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Abstruct- For discrete memoryless channels { LV: X + y } ,  
we consider decoders, possibly suboptimal, which minimize a 
metric defined additively by a given function d(2. y)  2 0. The 
largest rate achievable by codes with such a decoder is called 
the d-capacity C d ( W ) .  The choice d ( 2 ,  y )  = 0 if and only if 
(iff) LV(yls) > 0 makes Cd(W) equal to the “zero undetected 
error” or “erasures-only” capacity C,, ( W). The graph-theoretic 
concepts of Shannon capacity and Sperner capacity are also 
special cases of d-capacity, viz. for a noiseless channel with a 
suitable (0, 1)-valued function d .  

We show that the lower bound on d-capacity given previously 
by Csisz6r and Komer and Hui, is not tight in general, but 
Cd(W) > 0 iff this bound is positive. The “product space” 
improvement of the lower bound is considered, and a “product 
space characterization” of C,, (CI’) is obtained. We also determine 
the erasures-only (e.0.) capacity of a deterministic arbitrarily 
varying channel defined by a bipartite graph, and show that 
it equals capacity. We conclude with a list of challenging open 
problems. 

Index Terms- d-decoder, d-capacity, mismatch, Shannon ca- 
pacity, Sperner capacity, erasures-only capacity, arbitrarily vary- 
ing channel. 

I. INTRODUCTION 

N THE traditional Shannon theory of block coding for I channels, the primary emphasis has been on the selection 

of the codeword set. It has been understood that the codeword 

set will be used in conjunction with an optimal or near- 

optimal decoder, such as the theoretically optimal maximum- 

likelihood (ML) decoder or the mathematically convenient 

joint typicality decoder (cf. standard references such as Cover 

and Thomas [7], Gallager [ 181, Wolfowitz [33]). Studying 

the performance of alternative decoders has not been a major 

theoretical concern, in contrast with the practical concern of 

finding computationally feasible or implementable decoding 

algorithms. 

Whereas the ML and joint typicality decoders require a 

knowledge of the channel, there are several communica- 

tion situations where the decoder must be designed without 

such information. The point of view of universal coding has 

Manuscript received October 29, 1993; revised July 25, 1994. This paper 
was presented at the Swedish-Russian Information Theory Workshop, Molle, 
Sweden, August 1993, and at the IEEE International Symposium on Infor- 
mation Theory, Trondheim, Norway, June 27-July 1, 1994. The work of I. 
Csisziir was supported by the Hungarian National Foundation for Scientific 
Research under Grant 1906. The work of P. Narayan was supported by the 
Institute of Systems Research at the University of Maryland, College Park, 
under NSF Grant OIR-85-00108, and by the U.S. National Research Council 
and the Hungarian Academy of Sciences as part of a joint exchange program. 

I. Csiszir is with the Mathematical Institute of the Hungarian Academy of 
Sciences, H-1364 Budapest, POB 127, Hungary. 

P. Narayan is with the Electrical Engineering Department and the Institute 
of Systems Research, University of Maryland, College Park, MD 20742 USA. 

IEEE Log Number 9407439. 

rendered the decoder more theoretically interesting. Indeed, 

asymptotically optimal decoders can be designed even in the 

absence of a knowledge of the channel, such as the maximum 

mutual information decoder for the class of discrete mem- 

oryless channels (DMC’s) (Goppa [21], Csiszhr and Korner 

[9]); universal decoders for certain channels with memory 

have been suggested by Ziv [34]. The study of arbitrarily 

varying channels (AVC’s), introduced by Blackwell, Breiman, 

and Thomasian [6], has placed further emphasis on the issue 

of decoding. In order to prove AVC coding theorems, quite 

complex decoding rules had to be devised (Ahlswede [ 2 ] ,  

CsiszL and Korner [ 111, Csiszk and Narayan [ 121). 

In this paper, we shall address the rate of transmission which 

is attainable on a given channel when the decoding rule is 

specified, perhaps suboptimally. We concentrate on decoders, 

termed d-decoders, which accept the codeword z “closest” 

to the received sequence y in the sense of a metric d(s ,  y), 

defined for sequences as an additive extension of a single-letter 

metric; the term “metric” is used here in a broad sense as any 

nonnegative-valued function on the Cartesian product of the 

input and output alphabets. The optimal rate of transmission 

achievable on a channel by codes with d-decoding will be 

termed the d-capacity of the channel. A general class of 

decoders, called a-decoders, has been studied by Csiszhr and 

Komer [lo], wherein the metric is an arbitrary function of 

the joint type of x and y which is not necessarily additive. A 

more general class of decoders based on painvise comparisons 

of codewords relying on the joint types of triples (z, x’, y), 

was introduced in [8] under the name of ,&decoders. In [IO] 

and 181, universally attainable exponential error bounds were 

derived. The lower bound in [IO] on the optimal rate attainable 

with a given a-decoder, specialized to d-decoders, will be one 

of the starting points of this paper; this lower bound will be 

denoted by CY)(W) .  Our focus is on d-decoders, rather than 

the more general a- or ,&decoders, for several reasons: 

i) The class of d-decoders itself affords many interesting 

problems, some of which appear to be very hard. 

ii) The study of d-capacity may further enhance the interplay 

of information theory and combinatorics. Indeed, the important 

graph-theoretical concepts of Shannon capacity (Shannon [29])  

and Sperner capacity (Gargano, Korner, and Vaccaro [20]) are 

special cases of d-capacity. 

iii) As a practical matter, the more general a -  and p- 
decoders, though indispensable for theoretical studies, appear 

too complex to be implementable. In fact, considerations of 

complexity may provide a primary reason for the use of a 

suboptimal decoder. 

The study of d-decoders, to our knowledge, was initiated by 

Stiglitz [31]. He gave an exponential error bound for random 
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codes with an arbitrary decoding metric using Gallager’s 

bounding technique [ 191. Fischer [ 171 gave a lower bound to 

the best rate attainable on a given DMC when the ML decoder 

of another channel was used. The lower bound C t ) ( W )  on 

d-capacity has been derived independently of [ 101 also by Hui 

[22], who conjectured the bound to be tight. The use of d- 

decoders can also be found in the context of spread-spectrum 

communications (cf. Simon et al. [301). One of the present 

authors raised the problem of determining the d-capacity of 

a DMC and some related questions concerning d-decoders 

at the 1989 Swedish-Soviet Information Theory Workshop 

[14]. Very recently, several papers have been devoted to this 

problem area; some of them have been brought to our attention 

by S. Shamai, to whom we are much indebted. Those prior 

to ours are Balakirsky [4], Kapian and Shamai [23] and 

Merhav, Kaplan, Lapidoth, and Shamai [27]. Overlaps with 

these in the first version of our paper have been deleted. Also 

brought to our attention has been the work of Lapidoth [24], 

showing the lack of tightness of the analog of our lower bound 

Cil)(W) for vector Gaussian channels with Euclidean distance 

decoding. 

Most recently, we have learned of the work of Balakirsky [5] 

where he has proved the tightness of the bound Cil’(W) for 

channels with binary inputs (announced without proof in [4]), 

and that of Lapidoth [25] announcing results on d-decoders 

for multiple-access channels and, as a corollary, a negative 

solution to Open Problem 2 raised in this paper. We have also 

been apprised of the recent independent work of Ahlswede, 

Cai, and Zhang [3] and Telatar and Gallager [32]. Their results 

overlap with those in the present paper pertinent to what we 

term “erasures-only’’ (e.0.) capacity. 

This paper is organized as follows. Section 11 contains the 

basic definitions and provides several examples highlighting 

the scope of the concept of d-capacity. A simple but useful 

theorem is also included which generalizes a result of Pinsker 

and Sheverdjaev [28] on e.0. capacity. In Section 111, we 

commence with the lower bound on d-capacity due to Csisz6.r 

and Korner [lo], and proceed to show that it is not tight 

in general, but that its positivity is necessary and sufficient 

for positive d-capacity. We also address the question of 

the tightness of the “product space” improvement of the 

lower bound, and obtain a product space characterization 

of e.0. capacity. In Section IV, we ask if the capacity of 

deterministic arbitrarily varying channels can be attained by 

the most elementary decoding rule. Although a complete 

solution remains elusive, we offer an affirmative answer for a 

class of deterministic AVC’s determined by bipartite graphs. 

Finally, Section V is devoted to a discussion of several open 

problems. 

We adopt the terminology and notation of the book [9] 

throughout the paper. 

11. PROBLEM STATEMENT AND EXAMPLES 

Let X and Y be finite sets and d(z,  y) a nonnegative-valued 

function on X x Y ,  with f cc  being a possible value of d. For 

sequences z = (zl,... ,z,) E X” and y = (yl,... , y n )  E 

yn, we set 
a 

42 ,  Y) = Cd(:rz; Yz). (1) 
i=l 

For channels with input alphabet X and output alpha- 

bet Y ,  we shall consider codes with a decoding metric d, 

or d-decoding. Such a code is defined by a codeword set 
{dl), . . . c X” and a decoder which assigns to 

a received sequence y E yn that message i for which 

d ( d i ) ,  y) < d ( z ( j ) ,  y) for all j # i; if for no such i exists, 

an error is declared. 

DeJinition 1: The d-capacity of a channel is the supremum 

of those numbers R for which, for every E > 0 and sufficiently 

large n, there exist codes with d-decoding such that the rate is 

( l /n)  log N > R and the (average or maximum) probability 

of error is less than E .  

Clearly, the d-capacity does not depend on whether the 

average or maximum error criterion is used. 

In this paper, we shall be concerned mainly with discrete 

memoryless channels (DMC’s). The d-capacity of a DMC 

{W:  X i Y }  will be denoted by Cd(W). 

Examples: 1) For d(z,  y) = -logW(y(z),  d-decoding is 

the same as strict maximum-likelihood (ML) decoding, i.e., 

the message i is accepted if and only if (iff) W ( y l ~ ( ~ ) )  > 
W(ylz(j)) for all j # i .  It is well-known that the capacity 

C ( W )  of a DMC { W }  can be attained by using strict ML 

decoding. Thus in this case, Cd(W) = C(W) .  
2) Sometimes a decoding metric d(x: y)  = -logV(ylx) is 

used, where V is a channel different from the true channel 

W .  (This may happen, for instance, when the true channel is 

unknown to the receiver.) This situation is often referred to as 

mismatched decoding; in this case, Cd(W) 5 C(W) ,  and the 

exact value of Cd(W) is not known in general. 

Of particular interest to use are those decoding metrics d 

for which d(z ,  y) = 0 whenever W(ylx) > 0. Then, the 

d-decoder accepts message i iff it is the only message with 

d ( d i ) ,  y) = 0; if more than one such message exist, an error 

is declared. Thus an incorrect message is never accepted; the 

only errors are erasures. The following are special cases of 

such decoding metrics, which we shall refer to as erasures-only 

(e.0.)  metrics. 

3) Let d ( z ,  y) = 0 iff W(ylz) > 0. This metric results in 

the smallest possible probability of erasure while permitting 

no undetected errors. Thus in this case Cd(W) equals the so- 
called “zero error capacity with erasures” or “zero undetected 

error capacity” of the DMC { W }  (cf. Pinsker and Sheverdjaev 

[28]). In this paper, it will be referred to as “erasures-only’’ 

capacity or e.0. capacity, denoted by C,,(W). 

4) The Shannon capacity [29] of a graph 4 with vertex set 

X is defined as the limit as n -+ cc of ( l /n)  log a(G”), where 

9” is the graph with vertex set X“ such that (5, z’), z # z’, is 

an edge iff for each 1 5 1 5 n, either zt = xi or else (xl, 2;) 

is an edge of 9; and a(9“) is the maximum cardinality of a 

set C X” such that no 3: and x’ in C are connected by an 

edge of 6”. The zero-error capacity of a DMC {W:  X -+ Y }  
is equal to the Shannon capacity of the graph with vertex 

set X in which 2 and z’, x # x’, are connected by an edge 

iff W(ylz)W(ylz’) > 0 for some y E y .  Now, the Shannon 
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capacity of 6 is equal to the d-capacity of the noiseless channel 

with alphabet X, where d is such that d ( x ,  y) = 0 iff 2 = y or 

( x ,  y)  is an edge of 8. Indeed, for the noiseless channel, the 

maximum probability of error (for any code) is either 0 or 1, 

and d-decoding with d as chosen above gives zero probability 

of error iff the codewords are all distinct and no two of them 

are connected by an edge of 6". 
5 )  Gargano, Korner, and Vaccaro [20] have defined the 

Sperner capacity of a directed graph 6 with vertex set X as 

the limit as n -+ cc of ( l /n)  logNn(4) ,  where Nn(G) is the 

maximum cardinality of a set C X" such that for every 

5 # 2' in C, there exists 1 5 Z 5 n for which (21, xi) is 

an edge of 6. An undirected graph can be identified with a 

directed graph such that if (x, x') is an edge, then so is (d, x) .  

With this understanding, the Spemer capacity of an undirected 

graph is equal to the Shannon capacity of its complementary 

graph. Now, given a directed graph 6, let d(x,  y) > 0 iff 

( x ,  y)  is an edge of 6. Then, by the same argument as in 

Example 4 above, the d-capacity of the noiseless channel with 

alphabet X is equal to the Sperner capacity of 6. 
Examples 4 and 5 suggest that a general single-letter for- 

mula for d-capacity is not to be expected soon. 

Remark (cf. also Balakirsky [4]): In Definition 1, attention 

could have been restricted to codes with codewords of the 

same type (since any codeword set contains a subset of expo- 

nentially the same size, _consisting of codewords of identical 

type). Hence, if d and d are such that 

(2) 

for some finite numbers a ( z ) ,  x E X, b(y), y E Y ,  and c > 0, 

then Cd(W) = Cg(W) for every DMC {W:  X + 3') (since 

if the codewords ~ ( l ) ,  . . . , d N )  are of the same type and (2) 

holds, then by (1) the d-decoder accepts message i iff the 

d-decoder does). 

As a special case of the remark above, we get the following 

sufficient condition for a DMC {W:  X i Y }  to have 

C,,(W) = C ( W )  (cf. Example 3). 

Theorem 1: Suppose that there exist positive numbers 

A ( x ) ,  z E X, B(y),  y E Y ,  such that 

W(ylx) = A ( x ) B ( y )  whenever W(ylx) > 0. (3) 

d(x.  y) = C(.(.) + b(y) + &. y)) 

Then C,,(W) = C(W) .  

Pro08 Let J(x,  y) = -logW(ylx) and 

Then (2) holds with U(.) = logA(x), b(y) = logB(y), so 

that Cd( W )  = CJ( W ) .  Here Cd ( W )  = C,, ( W )  by Example 

3 and CJ(W)  = C ( W )  by Example 1. 

Remark: Pinsker and Sheverdjaev [28] have proved that 

Ceo(W) equals C ( W )  if there do not exist distinct elements 

x1, . . . , xl of X and distinct elements y1, . . . , yl of y such 

that W(yi(x;) > 0 and W(yilx;+~) > 0 for i = l,...,Z, 

where xl+l = 21. It is easily seen that W with this property 

satisfies the hypothesis of Theorem 1; thus Theorem 1 is a 

generalization of the Pinsker and Sheverdjaev result [28]. 

Note that the sufficient condition in Theorem 1 can be 

weakened in an obvious manner if the channel { W :  X + y }  

has a capacity-achieving distribution concentrated on a subset 

Xo of X. Then it suffices that (3) holds when x E X O ,  y E Y.  
We conjecture that this weakened condition is also necessary 

for Ceo(W) = C(W) .  

111. LOWER BOUND ON, AND POSITIVITY OF Cd(W) 

A general class of decoding rules, called a-decoding rules, 

has been considered by CsiszAr and Korner in [IO]. Given a 

function a on the set of probability distributions on X x y, 
the a-decoder accepts message i iff 

a(P2(t)y) < a(P,c,~,), for all j # 2 ( 5 )  

where P,(,)y denotes the joint type of d') E X" and y E Y".  
To be exact, this may be termed the strict a-decoder, since in 

[ 101 ties were permitted to be broken arbitrarily unlike above. 

However, the results in [lo] obviously hold for our case too 

with the understanding that if no z satisfying ( 5 )  exists, an 

error is declared. 

It is shown in [ lo]  that for every R > 0, every n, and every 

codeword type P, there exist codes of block length n with 

a-decoder, with codewords of type P and rate 2 R - S,, such 

that for every DMC {W:  X -+ Y }  the maximum probability 

of error is 5 exp [-n(E,, T (R ,  P, W )  - S A ) ] ,  where 6, + 0 

and SA -+ 0 are explicitly given sequences (not depending on 

R. P, W. a) ,  and 

E,,,(R. P, W )  = inf (D(V1IWIP) 
F V = P V  

U ( F  i ) < e , ( P  I ) 

+II(P, V )  - RI+) (6) 

the infimum being over all pairs of auxiliary channels V, V 

satisfying the indicated constraints. Here a(P, V )  denotes the 

value of a at the distribution on X x Y  defined by P(x)V(yIx).  

In [ 101, the definition (6) of Ea, T ( R ,  P, W )  is stated with min 

rather than inf; this is a slight error since for a general a the 

minimum need not be attained. If a is sufficiently regular SO 

that the minimum in (6) is attained, the conclusion in [IO] is 

valid that Ea, T ( R ,  P, W )  > 0 iff R is less than the minimum 

of I (P ,  V )  subject to PV = PW and a(P,  V )  5 a(P, W ) .  
Clearly, our d-decoder is an a-decoder in the sense above, 

with a(P. V )  = A(P. V )  defined by 

A(P, V )  = c P ( ~ ) V ( Y b ) d ( J ,  Y) (7) 
X €X, Y€Y 

and for this choice of a,  the minimum in (6) is always 

attained. Indeed, this is trivial (with the minimum being 0) 

if d(z.  y) = +m for some ( x ,  y) with P(x )W(y lx )  > 0; 

otherwise, we minimize a continuous function of the pair 

(V. V )  on the compact set determined by the constraints 

in (6), with the additional one that V(y1x) = 0 whenever 

W'(y(x) = 0. Hence, as a simple corollary of the result above 

in [lo], we have the following proposition. 

Proposition 1: For any decoding metric d 

C d ( W  2 m;xld(P, W )  (8) 

where 

UP, W )  = ,,=p";!C=pw I ( X  A Y ) .  (9) 
E d ( X  Y ) < A ( P  W )  
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Moreover, for any distribution P on X and R > 0, there exist 

constant composition codes with d-decoder, with codeword 

type approaching P, rate approaching R, and probability of 

error going to zero exponentially for every DMC { W :  X t 

Y }  such that R < I d ( P .  W ) .  

Proofi The proof is immediate from the results in [ IO] 
qtated above, using the continuity of Id(P1 W )  (cf. the next 

Lemma). 

Remark: The lower bound in (8) has been obtained, inde- 

pendently of [lo], also by Hui [22]. The second part of the 

following lemma appears in [22]  as well. 

Lemma I :  Id(P, W )  is a continuous function of the pair 

(P. W )  if d is finite-valued; otherwise, it is continuous when 

W is restricted to the set of channels such that W(y1.~) = 0 

whenever d(x .  y) = CG. Furthermore, Id(P, W )  is positive iff 

(10) 

and, if ( IO)  holds, the inequality constraint in (9) can be 

replaced by equality. 

P(,)(PW)(Y)d(.& ?/I > q p ,  W )  
X €X Y€Y 

Proofi See Appendix. 

Example 6 (also cf. Hui [22], Balakirsky [4]): For a binary 

channel, i.e., when 1x1 = lYl = 2, the constraints PX = 

P. PIT = P W ,  and Ed(X,  Y )  = A(P, W )  in (9) force 

P ~ I - ( T ,  y) = P(.c)W(ylz). Thus by Lemma 1, for a binary 
channel with arbitrary decoding metric d(z. y), Id(P, W )  is 

either equal to I (P .  W )  or 0, according to whether or not 

(10) holds. Simple algebra shows that for a binary channel, 

condition ( IO) reduces to 

d(0 .  1) + d(1, 0) 3 d(0, 0) + d(1, 1) (1 1) 

accordingly as the sum of the channel crossover probabilities 

is 2 1, independently of the input distribution. It follows that 

if ( I  1 )  holds, then Cd(W) = C(W).  (This also follows from 

the remark in Section 11, viz. (2).) On the other hand, if (1 1)  

fails to hold, then Cd(W) = 0 by Theorem 3 below. 

Remarks: i) The lower bound of Fischer [ 171 on d-capacity 

with d(.c, y) = -log V(ylz) (cf. Example 2) is the maximum 

of 

with respect to P. It can be seen by simple algebra that 

if X and Y satisfy the constraints in (9) with d(z, y) = 

-log V(ylz), then I ( X  A Y )  is lower bounded by the sum 

above. Thus 

if d(z, y) = -logV(ylz). (12) 

The lower bound in (12) on Id(P, W )  is a special case of 

more general bounds developed in [23]. 

ii) Since the codes appearing in Proposition 1 do not depend 

on the channel { W } ,  a sender-receiver pair lacking knowledge 

of { W }  other than its membership of a certain class of 

channels W ,  can find a good code with d-decoding, of any 

rate 

R < max inf Id(P, W ) .  
P lV€W 

In other words, the right-hand side above is a lower bound 

on the d-capacity of the compound channel defined by the set 

W .  Of particular interest is the case in which W is a convex 

compact set when the ordinary capacity of the compound 

channel is 

C ( W )  = rnax min I (P ,  W )  = rnin rnaxI(P, W ) .  
P W €W WEW P 

Let (P* ,  W * )  be the saddle-point in (14), i.e., C(W)  = 

I ( P * ,  W * ) .  Then C(W)  can be achieved by d-decoding with 

d(z ,  y) = -logW*(ylz). Indeed, we have for every W E W 

that 

2 I ( P * ,  W * )  = C(W)  (15) 

where the first inequality is (12), and the second is a con- 

sequence of the fact that W* minimizes I (P* .  W )  over the 

convex compact set W (cf. [9, p. 213, eq. (6.19)l). On the 

other hand, it should be noted that d-decoders are absolutely 

inadequate for certain compound channels, in that the d- 

capacity of a compound channel of positive capacity may 

equal 0 for every decoding metric d(z ,  y). This happens, for 

instance, if W consists of two binary symmetric channels with 

crossover probabilities 1/4 and 3/4 (cf. Example 6). 

The lower bound on Cd(W) in Proposition 1 is, in general, 

not tight, and may be improved by recourse to a product space 

version. Namely, setting 

where P ranges over all distributions on X " ,  it follows 

from Proposition 1 that Cd(W) 2 C p ) ( W )  for all n, and 

consequently 

c, ( W )  2 c y  ( W )  = sup CJ") (W) .  (17) 

Of course, the "product space" lower bound in (17) is, in 

general, not computable. We shall return to the issue of the 

tightness of this bound later in this section. At this point, we 

show that CJ"'(W), 71 > 1, may be larger than CJ1)(W), 

the bound appearing in (8). Indeed, this is already true in the 

special case of Example 4 on account of the following Lemma 

and the fact that (l/n)logcr(Q") may be greater than cy($ 

(e.g., if Q is the pentagon, then n(Q) = 2 and a(G2) = 5). 

Lemma 2: Let Q be an undirected graph with vertex set X ,  
and let d(z, y) be positive iff z # y and (z, y) is not an 

edge of 4. Then for the noiseless channel WO with alphabet 

X ,  we have 

n 

1 

n 
CF'(W0) = - log Ql(P). 

Proof: See Appendix. 
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Remark: It is possible that Ck”’(W) > Cil’(W) even 

for { W }  such that W(y(z) > 0 for all IC E X. y E 3’. 
Indeed, let X = Y = (0, 1, 2 ,  3, 4), and d(z ,  y)  = 0 iff 

y = z - 1. z or z + 1 (mod 5). Consider any sequence of 

channels {W:  X ---f y )  converging to the noiseless channel 

{WO}. Then for any fixed P, Id(P, W )  converges by Lemma 

1 to Id(P, WO), and the same holds for rd(P, W 2 )  too. Since 

Cil’(W) < C&”(W) will hold for every {W} sufficiently 

close to {WO}. 

Even though the lower bound in Proposition 1 is, in general, 

not tight, we now show that the positivity of that bound is 

necessary for Cd(W) > 0. Indeed, it is necessary even for the 

distinguishability of two codewords by d-decoding. 

Theorem 2: Given a DMC {W:  X -+ Y )  and a decoding 

metric d(z. y), suppose that for every t > 0 there exist some n 

and z = (zl. . . . . z,) and z’ = ( x i .  . , . , z6) in X” such that 

the maximum probability of error of the code with codeword 

set {z. z’} and d-decoding is less than t. Then 

cd (1) (WO) = log 2 < Cf’(W0) = i log 5 ,  the inequality 

c ~ ’ ( w )  = niaxId(P, W )  > 0. 
P 

Remark: For achieving positive rates with constant compo- 

sition codes of codeword type P using d-decoding, it is not 

necessary that Id(P, W )  be positive. Rather, positive rates can 

always be achieved by such codes whenever Cd( W )  > 0, at 

least if P ( z )  is bounded away from zero. To see this, take 

any code with codewords of type PO such that d-decoding 

yields probability of error less than E. The probability of 

error with d-decoding will remain unchanged if we append to 

each codeword a fixed sequence; if this appended sequence is 

suitably selected (with length not exceeding a constant times 

the original block length), the resulting new code will have 

codewords of type P,  and rate not less than a constant times 

the original rate. 

In order to prove Theorem 2, we need the following lemma. 

Lemma 3: Let P be a finite set of distributions on the real 

line, each concentrated on a finite set. Then there exists an 

t > 0 such that for every 7~ and independent random variables 

XI. . . . . X ,  with Px, E P ,  i = 1, . . . , n, the condition 

I n  

implies 

&xi < 0. 

i=l 

Proof: See Appendix. 

Proof of Theorem 2: Let (Y1, . . . , Y,) denote the sequence 

of output random variables resulting when z is sent, i.e., 

let Y1 . . . .  ,Yn be independent with distributions Py, = 

W(.Izi), i = l , . . . , n  . Then, the probability of error when 

z is sent, is 

n 

i=l i = l  

- 
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Suppose that P,(z) < t with t > 0 sufficiently small. Then 

each d(z; ,  x) must be finite with probability 1; else, P , ( z )  
could not be less than the smallest positive W(y1z). If each 

d(zi, y Z )  as well is finite with probability 1, we obtain from 

(20) and Lemma 3 that 

n 

2 = 1  

If d(z: ,  E) = cc with positive probability for some i, then 

(21) holds trivially. 

Similarly, denoting by (Y:, . . . , YA) the output random 

variables resulting from the transmission of z’, i.e., Y{, . . . , T <  

are independent with Py; = W(.~IC: ) ,  i = 1,.  . . , n, it follows 

from P,(z’) < t that 
n 

i=l 

Adding (21) and (22), we conclude that the sum of the 

expectations 

E[d(zz, y i )  + d(& K’) - d(z i ,  y z )  - d(zi, X’)] 
is negative, so that at least one of them is negative. Hence, 

there exist IC and IC’, 5 # z’ in X such that 

C(d(z, Y)W(YlZ) + d(z’ ,  Y)W(YIz/)) 

< C(d(z’, Y)W(YlZ) + d(z,  y)W(?/Iz’)). 

Y€Y 

(23) 

YEY 

Finally, let P be the distribution on X which assigns 

probability i to both z and 2’ appearing in (23). It is seen 

by simple algebra that (23) is equivalent to (10) for this P,  
so that by Lemma 1 we have &(P, W )  > 0. This completes 

the proof of Theorem 2. 

We now return to the issue of whether or not the product 

space lower bound (17) is tight. Although this bound is 

not computable, its tightness would afford some valuable 

conclusions, for instance, that for R < Cd(W), codes with 

d-decoding always exist with rates approaching R and prob- 

ability of error approaching zero exponentially fast. Indeed, 

this is certainly true for R < C,’”’(W) by Proposition 1. We 

believe that the bound in (17) is tight for every decoding metric 

~ ( I c .  g), but at present cannot offer a proof. However, it is easy 
to prove the “product space characterization” of c d ( W )  for 

e.0. metrics. 

Theorem 3: For a DMC { W } ,  Cd(W) = Cjw)(W) holds 

for every e.0. metric d(z ,  y). 

Proof: Let C c X” be the codeword set of a code with 

d-decoder, where d is an e.0. metric, i.e., d(z,  y) = 0 if 

W(y1z) > 0. Let V denote the set of those y E yn  which 

are correctly decoded, i.e., 

V = {y: there is a unique z E C with d(z ,  y) = 0). (24) 

Then the average probability of error is 

where P denotes the uniform distribution on C. 
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Now, I d ( P ,  W " )  equals, by definition, the minimum of 

I ( X "  A U " )  subject to the constraints (cf. (9)) 

Pdy- = P Pyn = PW" E d ( X " ,  Y " )  = 0. (26) 

The last condition in (26) yields that d ( X n ,  Y")  = 0 with 

probability 1, and hence, X n  is uniquely determined by Y" 

if Y" E 2). Thus 

H ( X " J Y " )  = Pr{Y" = ~ > } H ( x ~ J Y ~  = y) 

y€vc 

5 log IC1 Pr {Y" E D"} 

and 

It follows, using (25), that 

I d ( P .  W " )  2 (1 - Pe)l0g(C( 

so that the rate of our code is bounded above according to 

Cj". 1 1 1 -  1 
-1ogIC1 5 - . -&(P; W " )  5 - 
7L 1-P, n 1 - P, 

This proves that Cd(W) 5 Cjm); comparing this with (17) 

completes the proof of Theorem 3. 

IV. "ERASURES-ONLY'' CAPACITY 

FOR ARBITRARILY VARYING CHANNELS 

The performance of various decoding rules for AVC's has 

been investigated by Csisz6r and Narayan [ 131. In this section, 

we address the following question: Can the capacity of a 

deterministic AVC be attained using the most elementary 

decoding rule; namely, a codeword x is accepted iff it is the 

only codeword compatible with the received sequence y? 

Formally, given an input alphabet X, output alphabet Y ,  and 

a set of states S ,  a deterministic AVC is defined by a family of 

mappings T,: X -+ Y ,  s E S,  where y = T,(x) is the (only) 

output for input z if the state is s. During the transmission of a 

sequence x = (21, . . . . z"), the states may vary in an arbitrary 

manner; if the state sequence is s = (SI.. . . , sn)  E S", the 

output will be y = T,(x) = (Ts1 (XI), . . . , T,,, (z")). 

For a code with codeword set C c X" and a given 

decoder, let p,(s) denote the fraction of codewords x E C 

that are incorrectly decoded when the sequence of states is 

s = (SI, . . . . -5"). We define the capacity of the deterministic 

AVC as the supremum of those numbers R for which, for 

any E > 0 and sufficiently large n, there exist codes of 

rate ( l /n ) log  IC1 > R with a suitable decoder, such that 

p,(s) < E for all s E S". In the terminology of arbitrarily 

varying channels, this is the capacity for deterministic codes 

and the average probability of error criterion, when both the 

encoder and the decoder are ignorant of the actual sequence 

of states (cf. [12]). Observe that since we are dealing with a 

family of deterministic channels, the maximum probability of 

error criterion would require that every codeword be correctly 

decodable, regardless of the state sequence. 

Let us cohsider the (elementary) decoding rule whereby a 

codeword x is accepted iff it is the only codeword for which 

a state sequence s E S" exists such that T,(x) equals the 

received sequence y, i.e., the d-decoder with metric d(z,  y) 

such that d ( z ,  y) = 0 iff there exists s E S with T,(z) = y. 

For this decoder, we have 

p,(s) = -l{x E C: there exist x' E C, s/ E STL 
1 

IC1 

with x' # 5, T,r(z') = Ts(s)}(. (27) 

Definition 2: The e.0. capacity of a deterministic AVC is 

defined as the supremum of those numbers R for which, for 

every E > 0 and sufficiently large n, there exist codes of rate 

( l /n )  log JCJ > R such that pe(s) < t for all s E S", where 

p,(s) is defined by (27). 

It is tempting to conjecture that the e.0. capacity of a 

deterministic AVC always equals its capacity. This, however, 

is apparently a difficult problem; below we shall establish this 

equality for a subclass of deterministic AVC's. 

Let 6 be a bipartite graph with vertex sets X and Y ,  with no 

isolated vertices. We interpret X and Y as the input and output 

alphabets of a channel. At each time instant, each z E X 
is connected to some y E Y such that (z, y) is an edge of 

6; each z E X is connected to just a single y E Y .  These 

connections may change in time in an arbitrary manner. Thus 

the graph 6 defines a deterministic AVC such that i) for each 

state s E S ,  the mapping T,: X + Y represents a possible 

pattern of connections, i.e., a deterministic channel such that 

(x .  T,(x)) is an edge of the graph 6; and ii) the mappings 

T,, s E S ,  exhaust all possible patterns of connections as 
above. 

Given the bipartite graph 6, we shall denote by G the graph 

with vertex set X for which (.E, x') is an edge iff there exists 

y E y such that both (5, y) and (d, y) are edges of G. 
Theorem 4: The e.0. capacity of the deterministic AVC 

defined by a bipartite graph 6 as above is _equal to the capacity 

of this AVC. This capacity is positive iff 6 is not the complete 

graph. If the latter condition holds, the capacity equals the 

minimum capacity of DMC's {W:  X -+ Y }  compatible with 

6, i.e., such that W(yli) is always zero if (z, y)  is not an 

edge of 6 .  
Remark: Note that the condition for the positivity of the 

e.0. capacity of a deterministic AVC determined by a bipartite 

graph 6, is the same as that for the zero error capacity of 

the same AVC, which equals the Shannon capacity of the 

graph G [2]. However, the e.0. capacity of this AVC (which 

equals capacity) itself may be strictly larger than the zero- 

error capacity. For example, consider the graph 4 of Fig. 1. 

The zero-error capacity equals the Shannon capacity of the 

pentagon, i.e., 1 /2  log 5 [26], whereas the capacity is equal to 

Proof of Theorem 4: We first show that the condition for 

positive capacity in the theorem is indeed necessary. (Its 

sufficiency is obvious.) For this, we rely on the fact that sym- 

metizable AVC's have capacity 0. The simplest, deterministic 

version of symmetrizability for a general AVC states that there 

exists a mapping U :  X 4 S such that for every z and .E' in 

X, the output distribution when 2 is sent and s/ = ~ ( z ' )  is 

log5 - 1. 
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the state, is the same as that when x’ is sent and s = U(.) is 

the state. For a deterministic AVC, this means that 

(28) 

Now, if 4 is the complete graph, assign to each pair (z. d) 
a y = y(x, x’) such that both (x. y) and (x’, y) are edges 

of S ,  and y(z, d) = y ( d .  x ) .  Then define the mapping 
U :  X + S as follows: For each z E X, let s = U(.) be 

the state for which the (deterministic) channel sends each 

x’ E X to T,(d)  = y(x, d). Then, clearly (28) holds, thereby 

proving the necessity of the condition for positive capacity in 

the theorem. 

Next, recall that for any AVC, if the capacity is positive, 

it equals minQC(WQ) for Q ranging over the probability 

distributions on the state set S, where WQ is the Q-mixture 

of the channels corresponding to the individual states s E S 

(cf. Ahlswede [l]) .  Clearly, in our case, the channels of form 

WQ are the same as the channels compatible with the graph 

S .  Thus the last statement of Theorem 4 follows. 

Next, we claim that if the AVC determined by the graph G 
has positive capacity, then every strictly positive input distri- 

bution P satisfies the Condition DS stated in [13, Definition 31. 

This condition states for a general AVC that no distribution Q 
on S and channel U :  X + S exist such that for every T’ E X 
and y E Y 

Tu(zt)(x) = Tu(z)(s’), for every z and z’ E X. 

P(r)W(ylx. s)U(slx:’) = zW(yl . r ’ ,  s ) Q ( s ) .  

X E X ,  S E S  s E S  

(29) 
In our case, W(ylx. s )  = 1 if y = Ts(.r), and 0 otherwise; 

thus the right-hand side of (29) equals 0 for every z’ and y 

not connected by an edge of 6. By the condition for positive 

capacity that has already been proved, there exist 2 and d E X 
such that no y E Y connected to z is also connected to z’. 

Given any channel U :  X + S,  pick s E S with U ( s 1 d )  > 0 

and let y = Ts(x). Then the left-hand side of (29) will be 

positive, establishing our claim. 

Finally, by [ 13, Theorem 31 the result just proved establishes 

that capacity can be attained by the “typicality decoding rule” 

defined in [13]. In our case, the latter reduces to the decoder 

yielding (27), by virtue of the fact that the channels of form 

WQ are those compatible with G. This completes the proof 

of Theorem 4. 

Remarks: The fact that the symmetrizability of an AVC 

implies zero capacity dates back to Blackwell, Breiman and 

Thomasian [6]; CsiszAr and Narayan [I21 proved that sym- 

metrizability (though not its deterministic version) is, indeed, 

equivalent to zero capacity. Condition DS was introduced by 

Dobrushin and Stambler [15], and the result that it implies 

achievability of the capacity of the AVC by “typicality” decod- 

ing is largely attributable to them. Of course, Theorem 4 could 

have been alternatively established in a more direct manner, 

without recourse to general AVC theory. Our preference, 

instead, for the tools developed in [ 131 stems from their ability 

to readily lead to the desired results, thereby demonstrating 

their power. 

V. OPEN PROBLEMS 

It is remarked in Section I1 that if the decoding metrics d and 

dx are “equivalent” in the sense of (2), then Cd(W) = Cl(W)  

for every DMC {W:  X -+ J’}. 
Problem 1: Conversely, if Cd(W) = C,-(W) for all 

DMC’s {W:  X -+ Y } ,  is it true that d and 2 are “equivalent” 

vis a vis (2)? 

Note that the question above, when restricted to a single 

DMC, has a negative answer. 

Problem 2: Given a decoding metric d, does Cd(W) = 

C ( W )  imply cJ~)(w) = c(w)? 
For a decoding metric such that d(z, y) = 0 iff W(y(z) > 

0, it is easily seen that Cil)(W) = C ( W )  iff (3) holds subject 

to P ( x )  .> 0 for some P which yields I ( P ,  W )  = C(W).  The 

sufficiency of this condition for the equality of e.0. capacity 

and capacity has already been established in Section 11. An 

affirmative answer to Problem 2 with d as above would imply 

an affirmative answer to the following problem. 

Problem 3: Is the sufficient condition above for C,, ( W )  = 

C( W )  necessary too? 

The next two problems ask if certain standard results on the 

capacity of a DMC extend to d-capacity. 

Problem 4: Does the strong converse hold for a DMC? 

Namely, for codes with d-decoding and of rate approaching 

some R > Cd(W) as the block length increases, does the 

probability of error necessarily go to l ?  

Problem 5: If R < Cd(W), do there exist codes with d- 

decoder, rate approaching R, and probability of error decaying 

to zero exponentially as the block length goes to m? 

As an immediate extension of Proposition 1, the property 

required in Problem 5 does hold for R < C,’”(W). Thus 

Cj”)(W) = Cd(W) is a sufficient condition for an affirma- 

tive answer to Problem 5. This latter condition is known to be 

satisfied if d is an e.0. metric, by Theorem 3. 

Problem 6: Does Ci”)(W) equal Cd(W) for every DMC 

{W:  X + Y }  and decoding metric d? 

A natural modification of the d-decoder is the (d, r)-thres- 

hold decoder, which accepts codeword E(’)  iff d(z(’)), y) 5 T 

and d ( z ( J ) ,  y) > 7 for every j # i .  The threshold d-capacity 

of a DMC can then be defined as the largest rate attainable by 

codes with (d, 7,)-threshold decoders for suitable thresholds 

r,. Clearly, threshold d-capacity can never exceed d-capacity. 

Further, C:”( W ) ,  and consequently Ci“) ( W ) ,  constitute 

lower bounds on threshold d-capacity too (cf. [IO], [221). 

Hence an affirmative answer to Problem 6 would imply an 

affirmative answer to the following problem. 
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Problem 7: Is the threshold d-capacity of a DMC 

{W:  X i y }  always equal to its d-capacity? 

We show in Section IV that the e.0. capacity of a special 

kind of deterministic AVC (determined by a bipartite graph) is 

equal to the capacity of the AVC (for deterministic codes and 

the average probability of error criterion). It remains unknown 

whether the same holds for every deterministic AVC. 

Problem 8: It the e.0. capacity of a deterministic AVC 

always equal to its capacity? 

VI. APPENDIX 

Proof of Lemma 1: To show that P, --f P, W, + W 

implies 

limId(P,, Wn) = Id(P, W )  (AI) 

denote by P* (resp. P,*) the joint distribution of X and Y 
attaining the minimum in (9) for (P ,  W )  (resp. (P, , Wn)>. 

Note first that any sequence of the positive integers cpntains 

a subsequence n k  such that P:, + P ,  say. Clearly, P is the 

joint distribution of random variables X and Y satisfying the 

constraints in (9); this proves that 

n 

liminf Id(Pn. Wn) 2 Id(Pl W ) .  (A2) 

To complete the proof of (AI), it suffices to show- the 

existence of distributions P, --f P* on X x y such that P, is 

the joint distribution of random variables X and Y satisfying 

the constraints in (9), with P and W replaced by P, and W,. 

Such P, can be given by 

n 

k(., Y) = P,(S)W,(Yl.) + (1 - t,)(P*(., y) 

- P(Z)W(YlZ)) 643) 

where the sequence of positive numbers t, + 0 is chosen 

so as to satisfy P,(z)W,(ylz) 2 (1 - t , ) P ( x ) W ( y ( x )  for 

every 5 E XI y E y (possible because P,(x)W,(yIx) --+ 

To check the remaining assertion of Lemma 1, note that 

the minimum of I ( X  A Y )  subject to PAy = P, Py = 

PW, E d ( X ,  Y )  5 A is a convex function of A (by the 

same standard argument used to show the convexity of the 

rate distortion function). Hence, this function is continuous 

for A > 0 and is strictly decreasing in the interval where it 

is nonzero, i.e., for A less than the value of E d ( X ,  Y )  for 

independent X and Y with P x  = P, Py = P W .  

Proof of Lemma 2: For the noiseless channel WO and d as 

in the lemma, we have PW; = P and A(P, Won) = 0 for 

all P. Hence, Id(P,  W;) equals the minimum of I ( X n  A 

Y”) over X n  and Y” such that P p  = P y n  = P and 

E d ( X n l  Y“) = 0. The latter condition means that ( X n ,  Y”) 

is an edge of Gn with probability 1. 

We have to prove that max&(P, Won) equals the log of 
the cardinality of the largest subset of X ”  such that no z and 

z’ in this subset are connected by an edge of Gn. Clearly, it 

suffices to prove this for n = 1; the general case then follows 

by substituting 6 by Gn. 

fY.1 W(Y I.)). 

Now, Id(P, WO) is the minimum of I ( X A Y )  over X and Y 
such that Px = Py = P and E d ( X ,  Y )  = 0. The maximum 

of this Id(P1 WO) over P is known to equal logcu(G) (cf. 

[9, p. 87, problem 18(b)]). (Formally, there the constraint 

E d w ( X .  Y )  < 0;) appears instead of our E d ( X ,  Y )  = 0,  

where dw(s,  g) = 0;) iff our dw(z, y) is positive; clearly, 

the two constraints are equivalent.) This completes the proof 

of the Lemma. 

Proof of Lemma 3: Let X1 . . . , X ,  be independent ran- 

dom variables with Px, E P ,  i = 1,. . . , n, and suppose that 

m of them are nondegenerate (i.e., varX; > 0). Without any 

loss of generality, suppose that these are X I .  . . . , X,; then 

X ,  = E X ;  with probability 1 for m < i 5 n. If 

T E X ;  2 0 
U 

i=l 

we obtain that 

if m is sufficiently large, say m 2 mo; the uniform bound in 

the last step follows, for instance, by Berry’s sharpening of the 

central limit theorem [16, p. 5441, relying on the hypothesis 

that the set of possible distributions of the X ~ S  is finite. Thus 

in case m 2 mo, the assertion holds with t = 1/4. 
Note further that the set of possible probabilities of the form 

with m < mo and arbitrary a E W is finite. Let t denote the 

smallest positive value among these probabilities. Then if (1 8) 

holds with this t, and m < mo, we have 

which implies (19). This completes the proof of Lemma 3. 
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