexing (WDM) communications channel. The obtained 

channel response, derived from the nonlinear Schrodinger 

equation is shown to be equivalent to the multi-path fading 

frequency selective channel encountered in wireless links. In 
the linear regime, the channel response is shown to be 

equivalent to a standard intersymbol interference (lSI) 

channel and is used to derive new bounds on the capacity of 

the dispersive optical fiber channel. 

I. INTRODUCTION 

Over the past few decades, fiber optic networks have 

experienced a remarkable evolution. Their bandwidth and 

reach have increased nearly a thousand-fold. Earlier 

networks used multi-mode lasers, multi-mode fibers with 

losses exceeding 2.5 dBlkm, and direct modulation 

techniques. They carried data streams at modest rates (a 

few Mb/s) over modest distances (a few kilometers). 

Today's optical networks are capable of carrying traffic at 

hundreds of Gb/s over a few thousand kilometers. Many 

factors have contributed to this marked increase in 

performance. Chief among them are deployment of single­

mode fibers with losses below 0.2 dBlkm and use of 

distributed feedback (DFB) lasers, external modulation 

techniques, dispersion compensating fibers, forward error 

correction (FEC) , and photonic amplification. The 

migration from single-channel to multi-channel systems 

has also contributed greatly to boosting the capacity of 

today's optical networks. In wave-division multiplexing 

(WDM) , a widely deployed technology, multiple 
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wavelengths are used to simultaneously carry data from 

multiple channels. The basic architecture of these systems 

is depicted in figure 1. Light from all channels is amplified 

at several sites along the line. The transmitted data is 

recovered by demultiplexing and converting the received 

light back into the electrical domain. 

The focus of this paper is to answer the following basic 

question: What is the maximal error-free data rate that can 

be expected from a fiber optic medium? While Shannon's 

results address this question in a general sense, with the 

exception of the additive white Gaussian noise (A WGN) 

model, computing the theoretical information capacity has 

proved to be mathematically challenging for many 

channels. The fiber nonlinearities in WDM networks allow 

for coupling amongst channels, giving rise to undesired 

effects such as stimulated Raman scattering (SRS), cross­

phase modulation (XPM), and four-wave mixing (FWM). 

Any attempt to derive the information capacity of the 

highly nonlinear WDM channel based on the A WGN 

assumption will evidently yield inaccurate results. The 

right approach is to obtain a model that takes into account 

the physical properties of the fiber optic WDM channel. In 

[1-4]), solutions to this problem were proposed but effects 

such as Raman scattering , optical-to-electrical (OE) 

regeneration, or dispersion were either ignored or treated in 

isolation. In sections II and III, we use the generalized 

nonlinear Schrodinger equation (NLSE) governing pulse 

propagation in an optical fiber to derive new channel 

models. We show that the channel response can be 

modeled as a fading, multipath, frequency-selective 

channel in the nonlinear 



I. 

Fig. 1. Basic architecture of a WDM system. 

regime and as an lSI channel in the linear regime. In 

sections IV and V, we make use of the rich literature 

treating the Shannon capacity of such a channel to derive 

new capacity bounds for the linear dispersive optical 

channel. Capacity bounds based on our solution to the 

nonlinear channel will be presented in a future publication. 

II. PROPAGATION MODEL 

Under the slowly-varying-envelope approximation which 

is valid for pulse widths greater than 1 ps, and ignoring 

higher order dispersion coefficients, pulse propagation in 

the fh channel of aN-channel WDM system is governed by 

the following equation 

where 

Envelope of the jth optical channel 

Group delay of the fh channel 

(1) 

Group velocity dispersion (GVD) 

parameter of the t channel 

Loss coefficient of the fh channel 

Nonlinearity parameter for the fh channel 

Raman coupling coefficient between 

channels j and n. 

Equation (1) is known in the literature as the generalized 

nonlinear Schrodinger equation [5] (NLSE). The third and 

fourth terms on the left of side of equation (1) account for 

the linear effects: dispersion and fiber loss. The first term 

on the right-hand side is responsible for both self-phase 

modulation (SPM) through the pulse magnitude in the fh 
channel, and cross-phase modulation XPM through the 

pulse magnitudes from other channels, while the last term 

accounts for SRS crosstalk. In order to compute the 

information capacity of the channel described by (1), not 

only must a closed-form solution of equation (1) be found 

but it must also include a mapping between the initial pulse 

A(O,t) and the pulse A(z,t) after it has propagated some 

distance z. Unfortunately, the NLSE equation has no 

known closed-form solution. To proceed further, the 

following assumptions are in order. The XPM term in (1) is 

twice as important as the SPM term. Moreover, as the 

number of channels in a WDM system increases, the XPM 

term will grow even larger and will in fact come to 

dominate so that SPM can be neglected. The second term 

on the left-hand side of (1) indicates that different 

wavelengths travel at different speeds. After a certain 

distance called pulse walk-off, pulses on different channels 

walk away from each other and the crosstalk caused by 

their interaction diminishes. In the work that follows, we 

will neglect the group delay term in (1) thereby assuming a 

worst-case scenario .. With these assumptions, equation (1) 

simplifies to 

8Aj +~f1 82 Aj = GA 
8z 2 2j 8t2 j , 

(2) 

where 

a j "( gnj ')1 12 G = --+ L. --+ 2Yn1 An 
2 n*j 2 

(3) 

Neglecting SPM has allowed us to convert the nonlinear 

partial-differential equation (pde) in (1) into a variable­

coefficient linear pde (2). Equation (2) is still a complex 

mathematical entity with no trivial solution, nevertheless its 

solution will be shown to be mathematically tractable. 

III. LARGE SPACE-TIME SOLUTION TO THE LINEARIZED 

SCHRODINGER EQUATION 

Equation (2) is a linearized version of the nonlinear 

Schrodinger equation and will be referred to, from hereon, 

as the linear Schrodinger equation (LSE). Although it is a 

linear equation, it admits no trivial solution because the 

damping function G(z,t) defmed in (3) is time-dependent. 

Nevertheless, the method of multiple scales borrowed from 

perturbation theory [6] can be used to find an asymptotic 

solution. Accordingly, we first proceed to solve the 

unperturbed problem by neglecting the damping function. 

That is we start by solving the following linear problem 

(the subscriptj is dropped for simplicity) 

(4) 

Using Fourier analysis, the general solution of equation (4) 

is of the form 



1 00

- (i ) A(z,t)=- jA(O,w)exp -P2W2Z-iwt dw, 
21£ -00 2 

(5) (13) 

where A(O,w) is the Fourier transfonn of the initial pulse Finally, using (10), (12), and (13) in (7) and ignoring the 

A(O,t ) (launched at z = 0), defined as constant phase, rjJ, we get 

co 

A(O,w) = JA(O,t)exP(iwt)dt. (6) 

-co 

If the input pulse A(O,t) travels a sufficiently large distance 

and is allowed to disperse, equation (5) will simplify, under 

the stationary phase approximation, to 

2 -
A(z,t) "" 1£ A(O,{Oo)exp(ikz - i{Oot - irjJ) 

k"({Oo)z 
(7) 

rjJ = sgn(k" (w o»)!:. 
4 

where k satisfies the dispersion relation 

(8) 

k"(wo) = d2~ I ,and {oo is the solution to the following 
dw 

())o 

equation 

dk 
-z-t=O 
d{O , 

(9) 

where dw /dk is the envelope group velocity. Solving for k 

in (8) yields 

(10) 

Hence, the first and second derivatives of k are 

(11) 

(12) 

Substituting the result from (11) in (9) and solving for (oo, 

we obtain 

(14) 

Equation (14) shows that the initial pulse will decay as the 

inverse square root of the dispersion-distance product but 

its shape will remain unchanged. 

As a simple validity check of equation (14), consider the 

case of a Gaussian pulse for which A(O,t) is given as 

A(O,t) = exp(-4) , 
2To 

(15) 

where To is the pulse width at the lie-intensity point. The 

Fourier transfonn of this pulse is given as 

(16) 

By substituting (16) in (5) and carrying out the integration, 

the exact complex envelope at any distance z is found to be 

(17) 

To obtain the stationary phase solution for a Gaussian input 

pulse, we evaluate (16) at {oo given in (13) and substitute 

the result in (14) to get 

(18) 

It can easily be shown that when 

(19) 

the exact solution given by (17) will converge to the 

expression in (18). Figure 2.1 shows magnitude plots of 

equations (18) and (17) for different fiber lengths assuming 

To = 10 ps and /32 = 17 ps21Km. It is clear from the plots 

that when condition (19) is satisfied, as is the case for a 
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Fig. 2. Exact and stationary phase solutions of equation (4) when relation 

(19) is (a) satisfied and (b) (19) violated. 

fiber length z = 20 Km (Figure 2.b), the stationary phase 

solution coincides nearly with the exact solution given by 

(17). For the smaller length z = 2 Km, (Figure 2.a), the 

stationary phase approximation does not match the exact 

solution as condition (19) no longer applies. Having solved 

the linear problem (4), we now turn our attention back to 

the LSE problem defined by equations (2-3). Let us assume 

that a solution to equation (2) exists and is of the form 

A(z,t) = R(z,t)eiB(z,t) , (20) 

where R(z,t) is an unknown complex function and ~z,t) is 

the phase obtained from the stationary phase solution, i.e., 

t 2 

O(z,t) = --- . 
2/32z 

(21) 

Let us denote the first and second partial derivatives of a 

function F with respect to x as Fx and F xx, respectively. 

Then, 

(22) 

where 

(23) 

Substituting (22) in (2), we get 

iOzR+Rz +i/32 ~tt -O/R)- /32 (20t R t + Ott R ) = GR. 
2 2 

(24) 

From the look of it, one might think, and rightly so, that 

equation (24) is mathematically more difficult to deal with 

than equation (4). Because of the terms 0/ and Rtt, equation 

(24) admits no trivial solution. However, the dispersion 

relation in (8) implies that 

(25) 

Moreover, after a sufficiently large length z, the input pulse 

will have dispersed and the term Rtt can be neglected 

without loss of generality. Hence, equation (24) simplifies 

to 

(26) 

We now call on the method of characteristics to solve for R 

in (26). Recall that R is a function of both space (z) and 

time (t) and so its spatial derivative, for an observer 

moving with the envelope, can be expressed as 

dR =R ot R 
dz z+az t· 

(27) 



By analogy with (27), solving equation (26) can be reduced 

to solving the following ordinary differential equation 

(ode) 

dR = R(G + /32 (J ) (28) 
dz 2 It , 

along the characteristic equation 

(29) 

IV. CHANNEL MODEL 

Consider a WDM system as depicted in Fig. 1. The 

combined signal travels over a dispersive medium and is 

amplified before being regenerated at the receiver. Optical 

amplifiers, like any amplifier, not only amplify signals but 

they also corrupt them with additive noise. In the case of an 

erbium-doped amplifier (EDFA), a quasi-essential device 

in today's WDM systems, the added noise is attributed to a 

physical process known as amplified spontaneous emission 

(ASE). ASE noise is commonly modeled as an additive 

white Gaussian (A WG) stochastic process with a variance 

Replacing (J/ in (29) with the expression in (23) then 
integrating yields the following space-time relation O"~SE = nsphvc (G -l)Bo , (33) 

t = bz, (30) 

where b is constant along the characteristic path described 

by (29). The o.d.e. in (27) can now be solved for any 

space-time point satisfying relation (30). Replacing (JtI in 

(28) with the expression in (23) then integrating yields 

- t 

A(O,-) [" ) 
R(z,t) = J;;z exp fG(x,bx)dx , 

/32 z 0 

(31) 

- t 
where A(O,-) is the Fourier transform of the initial 

/32z 

pulse, evaluated at OJ = _t_ and b = tlz. Finally, using 
/32z 

expressions (31) and (21) in equation (20), we obtain 

A(O,_t) (Z J [ 2) 
A(z,t) = J;;z exp fG(x,!..x)dx exp - i_t - (32) 

/32z 0 z 2/32z 

Equation (32) is a large-space solution to the LSE equation. 

It shows that as the initial pulse propagates along the fiber, 

both its shape and phase (recall that G is a complex 

function) will be altered. Its magnitude will decay as the 

inverse square root of the dispersion-distance product and 

will be modulated, along a given characteristic path, by the 

fiber nonlinearities. It also provides a closed-form mapping 

between the initial pulse A(O,t) and the output pulse A(z,t) 

at any sufficiently large distance z. It thus constitutes a 

large-space (slightly different paths result from removing 

the large-space condition dictated by the stationary phase 

assumption) time-domain transfer function for the 

nonlinear WDM fiber optic channel. This result can be 

exploited to formulate the theoretical capacity problem of 

the nonlinear WDM communication system in an 

information theoretic framework. 

where nsp is the spontaneous emission factor, h is Planck's 

constant, Vc is the optical frequency, G is the gain, and Bo 

is the optical bandwidth. Let Xk represent the symbols 

transmitted over a WDM optical channel and let h(t,L) be 

the combined transmitter and channel response. 

Furthermore, let the received signal, y(t), be sampled at 

t=nT where T is the symbol period. Then 

(34) 

where Wk represents the ASE noise generated by the optical 

amplifier. In the nonlinear regime, the combined sampled 

channel response given as 

- nT 
hn = A(O, -)p(L, nT), 

/32L 
(35) 

where 

(36) 

is the nonlinear channel distortion, The term, A(O, nT ) 
/32 z 

causes lSI and p(L,nT), a random multiplicative noise 

coefficient, contributes to channel fading. A nonlinear 

WDM channel can thus be modeled as a multi-path, fading, 

frequency selective channel. This simple yet significant 

observation can be exploited to derive new bounds on the 

capacity of the nonlinear WDM optical fiber channel. In 

the linear regime, the combined response h(nT, L) is given 

by (14) and the channel in (34) reduces to the classical 

discrete-time intersymbol interference channel. 

V. CAPACITY BOUNDS 

In this work, we limit our discussion to estimating the 

capacity of the linear optical channel defmed by (14) and 



(34). The capacity of the nonlinear channel defined by (34) 

and (35) will be presented in a future publication .. 

The channel capacity is defined as 

C(Y;X) = max/(Y;X) , 
ptA) 

(37) 

where /(Y;X) is the mutual information between Y and X, 

defmedas 

/(Y;X) = E{lO{ Ef;~:;;)}J}. (38) 
The maximization in (37) is carried out over the probability 

densities of the transmitted signal xl subject to the power 

constraint 

(39) 

where P is the total available power. 

In the linear regime where the classical discrete-time 

intersymbol interference channel model holds, the channel 

capacity is given as [6] 

(40) 

where Rh is the discrete Fourier transform of hn and P the 

launch power. The channel capacity in (40) is achieved 

only when the input symbols Xk are i.i.d. Gaussian random 

variables. In many communications systems this condition 

may not hold. Practical lower bounds however exist to 

evaluate the capacity of these systems [7]. One such bound, 

suitable for on-off keying (OOK) WDM systems is given 

as 

f( 2 

CLWMF =Cb (:; 2~ flnIRh(e-lO)1 dB) (41) 
-f( 

where Cb is the capacity of the binary-input Gaussian 

memoryless channel [7]. Equations (40) and (41) set the 

capacity limits on the strictly dispersive channel (i.e., 

linear) . In Fig. 3, various bounds, including the standard 

A WG bound, Cawg" are plotted as a function of the channel 

signal-to-noise ratio (SNR) for a 100 Km SMF fiber link. 

From the plots, it is clear that rates above 2 bit/symbol are 

possible at a channel SNR of lOdB. Today, achievable 

rates for a similar channel SNR are around 0.2 bit/symbol. 
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Fig. 3. Capacity bounds on linear fiber optic communication. (I) Cawg, (2) 

Ca, (3) Cb, (4)CLWAfF' 

VI. CONCLUSION 

The treatment of a fiber optic channel as a time-varying 

frequency selective channel has, to our knowledge, never 

been proposed. It bridges a long-standing gap between the 

physics of fiber optics and the theory of communication 

and opens fiber optic communication to powerful 

techniques already used in wireless systems. Estimating 

the capacity of a fiber optics system is a fundamental step 

to understanding how its performance may be improved. 

We have used the method of multiple scales to solve the 

nonlinear Schrodinger equation. The proposed solution is 

valid only after the initial pulse has traveled a sufficiently 

large distance and is allowed to disperse. In practice this 

condition is usually met (as is the case for single mode 

fibers with a loss coefficient of 0.22 dBlKm and a GVD 

around 17 pslKm) after the pulse has propagated tens of 

kilometers. We then used the linear solution to derive new 

bounds on the capacity of linear but dispersive optical fiber 

channel. The capacity of the nonlinear channel based on 

our solution (35) will be presented in a future publication. 
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